
Renesas Electronics America Inc - R5F10279DNA#W0 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor RL78

Core Size 16-Bit

Speed 24MHz

Connectivity CSI, I²C, UART/USART

Peripherals DMA, LVD, POR, PWM, WDT

Number of I/O 18

Program Memory Size 12KB (12K x 8)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 11x8/10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 24-WFQFN Exposed Pad

Supplier Device Package 24-HWQFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f10279dna-w0

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/r5f10279dna-w0-4439532
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

 Index-3

4.3 Registers Controlling Port Function .. 90

4.3.1 Port mode registers (PMxx).. 92

4.3.2 Port registers (Pxx)... 93

4.3.3 Pull-up resistor option registers (PUxx) .. 95

4.3.4 Port input mode register (PIMx).. 96

4.3.5 Port output mode registers (POMx).. 97

4.3.6 Port mode control registers (PMCxx) ... 98

4.3.7 A/D port configuration register (ADPC) .. 99

4.3.8 Peripheral I/O redirection register (PIOR)... 99

4.4 Port Function Operations .. 101

4.4.1 Writing to I/O port ... 101

4.4.2 Reading from I/O port ... 101

4.4.3 Operations on I/O port .. 101

4.4.4 Handling different potentials (1.8 V, 2.5 V, and 3 V) by using I/O buffers....................................... 102

4.5 Register Settings When Using Alternate Function ... 104

4.5.1 Basic concept when using alternate function.. 104

4.5.2 Register settings for alternate function whose output function is not used 105

4.5.3 Register setting examples for using the port and alternate functions ... 106

4.6 Cautions When Using Port Function.. 114

4.6.1 Cautions on 1-Bit Manipulation Instruction for Port Register n (Pn) ... 114

4.6.2 Notes on specifying the pin settings ... 115

CHAPTER 5 CLOCK GENERATOR ... 116

5.1 Functions of Clock Generator... 116

5.2 Configuration of Clock Generator .. 117

5.3 Registers Controlling Clock Generator.. 119

5.3.1 Clock operation mode control register (CMC) .. 120

5.3.2 System clock control register (CKC)... 121

5.3.3 Clock operation status control register (CSC) .. 122

5.3.4 Oscillation stabilization time counter status register (OSTC).. 123

5.3.5 Oscillation stabilization time select register (OSTS) ... 125

5.3.6 Peripheral enable register 0 (PER0)... 127

5.3.7 Operation speed mode control register (OSMC) .. 128

5.3.8 High-speed on-chip oscillator frequency selection register (HOCODIV) .. 129

5.3.9 High-speed on-chip oscillator trimming register (HIOTRM) .. 130

5.4 System Clock Oscillator .. 131

5.4.1 X1 oscillator.. 131

5.4.2 High-speed on-chip oscillator ... 134

5.4.3 Low-speed on-chip oscillator .. 134

5.5 Clock Generator Operation ... 134

5.6 Controlling Clock.. 136

RL78/G12 CHAPTER 3 CPU ARCHITECTURE

R01UH0200EJ0210 Rev.2.10 41
Mar 25, 2016

Figure 3-3. Memory Map for the R5F10x68, R5F10x78, and R5F10xA8 (x = 2 or 3)

FFFFFH

FFF00H
FFEFFH

02000H
01FFFH

00000H

FFC00H

FFBFFH

F1800H

F17FFH

F1000H

F0FFFH

FFEE0H

FFEDFH

F0000H
EFFFFH

F0800H
F07FFH

01FFFH

000CEH
000CDH

000C4H
000C3H

000C0H
000BFH

00080H
0007FH

00000H

RAM Notes 1, 2

768 bytes

Reserved

Reserved

Program area

CALLT table area
64 bytes

Vector table area
128 bytes

Reserved

Data flash memory Note 4

2 KB
Data memory
space

Program
memory
space

Option byte area
4 bytes

Note 3

On-chip debug
security ID setting area

10 bytes

Note 3

Code flash memory
8 KB

Special function register (SFR)
256 bytes

Special function register (SFR)
2 KB

General-purpose
register 32 bytes

Notes 1. Do not allocate the stack area, data buffers for use by the flash library, arguments of library functions,

branch destinations in the processing of vectored interrupts, or destinations or sources for DMA transfer to

the area from FFE20H to FFEDFH when performing self-programming or rewriting of the data flash memory.

For R5F10x68 and R5F10x78, the RAM area used by the flash library starts at FFC00H. For the RAM areas

used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family

(R20UT2944).

 2. Instructions can be executed from the RAM area excluding the general-purpose register area.

 3. Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.

 4. The areas are reserved in the R5F10368, R5F10378, and R5103A8.

Caution While RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data

access is to proceed and the RAM area +10 bytes when instructions are fetched from RAM areas,

respectively. Reset signal generation sets RAM parity error resets to enabled (RPERDIS = 0). For details,

see 21.3.2 RAM parity error detection function.

<R>

RL78/G12 CHAPTER 3 CPU ARCHITECTURE

R01UH0200EJ0210 Rev.2.10 66
Mar 25, 2016

Table 3-7. Extended SFR (2nd SFR) List (2/5)

Manipulable Bit Range Address Special Function Register (SFR) Name Symbol R/W

1-bit 8-bit 16-bit

After Reset

F00F0H Peripheral enable register 0 PER0 R/W    00H

F00F3H Operation speed mode control register OSMC R/W    00H

F00F5H RAM parity error control register RPECTL R/W    00H

F00FEH BCD adjust result register BCDADJ R    Undefined

F0100H SSR00L  

F0101H

Serial status register 00



SSR00 R

 

 0000H

F0102H SSR01L  

F0103H

Serial status register 01



SSR01 R

 

 0000H

F0104H SSR02L   0000H

F0105H

Serial status register 02



SSR02 R

 



0000H

F0106H SSR03L   0000H

F0107H

Serial status register 03



SSR03 R

 



0000H

F0108H SIR00L  

F0109H

Serial flag clear trigger register 00



SIR00 R/W

 

 0000H

F010AH SIR01L  

F010BH

Serial flag clear trigger register 01



SIR01 R/W

 

 0000H

F010CH SIR02L  

F010DH

Serial flag clear trigger register 02



SIR02 R/W

 

 0000H

F010EH SIR03L  

F010FH

Serial flag clear trigger register 03



SIR03 R/W

 

 0000H

F0110H

F0111H

Serial mode register 00 SMR00 R/W    0020H

F0112H

F0113H

Serial mode register 01 SMR01 R/W    0020H

F0114H

F0115H

Serial mode register 02 SMR02 R/W    0020H

F0116H

F0117H

Serial mode register 03 SMR03 R/W    0020H

F0118H

F0119H

Serial communication operation setting
register 00

SCR00 R/W    0087H

F011AH

F011BH

Serial communication operation setting
register 01

SCR01 R/W    0087H

F011CH

F011DH

Serial communication operation setting
register 02

SCR02 R/W    0087H

F011EH

F011FH

Serial communication operation setting
register 03

SCR03 R/W    0087H

RL78/G12 CHAPTER 6 TIMER ARRAY UNIT

R01UH0200EJ0210 Rev.2.10 209
Mar 25, 2016

6.8.3 Operation as frequency divider (channel 0 of 30-pin products only)

The timer array unit can be used as a frequency divider that divides a clock input to the TI00 pin and outputs the result

from the TO00 pin.

The divided clock frequency output from TO00 can be calculated by the following expression.

 When rising edge/falling edge is selected:

 Divided clock frequency = Input clock frequency/{(Set value of TDR00 + 1)  2}

 When both edges are selected:

 Divided clock frequency  Input clock frequency/(Set value of TDR00 + 1)

Timer count register 00 (TCR00) operates as a down counter in the interval timer mode.

After the channel start trigger bit (TS00) of timer channel start register 0 (TS0) is set to 1, the TCR00 register loads the

value of timer data register 00 (TDR00) when the TI00 valid edge is detected.

If the MD000 bit of timer mode register 00 (TMR00) is 0 at this time, INTTM00 is not output and TO00 is not toggled. If

the MD000 bit of timer mode register 00 (TMR00) is 1, INTTM00 is output and TO00 is toggled.

After that, the TCR00 register counts down at the valid edge of the TI00 pin. When TCR00 = 0000H, it toggles TO00.

At the same time, the TCR00 register loads the value of the TDR00 register again, and continues counting.

If detection of both the edges of the TI00 pin is selected, the duty factor error of the input clock affects the divided clock

period of the TO00 output.

The period of the TO00 output clock includes a sampling error of one period of the operation clock.

Clock period of TO00 output = Ideal TO00 output clock period  Operation clock period (error)

The TDR00 register can be rewritten at any time. The new value of the TDR00 register becomes valid during the next

count period.

Figure 6-46. Block Diagram of Operation as Frequency Divider

Edge
detection

TI00 pin

C
lo

ck
 s

el
ec

tio
n

Tr
ig

ge
r s

el
ec

tio
n

TS00

TO00 pin
Output

controller
Timer counter

register 00 (TCR00)

Timer data
register 00 (TDR00)

Noise
filter

TNFEN00

RL78/G12 CHAPTER 6 TIMER ARRAY UNIT

R01UH0200EJ0210 Rev.2.10 223
Mar 25, 2016

Figure 6-59. Example of Basic Timing of Operation as Delay Counter

TE0n

TDR0n

TCR0n

INTTM0n

a b

0000H

a+1 b+1

FFFFH

TI0n

TS0n

Remarks 1. n: Channel number (n = 0 to 7)

 2. TS0n: Bit n of timer channel start register 0 (TS0)

 TE0n: Bit n of timer channel enable status register 0 (TE0)

 TI0n: TI0n pin input signal

 TCR0n: Timer count register 0n (TCR0n)

 TDR0n: Timer data register 0n (TDR0n)

RL78/G12 CHAPTER 10 A/D CONVERTER

R01UH0200EJ0210 Rev.2.10 297
Mar 25, 2016

10.6.5 Hardware trigger no-wait mode (select mode, sequential conversion mode)

<1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the

A/D conversion standby status.

<2> After the software counts up to the stabilization wait time (1 s), the ADCS bit of the ADM0 register is set to 1 to

place the system in the hardware trigger standby status (and conversion does not start at this stage). Note that,

while in this status, A/D conversion does not start even if ADCS is set to 1.

<3> If a hardware trigger is input while ADCS = 1, A/D conversion is performed on the analog input specified by the

analog input channel specification register (ADS).

<4> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH),

and the A/D conversion end interrupt request signal (INTAD) is generated. After A/D conversion ends, the next

A/D conversion immediately starts.

<5> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and

conversion restarts. The partially converted data is discarded.

<6> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D

conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register.

The partially converted data is discarded.

<7> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and

conversion restarts. The partially converted data is discarded.

<8> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, and the

system enters the A/D conversion standby status. However, the A/D converter does not power down in this

status.

<9> When ADCE is cleared to 0 while in the A/D conversion standby status, the A/D converter enters the stop status.

When ADCS = 0, inputting a hardware trigger is ignored and A/D conversion does not start.

Figure 10-21. Example of Hardware Trigger No-Wait Mode (Select Mode, Sequential Conversion Mode) Operation

Timing

ADCE is set to 1.<1>

ADCS is set to 1.<2>

A hardware trigger
is generated.

<3>
A hardware trigger is
generated during A/D
conversion operation.

<5>

A/D conversion
ends and the next
conversion
starts.

<4>

ADS is rewritten during
A/D conversion operation
(from ANI0 to ANI1).

<6>

Conversion is
interrupted
and restarts.

Conversion is
interrupted
and restarts.

Conversion is
interrupted and
restarts.<4> <4> <4> <4>

ADCS is overwritten
with 1 during A/D

conversion operation.

<7> ADCS is cleared
to 0 during A/D

conversion operation.

ADCE is cleared to 0. <9>

ADCE

ADCS

ADS

INTAD

A/D
conversion

status

Hardware
trigger

Stop
status

Data 0
(ANI0)

The trigger is not
acknowledged.

Trigger
standby
status

The trigger is not
acknowledged.

Data 0
(ANI0)

Data 0
(ANI0)

Data 0
(ANI0)

Data 0
(ANI0)

Data 1
(ANI1)

Data 1
(ANI1)

Conversion
standby

Conversion
standby

Stop
status

Conversion
is interrupted.

<8>

ADCR,
ADCRH

Data 0
(ANI0)

Data 0
(ANI0)

Data 0
(ANI0)

Data 0
(ANI0)

Data 1
(ANI1)

Data 1
(ANI1)

Data 1
(ANI1)

Data 1
(ANI1)

Data 1
(ANI1)

RL78/G12 CHAPTER 10 A/D CONVERTER

R01UH0200EJ0210 Rev.2.10 301
Mar 25, 2016

10.6.9 Hardware trigger wait mode (select mode, sequential conversion mode)

<1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the

hardware trigger standby status.

<2> If a hardware trigger is input while in the hardware trigger standby status, A/D conversion is performed on the

analog input specified by the analog input channel specification register (ADS). The ADCS bit of the ADM0

register is automatically set to 1 according to the hardware trigger input.

<3> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH),

and the A/D conversion end interrupt request signal (INTAD) is generated. After A/D conversion ends, the next

A/D conversion immediately starts. (At this time, no hardware trigger is necessary.)

<4> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and

conversion restarts. The partially converted data is discarded.

<5> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D

conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register.

The partially converted data is discarded.

<6> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and

conversion restarts. The partially converted data is discarded.

<7> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, the system

enters the hardware trigger standby status, and the A/D converter enters the stop status. When ADCE = 0,

inputting a hardware trigger is ignored and A/D conversion does not start.

Figure 10-25. Example of Hardware Trigger Wait Mode (Select Mode, Sequential Conversion Mode) Operation

Timing

ADCE is set to 1.<1>

A hardware trigger
is generated.

<2>
A hardware trigger is generated
during A/D conversion operation.

<4>

ADS is rewritten during
A/D conversion operation
(from ANI0 to ANI1).

<5>

Conversion is
interrupted and
restarts.

Conversion is
interrupted and
restarts.

Conversion is
interrupted and
restarts.

Conversion is
interrupted and
restarts.

ADCS is overwritten with 1 during
A/D conversion operation.

<6>

<3><3><3><3>

<3>

ADCS is cleared
to 0 during A/D

conversion operation.

ADCE

ADCS

ADS

INTAD

ADCR,
ADCRH

A/D
conversion

status

Hardware
trigger

Stop status

Data 0
(ANI0)

Data 1
(ANI1)

The trigger
is not

acknowledged.

Trigger
standby
status

Trigger
standby

status

The trigger
is not
acknowledged.

Data 0
(ANI0)

Data 0
(ANI0)

Data 0
(ANI0)

Data 0
(ANI0)

Data 0
(ANI0)

Data 1
(ANI1)

Data 0
(ANI0)

Data 0
(ANI0)

Data 0
(ANI0)

Data 1
(ANI1)

Data 1
(ANI1)

Data 1
(ANI1)

Data 1
(ANI1)

Data 1
(ANI1) Stop status

Conversion is
interrupted.

<7>

RL78/G12 CHAPTER 10 A/D CONVERTER

R01UH0200EJ0210 Rev.2.10 310
Mar 25, 2016

10.8 SNOOZE mode function

In the SNOOZE mode, A/D conversion is triggered by inputting a hardware trigger in the STOP mode. Normally, A/D

conversion is stopped while in the STOP mode, but, by using the SNOOZE mode function, A/D conversion can be

performed without operating the CPU by inputting a hardware trigger. This is effective for reducing the operation current.

If the A/D conversion result range is specified using the ADUL and ADLL registers, A/D conversion results can be

judged at a certain interval of time in SNOOZE mode. Using this function enables power supply voltage monitoring and

input key judgment based on A/D inputs.

In the SNOOZE mode, only the following two conversion modes can be used:

 Hardware trigger wait mode (select mode, one-shot conversion mode)

 Hardware trigger wait mode (scan mode, one-shot conversion mode)

Caution SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fCLK.

Figure 10-34. Block Diagram When Using SNOOZE Mode Function

(INTIT)

Hardware trigger
input

Clock request signal
(internal signal)

A/D converter Clock generator

A/D conversion end
interrupt request

signalNote 1 (INTAD)

12-bit interval timer

High-speed on-chip
 oscillator clock

When using the SNOOZE mode function, the initial setting of each register is specified before switching to the STOP

mode (for details about these settings, see 10.7.3 Setting up hardware trigger wait modeNote 2). Just before switching to

the STOP mode, bit 2 (AWC) of the A/D converter mode register 2 (ADM2) is set to 1. After the initial settings are specified,

bit 0 (ADCE) of the A/D converter mode register 0 (ADM0) is set to 1.

If a hardware trigger is input after switching to the STOP mode, the high-speed on-chip oscillator clock is supplied to

the A/D converter. After supplying this clock, the system automatically counts up to the A/D power supply stabilization

wait time, and then A/D conversion starts.

The SNOOZE mode operation after A/D conversion ends differs depending on whether an interrupt signal is

generatedNote 1.

Notes 1. Depending on the setting of the A/D conversion result comparison function (ADRCK bit, ADUL/ADLL

register), there is a possibility of no interrupt signal being generated.

 2. Be sure to set the ADM1 register to E2H or E3H.

Remarks 1. The hardware trigger is INTIT.

 2. Specify the hardware trigger by using the A/D Converter Mode Register 1 (ADM1)

RL78/G12 CHAPTER 11 SERIAL ARRAY UNIT

R01UH0200EJ0210 Rev.2.10 411
Mar 25, 2016

11.5.9 Procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01, CSI11, CSI20)

communication

The procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01, CSI11, CSI20) communication

is described in Figure 11-75.

Figure 11-75. Processing Procedure in Case of Overrun Error

Software Manipulation Hardware Status Remark

Reads serial data register mn (SDRmn). The BFFmn bit of the SSRmn register is

set to 0 and channel n is enabled to

receive data.

This is to prevent an overrun error if the

next reception is completed during error

processing.

Reads serial status register mn

(SSRmn).

 Error type is identified and the read

value is used to clear error flag.

Writes 1 to serial flag clear trigger

register mn (SIRmn).

Error flag is cleared. Error can be cleared only during

reading, by writing the value read from

the SSRmn register to the SIRmn

register without modification.

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00, 01, 03, 10

RL78/G12 CHAPTER 11 SERIAL ARRAY UNIT

R01UH0200EJ0210 Rev.2.10 417
Mar 25, 2016

Figure 11-78. Procedure for Stopping UART Transmission

 Starting setting to stop

Stop setting is completed

Write 1 to the STmn bit of the target channel.

(SEmn = 0 : to operation stop status)

The master transmission is stopped.
Go to the next processing.

Set the SOEmn bit to 0 and stop the output of
the target channel.

Writing the STm register

Changing setting of the SOEm register

TSFmn = 0?

If there is any data being transferred, wait for
their completion.

(If there is an urgent must stop, do not wait)

Yes

No

The levels of the serial clock (CKOmn) and
serial data (SOmn) on the target channel can

be changed if necessitated by an emergency.

Reset the serial array unit by stopping the
clock supply to it.

Changing setting of the SOm register

Setting the PER0 register

(Essential)

(Selective)

(Essential)

(Selective)

(Selective)

RL78/G12 CHAPTER 12 SERIAL INTERFACE IICA

R01UH0200EJ0210 Rev.2.10 480
Mar 25, 2016

12.4.2 Setting transfer clock by using IICWL0 and IICWH0 registers

(1) Setting transfer clock on master side

Transfer clock =
fMCK

 IICWL + IICWH + fMCK (tR + tF)

At this time, the optimal setting values of the IICWL0 and IICWH0 registers are as follows.

(The fractional parts of all setting values are rounded up.)

 When the fast mode

 IICWL0 =
0.52

 Transfer clock  fMCK

 IICWH0 = (
0.48

 Transfer clock  tR  tF)  fMCK

 When the normal mode

 IICWL0 =
0.47

 Transfer clock  fMCK

 IICWH0 = (
0.53

 Transfer clock  tR  tF)  fMCK

(2) Setting IICWL0 and IICWH0 registers on slave side

(The fractional parts of all setting values are truncated.)

 When the fast mode

 IICWL0 = 1.3 s  fMCK

 IICWH0 = (1.2 s  tR  tF)  fMCK

 When the normal mode

 IICWL0 = 4.7 s  fMCK

 IICWH0 = (5.3 s  tR  tF)  fMCK

Cautions 1. The fastest operation frequency of IICA operation clock (fMCK) is 20 MHz (max.). When only the fCLK

exceeds 20 MHz, set bit 0 (PRSn) of the IICA control register n1 (IICCTLn1) to 1.

 2. Note the minimum fCLK operation frequency when setting the transfer clock. The minimum fCLK operation

frequency for serial interface IICA is determined according to the mode.

 Fast mode: fCLK = 3.5 MHz (min.)

 Normal mode: fCLK = 1 MHz (min.)

Remarks 1. Calculate the rise time (tR) and fall time (tF) of the SDAA0 and SCLA0 signals separately, because

they differ depending on the pull-up resistance and wire load.

 2. IICWL0: IICA low-level width setting register 0

 IICWH0: IICA high-level width setting register 0

 tF: SDAA0 and SCLA0 signal falling times

 tR: SDAA0 and SCLA0 signal rising times

 fMCK: IICA operation clock frequency <R>

RL78/G12 CHAPTER 12 SERIAL INTERFACE IICA

R01UH0200EJ0210 Rev.2.10 543
Mar 25, 2016

The meanings of <8> to <19> in (3) Data ~ data ~ stop condition in Figure 12-33 are explained below.

<8> The master device sets a wait status (SCLA0 = 0) at the falling edge of the 8th clock, and issues an

interrupt (INTIICA0: end of transfer). Because of ACKE0 = 0 in the master device, the master device then

sends an ACK by hardware to the slave device.

<9> The master device reads the received data and releases the wait status (WREL0 = 1).

<10> The ACK is detected by the slave device (ACKD0 = 1) at the rising edge of the 9th clock.

<11> The slave device set a wait status (SCLA0 = 0) at the falling edge of the 9th clock, and the slave device

issue an interrupt (INTIICA0: end of transfer).

<12> By the slave device writing the data to transmit to the IICA register, the wait status set by the slave device is

released. The slave device then starts transferring data to the master device.

<13> The master device issues an interrupt (INTIICA0: end of transfer) at the falling edge of the 8th clock, and

sets a wait status (SCLA0 = 0). Because ACK control (ACKE0 = 1) is performed, the bus data line is at the

low level (SDAA0 = 0) at this stage.

<14> The master device sets NACK as the response (ACKE0 = 0) and changes the timing at which it sets the

wait status to the 9th clock (WTIM0 = 1).

<15> If the master device releases the wait status (WREL0 = 1), the slave device detects the NACK (ACK = 0) at

the rising edge of the 9th clock.

<16> The master device and slave device set a wait status (SCLA0 = 0) at the falling edge of the 9th clock, and

both the master device and slave device issue an interrupt (INTIICA0: end of transfer).

<17> When the master device issues a stop condition (SPT0 = 1), the bus data line is cleared (SDAA0 = 0) and

the master device releases the wait status. The master device then waits until the bus clock line is set

(SCLA0 = 1).

<18> The slave device acknowledges the NACK, halts transmission, and releases the wait status (WREL0 = 1) to

end communication. Once the slave device releases the wait status, the bus clock line is set (SCLA0 = 1).

<19> Once the master device recognizes that the bus clock line is set (SCLA0 = 1) and after the stop condition

setup time has elapsed, the master device sets the bus data line (SDAA0 = 1) and issues a stop condition

(i.e. SCLA0 =1 changes SDAA0 from 0 to 1). When a stop condition is generated, the slave device detects

the stop condition and issues an interrupt (INTIICA0: stop condition).

Remark <1> to <19> in Figure 12-33 show descriptions the entire procedure for communicating data using the

I2C bus.

Figure 12-33 (1) Start condition ~ address ~ data shows the processing from <1> to <7>, Figure 12-33

(2) Address ~ data ~ data shows the processing from <3> to <12>, and Figure 12-33 (3) Data ~ data ~

stop condition shows the processing from <8> to <19>.

RL78/G12 CHAPTER 13 MULTIPLIER AND DIVIDER/MULTIPLY-ACCUMULATOR

R01UH0200EJ0210 Rev.2.10 557
Mar 25, 2016

Figure 13-9. Timing Diagram of Multiply-Accumulation (signed) Operation

(2  3 + (4) = 2  32767  (1) + (2147483647) = 2147450882 (overflow occurs.))

<1>

<3> <3>

<3> <3>

<2> <5> <6><4>

00H

MDCH 0000H 8000H 7FFFH

MDUC

MDSM L

<7> <8> <2> <5> <6><4> <7> <8>

<10>, <11>

<12>

<9>

48H

0000H FFFFH

MDCL 8002H0000H FFFCH 0002H 0001H

MDAL 0000H 0002H 7FFFH

MDAH

INTMD

0000H 0003H FFFFH

MDBH
MDBL

0000H
0000H

0000H
0006H

FFFFH
8001H

MACOF

MACSF L

4AH

Operation clock

4CH

<9>

48H 4AH

RL78/G12 CHAPTER 15 INTERRUPT FUNCTIONS

R01UH0200EJ0210 Rev.2.10 602
Mar 25, 2016

Table 15-6. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing

During Interrupt Servicing

Maskable Interrupt Request

Priority Level 0
(PR = 00)

Priority Level 1
(PR = 01)

Priority Level 2
(PR = 10)

Priority Level 3
(PR = 11)

Multiple Interrupt Request

Interrupt Being Serviced IE = 1 IE = 0 IE = 1 IE = 0 IE = 1 IE = 0 IE = 1 IE = 0

Software
Interrupt
Request

ISP1 = 0
ISP0 = 0

        

ISP1 = 0
ISP0 = 1

        

ISP1 = 1
ISP0 = 0

        

Maskable interrupt

ISP1 = 1
ISP0 = 1

        

Software interrupt         

Remarks 1. : Multiple interrupt servicing enabled

 2. : Multiple interrupt servicing disabled

 3. ISP0, ISP1, and IE are flags contained in the PSW.

 ISP1 = 0, ISP0 = 0: An interrupt of level 1 or level 0 is being serviced.

 ISP1 = 0, ISP0 = 1: An interrupt of level 2 is being serviced.

 ISP1 = 1, ISP0 = 0: An interrupt of level 3 is being serviced.

 ISP1 = 1, ISP0 = 1: Wait for an interrupt acknowledgment (all interrupts are enabled).

 IE = 0: Interrupt request acknowledgment is disabled.

 IE = 1: Interrupt request acknowledgment is enabled.

 4. PR is a flag contained in the PR00L, PR00H, PR01L, PR10L, PR10H, PR11L registers.

 PR = 00: Specify level 0 with PR1 = 0, PR0 = 0 (higher priority level)

 PR = 01: Specify level 1 with PR1 = 0, PR0 = 1

 PR = 10: Specify level 2 with PR1 = 1, PR0 = 0

 PR = 11: Specify level 3 with PR1 = 1, PR0 = 1 (lower priority level)

RL78/G12 CHAPTER 16 KEY INTERRUPT FUNCTION

R01UH0200EJ0210 Rev.2.10 613
Mar 25, 2016

16.4.2 When using the key interrupt flag (KRMD = 1)

A key interrupt (INTKR) is generated when the valid edge specified by the setting of the KREG bit is input to a key

interrupt pin (KR0 to KR5). The channels to which the valid edge was input can be identified by reading the key return flag

register (KRF) after the key interrupt (INTKR) is generated.

If the KRMD bit is set to 1, the INTKR signal is cleared by clearing the corresponding bit in the KRF register.

As shown in Figure 16-8, only one interrupt is generated each time a falling edge is input to one channel (when KREG

= 0), regardless of whether the KRFn bit is cleared before or after a rising edge is input.

Figure 16-8. Basic Operation of the INTKR Signal When the Key Interrupt Flag Is Used

(When KRMD = 1 and KREG = 0)

(a) KRF0 is cleared after a rising edge is input to the KR0 pin

KR0

KRF0

INTKR

KRIF

Cleared

Note 2

Note 1Delay time

Cleared by the software

(b) KRF0 is cleared before a rising edge is input to the KR0 pin

KR0

KRF0

INTKR

KRIF

Cleared

Cleared by the software

Note 2

Note 1
Delay time

Notes 1. The maximum delay time is the maximum value of the high-level width and low-level width of the key

interrupt input (see 28.4 AC Characteristics or 29.4 AC Characteristics).

 2. Cleared by acknowledgment of vectored interrupt request or bit cleared by software.

RL78/G12 CHAPTER 17 STANDBY FUNCTION

R01UH0200EJ0210 Rev.2.10 616
Mar 25, 2016

CHAPTER 17 STANDBY FUNCTION

17.1 Standby Function

The standby function reduces the operating current of the system, and the following three modes are available.

(1) HALT mode

HALT instruction execution sets the HALT mode. In the HALT mode, the CPU operation clock is stopped. If the high-

speed system clock oscillator or high-speed on-chip oscillator is operating before the HALT mode is set, oscillation of

each clock continues. In this mode, the operating current is not decreased as much as in the STOP mode, but the

HALT mode is effective for restarting operation immediately upon interrupt request generation and carrying out

intermittent operations frequently.

(2) STOP mode

STOP instruction execution sets the STOP mode. In the STOP mode, the high-speed system clock oscillator and

high-speed on-chip oscillator stop, stopping the whole system, thereby considerably reducing the CPU operating

current.

Because this mode can be cleared by an interrupt request, it enables intermittent operations to be carried out.

However, because a wait time is required to secure the oscillation stabilization time after the STOP mode is released

when the X1 clock is selected, select the HALT mode if it is necessary to start processing immediately upon interrupt

request generation.

(3) SNOOZE mode

In the case of CSI00 or UART0 data reception and an A/D conversion request by the timer trigger signal (the interrupt

request signal (INTIT)), the STOP mode is exited, the CSI00 or UART0 data is received without operating the CPU,

and A/D conversion is performed. This can only be specified when the high-speed on-chip oscillator clock is selected

for the CPU/peripheral hardware clock (fCLK).

In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is set

are held. The I/O port output latches and output buffer statuses are also held.

Cautions 1. When shifting to the STOP mode, be sure to stop the peripheral hardware operation operating with main

system clock before executing STOP instruction (other than SNOOZE mode setting unit).

 2. When using CSI00, UART0, or the A/D converter in the SNOOZE mode, set up serial standby control

register 0 (SSC0) and A/D converter mode register 2 (ADM2) before switching to the STOP mode. For

details, see 11.3 Registers Controlling Serial Array Unit and 10.3 Registers Controlling A/D Converter.

 3. To reduce the current consumption of the A/D converter when the standby function is used, first clear bit

7 (ADCS) and bit 0 (ADCE) of A/D converter mode register 0 (ADM0) to 0 to stop the A/D conversion,

and then execute the STOP instruction.

 4. It can be selected by the option byte whether the low-speed on-chip oscillator continues oscillating or

stops in the HALT or STOP mode. For details, see CHAPTER 23 OPTION BYTE.

RL78/G12 CHAPTER 27 INSTRUCTION SET

R01UH0200EJ0210 Rev.2.10 717
Mar 25, 2016

Table 27-5. Operation List (2/17)

Notes 1. Number of CPU clocks (fCLK) when the internal RAM area, SFR area, or extended SFR area is accessed, or

when no data is accessed.

 2. Number of CPU clocks (fCLK) when the code flash memory is accessed, or when the data flash memory is

accessed by an 8-bit instruction.

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction

from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.

Clocks Flag Instruction

Group

Mnemonic Operands Bytes

Note 1 Note 2

Clocks

Z AC CY

A, sfr 2 1  A  sfr

sfr, A 2 1  sfr  A

A, [DE] 1 1 4 A  (DE)

[DE], A 1 1  (DE)  A

A, ES:[DE] 2 2 5 A  (ES, DE)

ES:[DE], A 2 2  (ES, DE)  A

A, [HL] 1 1 4 A  (HL)

[HL], A 1 1  (HL)  A

A, ES:[HL] 2 2 5 A  (ES, HL)

ES:[HL], A 2 2  (ES, HL)  A

A, [DE+byte] 2 1 4 A  (DE + byte)

[DE+byte], A 2 1  (DE + byte)  A

A, ES:[DE+byte] 3 2 5 A  ((ES, DE) + byte)

ES:[DE+byte], A 3 2  ((ES, DE) + byte)  A

A, [HL+byte] 2 1 4 A  (HL + byte)

[HL+byte], A 2 1  (HL + byte)  A

A, ES:[HL+byte] 3 2 5 A  ((ES, HL) + byte)

ES:[HL+byte], A 3 2  ((ES, HL) + byte)  A

A, [SP+byte] 2 1  A  (SP + byte)

[SP+byte], A 2 1  (SP + byte)  A

A, word[B] 3 1 4 A  (B + word)

word[B], A 3 1  (B + word)  A

A, ES:word[B] 4 2 5 A  ((ES, B) + word)

ES:word[B], A 4 2  ((ES, B) + word)  A

A, word[C] 3 1 4 A  (C + word)

word[C], A 3 1  (C + word)  A

A, ES:word[C] 4 2 5 A  ((ES, C) + word)

ES:word[C], A 4 2  ((ES, C) + word)  A

A, word[BC] 3 1 4 A  (BC + word)

word[BC], A 3 1  (BC + word)  A

A, ES:word[BC] 4 2 5 A  ((ES, BC) + word)

8-bit data

transfer

MOV

ES:word[BC], A 4 2  ((ES, BC) + word)  A

RL78/G12 CHAPTER 28 ELECTRICAL SPECIFICATIONS (TA = 40 to +85C)

R01UH0200EJ0210 Rev.2.10 765
Mar 25, 2016

CSI mode connection diagram (during communication at different potential)

RL78

microcontroller

SOp

SCK

SI

User's deviceSIp SO

Vb

Rb

SCKp

<Slave>

Remarks 1. Rb []: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance,

 Vb [V]: Communication line voltage

 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

 3. fMCK: Serial array unit operation clock frequency

 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode

register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential)

(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

tKCY2

tKL2 tKH2

tSIK2 tKSI2

tKSO2

SIp

SOp

SCKp

Input data

Output data

RL78/G12 CHAPTER 29 ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105C)

R01UH0200EJ0210 Rev.2.10 797
Mar 25, 2016

CSI mode serial transfer timing (during communication at same potential)

(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

SIp

SOp

tKCY1, 2

tKL1, 2 tKH1, 2

tSIK1, 2 tKSI1, 2

tKSO1, 2

SCKp

Input data

Output data

CSI mode serial transfer timing (during communication at same potential)

(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

SIp

SOp

tKCY1, 2

tKH1, 2 tKL1, 2

tSIK1, 2 tKSI1, 2

tKSO1, 2

SCKp

Input data

Output data

Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

 2. fMCK: Serial array unit operation clock frequency

 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial

mode register mn (SMRmn). m: Unit number (m = 0,1), n: Channel number (n = 0, 1, 3))

RL78/G12 APPENDIX A REVISION HISTORY

R01UH0200EJ0210 Rev.2.10 831
Mar 25, 2016

(4/17)
Edition Description Chapter

Modification of Caution in 11.3.14 Serial standby control register 0 (SSC0)

Modification of Figure 11-20

Addition of Figure 11-21

Modification of description in 11.3.15 Noise filter enable register 0 (NFEN0)

Modification of Caution in Figure 11-22

Modification of description in 11.3.16 Registers controlling port functions of serial input/output pins

Modification of description of 11.5 Operation of 3-Wire Serial I/O (CSI00, CSI01, CSI11, CSI20)

Communication and Note

Modification of description in 11.5.1 Master transmission and addition of Remark

Modification of Figures 11-28 to 11-32

Modification of description in 11.5.2 Master reception and addition of Remark

Modification of Figures 11-35 to 11-37, 11-39, and 11-40

Modification of description in 11.5.3 Master transmission/reception and addition of Remark

Modification of Figures 11-43, 11-45, 11-47, and 11-48

Modification of description in 11.5.4 Slave transmission, Notes 1 and 2, and Remark 2

Modification of Figures 11-49 and 11-51 to 11-56

Modification of description in 11.5.5 Slave reception and Notes 1 and 2

Modification of Figures 11-57 to 11-59, 11-61, and 11-62

Modification of description in 11.5.6 Slave transmission/reception and Notes 1 and 2

Modification of Figures 11-65 and 11-67 to 11-70

Modification of description in 11.5.7 SNOOZE mode function

Modification of Figures 11-71 to 11-74

Modification of description in 11.6 Operation of UART (UART0 to UART2) Communication and

addition of Note 1

Modification of description in 11.6.1 UART transmission and addition of Notes 1 and 2

Modification of Figures 11-77 to 11-83

Modification of description in 11.6.2 UART reception and addition of Notes 1 and 2

Modification of Figure 11-86, 11-88, and 11-89

Modification of description in 11.6.3 SNOOZE mode function and addition of Cautions 2 to 4

Modification of Table 11-3

Modification of description in 11. 6. 3 (1) and Figure 11-90

Modification of description in 11. 6. 3 (2) and Figure 11-91

Modification of Figure 11-92

Modification of description in 11. 6. 3 (3) and Figure 11-93

Modification of Figure 11-94

Modification of description in 11.7 Operation of Simplified I2C (IIC00, IIC01, IIC11, IIC20)

Communication

Modification of description in 11.7.1 Address field transmission and Notes 1 and 2

Modification of description in 11.7.2 Data transmission and Notes 1 and 2

Modification of description in 11.7.3 Data reception and Notes 1 and 2

Modification of Figure 11-107

Modification of Figure 11-109

Modification of Figure 11-110

CHAPTER 11

SERIAL ARRAY

UNIT

Modification of Figure 12-1

Modification of Figure 12-5

Modification of Figure 12-6 (3/4) and (4/4)

Modification of Figure 12-9 (2/2)

Modification of description in 12.3.6 IICA low-level width setting register 0 (IICWL0)

Modification of description in 12.3.7 IICA high-level width setting register 0 (IICWH0)

2.00

Modification of description in 12.4.2 Setting transfer clock by using IICWL0 and IICWH0 registers

CHAPTER 12

SERIAL INTERFACE

IICA

