

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10268dsp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- **Cautions 1.** While RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data access is to proceed and the RAM area +10 bytes when instructions are fetched from RAM areas, respectively. Reset signal generation sets RAM parity error resets to enabled (RPERDIS = 0). For details, see 21.3.2 RAM parity error detection function.
 - 2. The RAM in the R5F10266 has capacity as small as 256 bytes. Depending on the customer's program specification, the stack area to execute the data flash library may not be kept and data may not be written to or erased from the data flash memory. For details, refer to RL78 Family Data Flash Library Type04 User's Manual.
 - 3. The self-programming function cannot be used in the R5F10266 and R5F10366

Address	Special Function Begister (SER) Name	Svn	nhol	B/W	Manin	ulable Bit I	Bange	After Reset
Address	opedar undiorriegister (orri) Name	Cyn		11/ • •	1_bit	8-hit	16-hit	Alter Heset
E0180H	Timer counter register 00	TCR00		B	1-Dit	0-51	10-bit	FEEH
F0181H		101100					v	
F0182H	Timer counter register 01	TCB01		B			V	FFFFH
F0183H		TONOT					``	
F0184H	Timer counter register 02	TCR02		B	_	_		FFFFH
F0185H								
F0186H	Timer counter register 03	TCR03		B	_	_		FFFFH
F0187H								
F0188H	Timer counter register 04	TCR04		R	_	_		FFFFH
F0189H								
F018AH	Timer counter register 05	TCR05		R	_	_		FFFFH
F018BH								
F018CH	Timer counter register 06	TCR06		R	_	_		FFFFH
F018DH								
F018EH	Timer counter register 07	TCR07		R	_	_		FFFFH
F018FH								
F0190H	Timer mode register 00	TMR00		R/W	-	_		0000H
F0191H								
F0192H	Timer mode register 01	TMR01		R/W	-	-		0000H
F0193H								
F0194H	Timer mode register 02	TMR02		R/W	-	-	\checkmark	0000H
F0195H								
F0196H	Timer mode register 03	TMR03		R/W	-	-	\checkmark	0000H
F0197H								
F0198H	Timer mode register 04	TMR04		R/W	_	-		0000H
F0199H								
F019AH	Timer mode register 05	TMR05		R/W	-	-		0000H
F019BH		-						
F019CH	Timer mode register 06	TMR06		R/W	-	-	\checkmark	0000H
F019DH								
F019EH	Timer mode register 07	TMR07		R/W	-	-	\checkmark	0000H
F019FH								
F01A0H	Timer status register 00	TSR00L	TSR00	R	_	\checkmark	\checkmark	0000H
F01A1H		_				_		
F01A2H	Timer status register 01	TSR01L	TSR01	R	_			0000H
F01A3H		_			_	_		
F01A4H	Timer status register 02	TSB02I	TSB02	в		V		0000H
F01A5H		-	TOTIOL		_	_		000011
	Timor status register 03	TSD02I	TODUS	D		al	2	0000
		TOHOOL	101100			v	v	000011
	T	-	TODAL				1	000011
FUIANH	i imer status register 04	ISR04L	15804	К	_	N	N	UUUUH
F01A9H		-			_	_	,	
F01AAH	Timer status register 05	TSR05L	TSR05	R	_	V	N	0000H
F01ABH		-			-	-		
F01ACH	Timer status register 06	TSR06L	TSR06	R	_	\checkmark	\checkmark	0000H
F01ADH		=						
F01AEH	Timer status register 07	TSR07L	TSR07	R	-			0000H
F01AFH	1	_	1		_	_	1	

Table 3-7.	Extended	SFR	(2nd	SFR)	List	(4/5)
------------	----------	-----	------	------	------	-------

5.3.4 Oscillation stabilization time counter status register (OSTC)

This is the register that indicates the count status of the X1 clock oscillation stabilization time counter. The X1 clock oscillation stabilization time can be checked in the following case:

- If the X1 clock starts oscillation while the high-speed on-chip oscillator clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the high-speed on-chip oscillator clock is being used as the CPU clock with the X1 clock oscillating.

The OSTC register can be read by a 1-bit or 8-bit memory manipulation instruction.

When reset signal is generated, the STOP instruction and MSTOP (bit 7 of clock operation status control register (CSC)) = 1 clear the OSTC register to 00H.

Remark The oscillation stabilization time counter starts counting in the following cases.

- When oscillation of the X1 clock starts (EXCLK, OSCSEL = 0, 1 \rightarrow MSTOP = 0)
- When the STOP mode is released

6.4 Basic Rules of Timer Array Unit

6.4.1 Basic Rules of Simultaneous Channel Operation Function

When simultaneously using multiple channels, namely, a combination of a master channel (a reference timer mainly counting the cycle) and slave channels (timers operating according to the master channel), the following rules apply.

- (1) Only an even channel (channel 0, 2, 4, 6) can be set as a master channel.
- (2) Any channel, except channel 0, can be set as a slave channel.
- (3) The slave channel must be lower than the master channel.
 - Example: If channel 2 is set as a master channel, channel 3 or those that follow (Channel 3 to 7) can be set as a slave channel.
- (4) Two or more slave channels can be set for one master channel.
- (5) When two or more master channels are to be used, slave channels with a master channel between them may not be set.

- (6) The operating clock for a slave channel in combination with a master channel must be the same as that of the master channel. The CKS0n0 and CKS0n1 bits (bits 15 and 14 of timer mode register 0n (TMR0n)) of the slave channel that operate in combination with the master channel must be the same value as that of the master channel.
- (7) A master channel can transmit INTTMOn (interrupt), start software trigger, and count clock to the lower channels.
- (8) A slave channel can use INTTM0n (interrupt), a start software trigger, or the count clock of the master channel as a source clock, but cannot transmit its own INTTM0n (interrupt), start software trigger, or count clock to channels with lower channel numbers.
- (9) A master channel cannot use INTTMOn (interrupt), a start software trigger, or the count clock from the other higher master channel as a source clock.
- (10) To simultaneously start channels that operate in combination, the channel start trigger bit (TS0n) of the channels in combination must be set at the same time.
- (11) During the counting operation, a TS0n bit of a master channel or TS0n bits of all channels which are operating simultaneously can be set. It cannot be applied to TS0n bits of slave channels alone.
- (12) To stop the channels in combination simultaneously, the channel stop trigger bit (TT0n) of the channels in combination must be set at the same time.
- (13) CK02/CK03 cannot be selected while channels are operating simultaneously, because the operating clocks of master channels and slave channels have to be synchronized.
- (14) Timer mode register 0n (TMR0n) has no master bit (it is fixed as "0"). However, as channel 0 is the highest channel, it can be used as a master channel during simultaneous operation.

The rules of the simultaneous channel operation function are applied in a channel group (a master channel and slave channels forming one simultaneous channel operation function).

If two or more channel groups that do not operate in combination are specified, the basic rules of the simultaneous channel operation function in **6.4.1** Basic rules of simultaneous channel operation function do not apply to the channel groups.

```
Remark n: Channel number (n = 0 to 7)
```


Example: If channels 0 and 4 are set as master channels, channels 1 to 3 can be set as the slave channels of master channel 0. Channels 5 to 7 cannot be set as the slave channels of master channel 0.

6.5.2 Start timing of counter

Timer count register 0n (TCR0n) becomes enabled to operation by setting of TS0n bit of timer channel start register 0 (TS0).

Operations from count operation enabled state to timer count Register 0n (TCR0n) count start is shown in Table 6-6.

Table 6-6.	Operations from Count O	peration Enabled State to	Timer count Register 0n	(TCR0n) Count Start
				(

Timer operation mode	Operation when TS0n = 1 is set
Interval timer mode	No operation is carried out from start trigger detection (TS0n = 1) until count clock generation.
	The first count clock loads the value of the TDR0n register to the TCR0n register and the subsequent count clock performs count down operation (see 6.5.3 (1) Interval timer mode operation).
Event counter mode	Writing 1 to the TS0n bit loads the value of the TDR0n register to the TCR0n register. Detection TI0n input edge, the subsequent count clock performs count down operation (see 6.5.3.(2) Event counter mode operation)
• Capturo modo	No operation is carried out from start trigger ($T_{SOR} = 1$) detection until count
	clock generation.
	The first count clock loads 0000H to the TCR0n register and the subsequent
	count clock performs count up operation (see 6.5.3 (3) Capture mode operation
	(input pulse interval measurement)).
One-count mode	The waiting-for-start-trigger state is entered by writing 1 to the TS0n bit while the timer is stopped (TE0n = 0).
	No operation is carried out from start trigger detection until count clock
	The first count clock loads the value of the TDR0n register to the TCR0n register and the subsequent count clock performs count down operation (see 6.5.3 (4) One-count mode operation).
Capture & one-count mode	The waiting-for-start-trigger state is entered by writing 1 to the TS0n bit while the timer is stopped (TE0n = 0). No operation is carried out from start trigger detection until count clock
	generation.
	The first count clock loads 0000H to the TCR0n register and the subsequent count clock performs count up operation (see 6.5.3 (5) Capture & one-count mode operation (high-level width is measured)).

Figure 6-52. Example of Set Contents of Registers to Measure Input Pulse Interval (1/2)

11.3.5 Serial data register mn (SDRmn)

The SDRmn register is the transmit/receive data register of channel n (16 bits). Bits 8 to 0 (lower 9 bits) of SDR00 and SDR01 or bits 7 to 0 (lower 8 bits) of SDR02, SDR03, SDR10, and SDR11 function as a transmit/receive buffer register, and bits 15 to 9 (higher 7 bits) are used as a register that sets the division ratio of the operation clock (fMck).

If the CCSmn bit of serial mode register mn (SMRmn) is cleared to 0, the operating clock divided by the division ratios specified by bits 15 to 9 (higher 7 bits) of the SDRmn register is used as the transfer clock.

If the CCSmn bit of SMRmn is set to 1, set bits 15 to 9 (higher 7 bits) of SDR00, SDR01, SDR10, and SDR11 to 0000000B. The input clock fsck (slave transfer in CSI mode) from the SCKp pin is used as the transfer clock.

The lower 8/9 bits of the SDRmn register function as a transmit/receive buffer register. During reception, the parallel data converted by the shift register is stored in the lower 8/9 bits, and during transmission, the data to be transmitted to the shift register is set to the lower 8/9 bits.

The SDRmn register can be read or written in 16-bit units.

However, the higher 7 bits can be written or read only when the operation is stopped (SEmn = 0). During operation (SEmn = 1), a value is written only to the lower 9 bits of the SDRmn register. When the SDRmn register is read during operation, the higher 7 bits are always read as 0.

Reset signal generation clears the SDRmn register to 0000H.

Figure 11-10. Format of Serial Data Register mn (SDRmn)

			F	FF11H	(SDR00))					FI	F10H	(SDR00)		
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SDRmn																
Address: FFF FFF	44H, F 48H, F	FF45H FF49H	(SDR02 (SDR10	2), FFF4)), FFF4	46H, FF 4AH, FF	F47H (F4BH (SDR03) SDR11	Afte	r reset:	0000H	R/W					
			F	FF45H	(SDR02	2)					FI	F44H	(SDR02)		
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SDRmn								0								
	-															
			SD	Rmn[1	5:9]			Tra	nsfer cl	ock set	ing by o	dividing	the ope	erating of	clock (fr	иск)
	0	0	0	0	0	0	0					fмск/2				
	0	0	0	0	0	0	1					fмск/4				
	0	0	0	0	0	1	0					fмск/6				
	0	0	0	0	0	1	1					fмск/8				
	•	•	•	•	•	•	•					•				
	•	•	•	•	•	•	•					•				
	•	•	•	•	•	•	•					•				
	1	1	1	1	1	1	0				f	мск/254	4			
	1	1	1	1	1	1	1				f	мск/25	6			

Address: FFF10H, FFF11H (SDR00), FFF12H, FFF13H (SDR01) After reset: 0000H R/W

(Cautions and Remarks are listed on the next page.)

(1) Register setting

Figure 11-33. Example of Contents of Registers for Master Reception of 3-Wire Serial I/O (CSI00, CSI01, CSI11, CSI20)

	eriai m	oae re	egiste	r mn (SMRn	nn)										
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMRmn	CKSmn 0/1	CCSmn 0	0	0	0	0	0	STSmn 0	0	SISmn0 0	1	0	0	MDmn2 0	MDmn1 0	MDmn0 0/1
	Oper 0: Pre 1: Pre	ation c escaler escaler	lock (fм routput routput	ск) of c clock (clock (hannel CKm0 : CKm1 :	n set by f set by f	the SPS	Sm reg Sm reg	ster			In	terrupt 0: T 1: B	source ransfer uffer er	of cha end in npty in	Innel n terrupt terrupt
(b) Se	erial co 15	ommu 14	nicati 13	on op 12	eratio	n sett 10	ing re 9	gister 8	mn (\$ 7	6 6	n) 5	4	3	2	1	0
SCRmn	TXEmn 0	RXEmn 1	DAPmn 0/1	CKPmn 0/1	0	EOCmn 0	PTCmn1 0	PTCmn0 0	DIRmn 0/1	0	SLCmn1 0	SLCmn0 0	0	1	DLSmn1 1	DLSmn0 0/1
	Sele phas settir Con t	ction o e (For ng, see trollinç	f the da details 11.3 F g Seria	ata and about Registe I Array	clock the rs Unit.)		Select 0: Inpu 1: Inpu	ion of (its/outp its/outp	data tra outs da outs da	ta with ta with ta with	equeno MSB fi LSB fir	ce rst st.	Se	etting of 0: 7-bit 1: 8-bit	f data I t data I t data I	 ength ength ength
(c) Se	erial da 15	ata reg 14	gister 13	mn (S 12	DRm ı 11	1) (lov 10	ver 8 b 9	oits: S 8	IOp) 7	6	5	4	3	2	1	0
SDRmn		(Ope	Bau ration clo	ıd rate se ck (fмск) (tting division s	etting)		0			(Writ	Recei e FFH as	ve data dummy	data.)		
												SIO	p			
(d) Se	erial ou	utput i	registe	er m (SOm)	Set	t s only a	the b	oits of	the ta	arget o	hann	əl.	2	1	0
	15	14	10	12	11	10	3	0	,	0	5	4	5	2	1	0
SOm	0	0	0	0	1	1	CKOm1 0/1	CKOm0 0/1	0	0	0	0	SO03 Note 1	SO02 Note 1	SO01 Note 2	SOm0 ×
SOm (e) Se	0 erial ou 15	0 Jtput of 14	0 enable	0 e regis	1 ster m	1 (SOE 10	CKOm1 0/1	CKOm0 0/1	0 Com phas If the start	0 municate is no e clock s when r that 6	0 ation sta n-invers phase i these not us	0 arts wh sion (th s inver bits are bits are	en these CKP ted (CP ted (CP ted (CP ted 3 0.))	se bits a mn bit o (Pmn =	soon Note 2 x are 1 if of the 5 1), co	SOm0 × the clo SCRmn mmunic
SOm (e) So SOEm	0 erial ou 15	0 11 0	0 enable	0 e regis	1 ster m 11	1 (SOE 10	CKOm1 0/1	CKOm0 0/1	0 Com phas If the start	0 munica e is no e clock s when r that 6	0 ation sta n-inver phase i these not us 5	0 arts wh sion (th s inver bits are bits are	en thes e CKP ted (CP a 0. this n 3 SOE03 Note 1	se bits a mn bit o (Pmn = node. 2 SOE02 Note 1	x are 1 if of the 5 1), co	SOm0 × the clo SCRmn mmunic 0 SOEm0
SOm (e) So SOEm	0 erial ou 15 0	0 utput 0 14 0	0 enable 13 0	0 e regis 12 0	1 ster m 11 0	1 (SOE 10 0	CKOm1 0/1	СКОт0 0/1 Гhe re 8 0	0 Com phas If the start 7 0	0 municate is no e clock s when r that 6 0	0 ation sta n-inver phase i these not us 5 0	0 arts wh sion (th s inver bits are ared in 4	socos sococo socos soco soco sococo soco sococo soco sococo soco sococo	se bits a mn bit o (Pmn = 2 SOE02 Note 1 X	x are 1 if of the 5 1), co 1 SOE01 Note 2 X	SOm0 × the clo SCRmn mmunic 0 SOEm0 ×
SOm (e) So SOEm (f) So	0 erial ou 15 0 erial ch 15	0 utput o 14 0 nanne 14	0 enable 13 0 I start 13	0 e regis 12 0 regis 12	1 ster m 11 0 ter m 11	1 (SOE 10 0 (SSm 10	скот1 0/1 :m) Т 9 0) Se 9	CKOMO 0/1	0 Com phas If the start 7 0 0 y the 7	0 municate is no e clock s when r that 6 0 bits o 6	0 ation sta n-invers phase i these not us 5 0 f the t 5	0 arts wh sion (th s inver bits are ared in 4 0 arget 4	socal socal	se bits a mn bit o Pmn = node. 2 SOE02 Note 1 ×	SOE01 Note 2 × are 1 if of the S 1), co 1 SOE01 Note 2 × 1	SOm0 × the clo SCRmm mmunio 0 SOEm0 ×
SOm (e) So SOEm (f) So SSm	0 erial ou 15 erial ch 15 0	0 utput o 14 0 nanne 14 0	0 enable 13 0 I start 13 0	0 regis 12 0 regis 12 0	1 ster m 11 0 ter m 11	1 (SOE 10 0 (SSm 10 0	CKOm1 0/1 (m) 7 9 0) Se 9 0	CKOMO 0/1	0 Com phas If the start 7 0 y the 7 0	0 municate is note clock s when r that 6 0 bits o 6 0	0 ation sta n-inversion phase i these not us 5 0 f the ta 5 0	0 arts wh sion (th s inver bits are ared in 4 0 arget 4	social so	se bits a mn bit of Pmn = node. 2 SOE02 Note 1 × el to 1 2 SS02 Note 1 ×	x are 1 if of the S 1), co 1 SOE01 Note ² x 1 SSm1 0/1	SOM0 × the clo SCRmm mmunic 0 SOEm0 × 0 SSm0 0/1

11.7.3 Data reception

Data reception is an operation to receive data to the target for transfer (slave) after transmission of an address field. After all data are received to the slave, a stop condition is generated and the bus is released.

Simplified I ² C	IIC00	IIC01	IIC11	IIC20						
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 3 of SAU0	Channel 0 of SAU1						
Pins used	SCL00, SDA00 ^{Note 1}	SCL01, SDA01 ^{Note 1}	SCL11, SDA11 ^{Note 1}	SCL20, SDA20 ^{Note 1}						
Interrupt	INTIIC00	INTIIC01	INTIIC11	INTIIC20						
	Transfer end interrupt of	only (Setting the buffer em	pty interrupt is prohibited	.)						
Error detection flag	ACK error detection flag	ACK error detection flag (OVFmn)								
Transfer data length	8 bits	8 bits								
Transfer rate ^{Note 2}	Max. fмск/4 [Hz] (SDRmn[15:9] = 1 or more) fмск: Operation clock frequency of target channel However, the following condition must be satisfied in each mode of I ² C. • Max. 400 kHz (fast mode) • Max. 100 kHz (standard mode)									
Data level	Non-inversion output (d	lefault: high level)								
Parity bit	No parity bit									
Stop bit	Appending 1 bit (ACK t	ransmission)								
Data direction	MSB first									

Notes 1. To perform communication via simplified I²C, set the N-ch open-drain output (Vbb tolerance) mode (POMxx = 1 (POM11, POM41 = 1 for 20- or 24- pin products, POM11, POM14, POM50 = 1 for 30-pin products)) for the port output mode registers (POMxx). For details, see 4.3 Registers Controlling Port Function and 4.5 Register Settings When Using Alternate Function.

When IIC00 and IIC20 is communicating with an external device with a different potential, set the N-ch opendrain output (V_{DD} tolerance) mode (POMxx = 1 (POM10 = 1 for 20- or 24- pin products, POM10, POM15 = 1 for 30-pin products)) also for the clock input/output pins (SCL00, SCL20). For details, see **4.4.4 Handling different potentials (1.8 V, 2.5 V, and 3 V) by using I/O buffers**.

Use this operation within a range that satisfies the conditions above and the peripheral functions characteristics in the electrical specifications (see CHAPTER 28 ELECTRICAL SPECIFICATIONS (A, D: TA = -40 to +85°C) or CHAPTER 29 ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C)).

Remark m: Unit number, n: Channel number (mn = 00, 01, 03, 10)

(1) Register setting

Figure 11-105. Example of Contents of Registers for Data Reception of Simplified I²C (IIC00, IIC01, IIC11, IIC20)

Figure 12-32. Example of Master to Slave Communication (9-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (2/4)

(2) Address ~ data ~ data

: Wait state by slave device

Wait state by master and slave devices

- **Notes 1.** Write data to IICA0, not setting the WREL0 bit, in order to cancel a wait state during transmission by a master device.
 - 2. For releasing wait state during reception of a slave device, write "FFH" to IICA0 or set the WREL0 bit.

Figure 12-32. Example of Master to Slave Communication (9-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (4/4)

(4) Data ~ restart condition ~ address

- Notes 1. Make sure that the time between the rise of the SCLA0 pin signal and the generation of the start condition after a restart condition has been issued is at least 4.7 µs when specifying standard mode and at least 0.6 μ s when specifying fast mode.
 - 2. For releasing wait state during reception of a slave device, write "FFH" to IICA0 or set the WREL0 bit.

17.3.3 SNOOZE mode

(1) SNOOZE mode setting and operating statuses

The SNOOZE mode can only be specified for CSI00, UART0, or the A/D converter. Note that this mode can only be specified if the CPU clock is the high-speed on-chip oscillator clock.

When using CSI00 or UART0 in the SNOOZE mode, set the SWC0 bit of the serial standby control register 0 (SSC0) to 1 immediately before switching to the STOP mode. For details, see **11.3 Registers Controlling Serial Array Unit**. When using the A/D converter in the SNOOZE mode, set the AWC bit of the A/D converter mode register 2 (ADM2) to 1 immediately before switching to the STOP mode. For details, see **10.3 Registers Controlling A/D Converter**.

In SNOOZE mode transition, wait status to be only following time.

Transition time from STOP mode to SNOOZE mode: 18 μs to 65 μs

Remark Transition time from STOP mode to SNOOZE mode varies depending on the temperature conditions and the STOP mode period.

From SNOOZE to normal operation

- When vectored interrupt servicing is carried out:
 - HS (high-speed main) mode : "6.65 μ s to 9.44 μ s" + 7 clocks
 - LS (low-speed main) mode : "1.10 µs to 5.08 µs" + 7 clocks

• When vectored interrupt servicing is not carried out:

- HS (high-speed main) mode : "6.65 μs to 9.44 μs " + 1 clock
- LS (low-speed main) mode : "1.10 μ s to 5.08 μ s" + 1 clock

The operating statuses in the SNOOZE mode are shown below.

CHAPTER 20 VOLTAGE DETECTOR

20.1 Functions of Voltage Detector

The operation mode and detection voltages (VLVDH, VLVDL, VLVD) for the voltage detector is set by using the option byte (000C1H).

The voltage detector (LVD) has the following functions.

- The LVD circuit compares the supply voltage (V_{DD}) with the detection voltage (V_{LVDH}, V_{LVDL}, V_{LVD}), and generates an internal reset or interrupt request signal.
- The detection level for the power supply detection voltage (VLVDH, VLVDL, VLVD) can be selected by using the option byte as one of 12 levels (For details, see CHAPTER 23 OPTION BYTE).
- Operable in STOP mode.
- After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 28.4 or 29.4 AC Characteristics. This is done by utilizing the voltage detector or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H).
 - (a) Interrupt & reset mode (option byte LVIMDS1, LVIMDS0 = 1, 0)

The two detection voltages (V_{LVDH}, V_{LVDL}) are selected by the option byte 000C1H. The high-voltage detection level (V_{LVDH}) is used for releasing resets and generating interrupts. The low-voltage detection level (V_{LVDL}) is used for generating resets.

- (b) Reset mode (option byte LVIMDS1, LVIMDS0 = 1, 1)
 The detection voltage (V_{LVD}) selected by the option byte 000C1H is used for generating/releasing resets.
- (c) Interrupt mode (option byte LVIMDS1, LVIMDS0 = 0, 1)
 The detection voltage (V_{LVD}) selected by the option byte 000C1H is used for releasing resets/generating interrupts.

The reset and interrupt request signals are generated in each mode as follows.

Interrupt & reset mode	Reset mode	Interrupt mode
(LVIMDS1, LVIMDS0 = 1, 0)	(LVIMDS1, LVIMDS0 = 1, 1)	(LVIMDS1, LVIMDS0 = 0, 1)
Generates an interrupt request signal by detecting $V_{DD} < V_{LVDH}$ when the operating voltage falls, and an internal reset by detecting $V_{DD} < V_{LVDL}$. Releases an internal reset by detecting $V_{DD} \ge V_{LVDH}$.	Releases an internal reset by detecting $V_{DD} \ge V_{LVD}$. Generates an internal reset signal by detecting $V_{DD} < V_{LVD}$.	Retains the state of an internal reset by the LVD immediately after a reset until $V_{DD} \ge V_{LVD}$. Releases the LVD internal reset by detecting $V_{DD} \ge V_{LVD}$. Generates an interrupt request signal (INTLVI) by detecting $V_{DD} < V_{LVD}$ or $V_{DD} \ge$ V_{LVD} after the LVD internal reset is released.

While the voltage detector is operating, whether the supply voltage is more than or less than the detection level can be checked by reading the voltage detection flag (LVIF: bit 0 of the voltage detection register (LVIM)).

Bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of the RESF register, see CHAPTER 18 RESET FUNCTION.

<R>

<R>

21.2 Registers Used by Safety Functions

The safety functions use the following registers for each function.

Register	Each Function of Safety Function				
 CRC input register (CRCIN)^{Note} CRC data register (CRCD)^{Note} 	CRC operation function (general-purpose CRC)				
RAM parity error control register (RPECTL)	RAM parity error detection function				
Invalid memory access detection control register (IAWCTL)	RAM guard function				
	SFR guard function				
	Invalid memory access detection function				
Timer input select register 0 (TIS0)	Frequency detection function				
A/D test register (ADTES)	A/D test function				

Note Only in the R5F102 products.

21.3 Operation of Safety Functions

21.3.1 CRC operation function (general-purpose CRC)

In order to guarantee safety during operation, the IEC61508 standard mandates the checking of data even while the CPU is operating.

In the RL78/G12, a general CRC operation can be executed as a peripheral function while the CPU is operating. The general CRC can be used for checking various data in addition to the code flash memory area. The data to be checked can be specified by using software (a user-created program). CRC calculation function in the HALT mode can be used only during the DMA transmission

The CRC generator polynomial used is " $X^{16} + X^{12} + X^5 + 1$ " of CRC-16-CCITT. The data to be input is inverted in bit order and then calculated to allow for LSB-first communication. For example, if the data 12345678H is sent from the LSB, values are written to the CRCIN register in the order of 78H, 56H, 34H, and 12H, enabling a value of 08F6H to be obtained from the CRCD register. This is the result obtained by executing a CRC operation on the bit rows shown below, which consist of the data 12345678H inverted in bit order.

Caution Because the debugger rewrites the software break setting line to a break instruction during program execution, the CRC operation result differs if a software break is set in the CRC operation target area.

Figure 21-10. Configuration of Frequency Detection Function

If input pulse interval measurement results in an abnormal value, it can be concluded that the clock frequency is abnormal.

For how to execute input pulse interval measurement, see 6.8.4 Operation as input pulse interval measurement.

21.3.6.1 Timer input select register 0 (TIS0)

This register is used to select the timer input of channel 1 of the timer array unit 0 (TAU0) in 20- and 24-pin products. The TISO register can be set by an 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

Address: F0074H After reset: 00H R/W

S

ymbol	7	6	5	4	3	2	1	0
TIS0	0	0	0	0	0	0	TIS01	TIS00

TIS01	TIS00	Selection of timer input used with channel 1			
×	0	Input signal of timer input pin (TI01)			
0	1	Low-speed on-chip oscillator clock (fi∟)			
1	1	Setting prohibited			

Remark ×: don't care

23.2 Format of User Option Byte

The format of user option byte is shown below.

Figure 23-1. Format of User Option Byte (000C0H)

7	6	5	4	3	2	1	0	
WDTINIT	WINDOW1	WINDOW0	WDTON	WDCS2	WDCS1	WDCS0	WDSTBYON	
WDTINIT		Use of interval interrupt of watchdog timer						
0	Interval interr	Interval interrupt is not used.						
1	Interval interr	Interval interrupt is generated when 75% + 1/2 f $_{\rm IL}$ of the overflow time is reached.						
[
WINDOW1	WINDOW0	DOW0 Watchdog timer window open period ^{Note}						
0	0	Setting prohibited						
0	1	50%						
1	0	75%						
1	1	100%						
	-							
WDTON	Operation control of watchdog timer counter							
0	Counter operation disabled (counting stopped after reset)							
1	Counter operation enabled (counting started after reset)							
	1	1	1					
WDCS2	WDCS1	WDCS0		Watchd	log timer overfl	ow time		
				(fı∟ =	: 17.25 kHz (M	AX.))		
0	0	0	2 ⁶ /fı∟ (3.71 ms	S)				
0	0	1	2 ⁷ /f⊪ (7.42 ms	s)				
0	1	0	2 ⁸ /fı∟ (14.84 m	າຣ)				

 1
 Counter operation enabled in HALT/STOP mode

 Note
 The window open period is 100% when WDSTBYON = 0, regardless the value of the WINDOW1 and

Operation control of watchdog timer counter (HALT/STOP mode)

WINDOW0 bits.

2⁹/fi∟ (29.68 ms)

211/fill (118.72 ms)

2¹³/fil (474.89 ms)

214/fill (949.79 ms)

216/fil (3799.18 ms)

Remark fil: Low-speed on-chip oscillator clock frequency

1

0

0

1

1

1

0

1

0

1

Counter operation stopped in HALT/STOP mode^{Note}

0

1

1

1

1

WDSTBYON

0

Table 24-12. Relationship between Enabled Security Function and Commands

(1) During serial programming

Enabled Security Function	Executed Command			
	Block Erase	Write		
Prohibition of block erasure	Blocks cannot be erased.	Can be performed ^{№ote} .		
Prohibition of writing	Blocks can be erased.	Cannot be performed.		
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.		

Note Confirm that no data has been written to the write area. Because data cannot be erased when block erase is prohibited, do not write data if the data has not been erased.

(2) During self-programming

Enabled Security Function	Executed Command			
	Block Erase	Write		
Prohibition of block erasure	Blocks can be erased.	Can be performed.		
Prohibition of writing				
Prohibition of rewriting boot cluster 0	Boot cluster 0 cannot be erased.	Boot cluster 0 cannot be written.		

Remark To prohibit writing and erasing during self-programming, use the flash shield window function (see **24.6.2** for detail).

Table 24-13. Security Setting in Each Programming Mode

Serial programming

Security	Security Setting	How to Disable Security Setting		
Prohibition of block erasure	Set via GUI of dedicated flash memory	Cannot be disabled after setting.		
Prohibition of writing	programmer, etc.	Set via GUI of dedicated flash memory programmer, etc.		
Prohibition of rewriting boot cluster 0		Cannot be disabled after setting.		

Caution Releasing the setting of prohibition of writing is enabled only when the security is not set as the block erase prohibition and the boot cluster 0 rewrite prohibition with code flash memory area and data flash memory area being blanks.

29.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVD0	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	VLVD3	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLVD5	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	VLVD6	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	t∟w		300			μS
Detection delay time					300	μs

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renease Electronics America Inc. 2801 Soci Boulevard Santa Clara: CA 95050-2549, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 2921 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-405-237-2004 Renease Electronics Curope Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1622-585-100, Fax: +44-1628-585-000 Renease Electronics Europe AmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-21-5630-10, Fax: +49-211-6503-13227 Renease Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZinChunLu Haidian District, Beijing 100191, P.R.China Tel: +89-11-555, Fax: +88-10-8235-7679 Renease Electronics Hong Mphil Co., Ltd. Room 1709, Quantum Plaza, No.27 ZinChunLu Haidian District, Shanghai, P. R. China 200333 Tel: +88-21-226-0888, Fax: +88-21-226-0899 Renease Electronics Hong Kong Limited Unit 8001-11611, 16167, Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renease Electronics Taiwan Co., Ltd. 157, No. 385, Tu Shing North Road, Taipei 10543, Taiwan Tel: +862-24175-9600, Fax: +862-2475-9670 Renease Electronics Magnore PL Ltd. 80 Bendemeer Road, Unit 800-1619, Tokos B, Meanar Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +652-10200, Fax: +656-213-3000 Renease Electronics Malaysia Sdn.Bhd. No.777C, 100 FeetRoad, H.AL II Stage, Indirangar, Bangalore, India Tel: +656-720500, Fax: +806-7208777 Renease Electronics Malaysia Sdn.Bhd. No.777C, 100 FeetRoad, H.AL II Stage, Indirangar, Bangalore, India Tel: +656-7120500, Fax: +806-7208777 Renease Electronics Malaysia Sdn.Bhd. No.777C, 100 FeetRoad, H.AL II Stage, Indirangar, Bangalore, India Tel: +656-71205700, Fax: +806-7208777 Renease Electronics Malaysia Sdn.Bhd. 127, 234 Tehrenar-D, Gangnam-Gu, Scoul, 135-800, Korea Tel: +656-7208700, Fax: +816-202-7141