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Figure 3-3.  Memory Map for the R5F10x68, R5F10x78, and R5F10xA8 (x = 2 or 3) 
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Notes 1. Do not allocate the stack area, data buffers for use by the flash library, arguments of library functions, 

branch destinations in the processing of vectored interrupts, or destinations or sources for DMA transfer to 

the area from FFE20H to FFEDFH when performing self-programming or rewriting of the data flash memory. 

For R5F10x68 and R5F10x78, the RAM area used by the flash library starts at FFC00H. For the RAM areas 

used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family 

(R20UT2944). 

 2. Instructions can be executed from the RAM area excluding the general-purpose register area. 

 3. Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH. 

 4. The areas are reserved in the R5F10368, R5F10378, and R5103A8. 

 

Caution While RAM parity error resets are enabled (RPERDIS = 0), be sure to initialize RAM areas where data 

access is to proceed and the RAM area +10 bytes when instructions are fetched from RAM areas, 

respectively.  Reset signal generation sets RAM parity error resets to enabled (RPERDIS = 0).  For details, 

see 21.3.2 RAM parity error detection function. 
 

<R> 
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Table 3-7.  Extended SFR (2nd SFR) List (2/5) 

Manipulable Bit Range Address Special Function Register (SFR) Name Symbol R/W

1-bit 8-bit 16-bit 

After Reset 

F00F0H Peripheral enable register 0 PER0 R/W    00H 

F00F3H Operation speed mode control register OSMC R/W    00H 

F00F5H RAM parity error control register RPECTL R/W    00H 

F00FEH BCD adjust result register BCDADJ R    Undefined 

F0100H SSR00L   

F0101H 

Serial status register 00 

 

SSR00 R 

  

 0000H 

F0102H SSR01L   

F0103H 

Serial status register 01 

 

SSR01 R 

  

 0000H 

F0104H SSR02L   0000H 

F0105H 

Serial status register 02 

 

SSR02 R 

  

 

0000H 

F0106H SSR03L   0000H 

F0107H 

Serial status register 03 

 

SSR03 R 

  

 

0000H 

F0108H SIR00L   

F0109H 

Serial flag clear trigger register 00 

 

SIR00 R/W

  

 0000H 

F010AH SIR01L   

F010BH 

Serial flag clear trigger register 01 

 

SIR01 R/W

  

 0000H 

F010CH SIR02L   

F010DH 

Serial flag clear trigger register 02 

 

SIR02 R/W

  

 0000H 

F010EH SIR03L   

F010FH 

Serial flag clear trigger register 03 

 

SIR03 R/W

  

 0000H 

F0110H 

F0111H 

Serial mode register 00 SMR00 R/W    0020H 

F0112H 

F0113H 

Serial mode register 01 SMR01 R/W    0020H 

F0114H 

F0115H 

Serial mode register 02 SMR02 R/W    0020H 

F0116H 

F0117H 

Serial mode register 03 SMR03 R/W    0020H 

F0118H 

F0119H 

Serial communication operation setting 
register 00 

SCR00 R/W    0087H 

F011AH 

F011BH 

Serial communication operation setting 
register 01 

SCR01 R/W    0087H 

F011CH 

F011DH 

Serial communication operation setting 
register 02 

SCR02 R/W    0087H 

F011EH 

F011FH 

Serial communication operation setting 
register 03 

SCR03 R/W    0087H 
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6.8.3  Operation as frequency divider (channel 0 of 30-pin products only) 

 

The timer array unit can be used as a frequency divider that divides a clock input to the TI00 pin and outputs the result 

from the TO00 pin. 

The divided clock frequency output from TO00 can be calculated by the following expression. 

 

 When rising edge/falling edge is selected:  

 Divided clock frequency = Input clock frequency/{(Set value of TDR00 + 1)  2} 

 When both edges are selected:  

 Divided clock frequency  Input clock frequency/(Set value of TDR00 + 1) 

 

Timer count register 00 (TCR00) operates as a down counter in the interval timer mode. 

After the channel start trigger bit (TS00) of timer channel start register 0 (TS0) is set to 1, the TCR00 register loads the 

value of timer data register 00 (TDR00) when the TI00 valid edge is detected.   

If the MD000 bit of timer mode register 00 (TMR00) is 0 at this time, INTTM00 is not output and TO00 is not toggled.  If 

the MD000 bit of timer mode register 00 (TMR00) is 1, INTTM00 is output and TO00 is toggled. 

After that, the TCR00 register counts down at the valid edge of the TI00 pin.  When TCR00 = 0000H, it toggles TO00.  

At the same time, the TCR00 register loads the value of the TDR00 register again, and continues counting. 

If detection of both the edges of the TI00 pin is selected, the duty factor error of the input clock affects the divided clock 

period of the TO00 output. 

The period of the TO00 output clock includes a sampling error of one period of the operation clock. 

 
Clock period of TO00 output = Ideal TO00 output clock period  Operation clock period (error) 

 

The TDR00 register can be rewritten at any time.  The new value of the TDR00 register becomes valid during the next 

count period. 

 

Figure 6-46.  Block Diagram of Operation as Frequency Divider 
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Figure 6-59.  Example of Basic Timing of Operation as Delay Counter 
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Remarks 1. n: Channel number (n = 0 to 7) 

 2. TS0n: Bit n of timer channel start register 0 (TS0) 

  TE0n: Bit n of timer channel enable status register 0 (TE0) 

  TI0n: TI0n pin input signal 

  TCR0n: Timer count register 0n (TCR0n) 

  TDR0n: Timer data register 0n (TDR0n) 
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10.6.5  Hardware trigger no-wait mode (select mode, sequential conversion mode) 

 

<1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the 

A/D conversion standby status. 

<2> After the software counts up to the stabilization wait time (1 s), the ADCS bit of the ADM0 register is set to 1 to 

place the system in the hardware trigger standby status (and conversion does not start at this stage).  Note that, 

while in this status, A/D conversion does not start even if ADCS is set to 1. 

<3> If a hardware trigger is input while ADCS = 1, A/D conversion is performed on the analog input specified by the 

analog input channel specification register (ADS). 

<4> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), 

and the A/D conversion end interrupt request signal (INTAD) is generated.  After A/D conversion ends, the next 

A/D conversion immediately starts. 

<5> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and 

conversion restarts.  The partially converted data is discarded. 

<6> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D 

conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register.  

The partially converted data is discarded. 

<7> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and 

conversion restarts.  The partially converted data is discarded. 

<8> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, and the 

system enters the A/D conversion standby status.  However, the A/D converter does not power down in this 

status. 

<9> When ADCE is cleared to 0 while in the A/D conversion standby status, the A/D converter enters the stop status.  

When ADCS = 0, inputting a hardware trigger is ignored and A/D conversion does not start. 

 

Figure 10-21.  Example of Hardware Trigger No-Wait Mode (Select Mode, Sequential Conversion Mode) Operation 
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10.6.9  Hardware trigger wait mode (select mode, sequential conversion mode) 

 

<1> In the stop status, the ADCE bit of A/D converter mode register 0 (ADM0) is set to 1, and the system enters the 

hardware trigger standby status. 

<2> If a hardware trigger is input while in the hardware trigger standby status, A/D conversion is performed on the 

analog input specified by the analog input channel specification register (ADS).  The ADCS bit of the ADM0 

register is automatically set to 1 according to the hardware trigger input. 

<3> When A/D conversion ends, the conversion result is stored in the A/D conversion result register (ADCR, ADCRH), 

and the A/D conversion end interrupt request signal (INTAD) is generated.  After A/D conversion ends, the next 

A/D conversion immediately starts.  (At this time, no hardware trigger is necessary.) 

<4> If a hardware trigger is input during conversion operation, the current A/D conversion is interrupted, and 

conversion restarts.  The partially converted data is discarded. 

<5> When the value of the ADS register is rewritten or overwritten during conversion operation, the current A/D 

conversion is interrupted, and A/D conversion is performed on the analog input respecified by the ADS register.  

The partially converted data is discarded. 

<6> When ADCS is overwritten with 1 during conversion operation, the current A/D conversion is interrupted, and 

conversion restarts.  The partially converted data is discarded. 

<7> When ADCS is cleared to 0 during conversion operation, the current A/D conversion is interrupted, the system 

enters the hardware trigger standby status, and the A/D converter enters the stop status.  When ADCE = 0, 

inputting a hardware trigger is ignored and A/D conversion does not start. 

 

Figure 10-25.  Example of Hardware Trigger Wait Mode (Select Mode, Sequential Conversion Mode) Operation 
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10.8  SNOOZE mode function 
 

In the SNOOZE mode, A/D conversion is triggered by inputting a hardware trigger in the STOP mode. Normally, A/D 

conversion is stopped while in the STOP mode, but, by using the SNOOZE mode function, A/D conversion can be 

performed without operating the CPU by inputting a hardware trigger. This is effective for reducing the operation current. 

If the A/D conversion result range is specified using the ADUL and ADLL registers, A/D conversion results can be 

judged at a certain interval of time in SNOOZE mode. Using this function enables power supply voltage monitoring and 

input key judgment based on A/D inputs. 

 

In the SNOOZE mode, only the following two conversion modes can be used: 

  Hardware trigger wait mode (select mode, one-shot conversion mode) 

  Hardware trigger wait mode (scan mode, one-shot conversion mode) 

 

Caution  SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fCLK. 

 

Figure 10-34.  Block Diagram When Using SNOOZE Mode Function 
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When using the SNOOZE mode function, the initial setting of each register is specified before switching to the STOP 

mode (for details about these settings, see 10.7.3  Setting up hardware trigger wait modeNote 2). Just before switching to 

the STOP mode, bit 2 (AWC) of the A/D converter mode register 2 (ADM2) is set to 1. After the initial settings are specified, 

bit 0 (ADCE) of the A/D converter mode register 0 (ADM0) is set to 1. 

If a hardware trigger is input after switching to the STOP mode, the high-speed on-chip oscillator clock is supplied to 

the A/D converter.  After supplying this clock, the system automatically counts up to the A/D power supply stabilization 

wait time, and then A/D conversion starts. 

The SNOOZE mode operation after A/D conversion ends differs depending on whether an interrupt signal is 

generatedNote 1. 

 

Notes 1. Depending on the setting of the A/D conversion result comparison function (ADRCK bit, ADUL/ADLL 

register), there is a possibility of no interrupt signal being generated. 

 2. Be sure to set the ADM1 register to E2H or E3H. 

 

Remarks 1. The hardware trigger is INTIT. 

 2. Specify the hardware trigger by using the A/D Converter Mode Register 1 (ADM1) 
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11.5.9  Procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01, CSI11, CSI20) 

communication 

The procedure for processing errors that occurred during 3-wire serial I/O (CSI00, CSI01, CSI11, CSI20) communication 

is described in Figure 11-75. 

 

Figure 11-75.  Processing Procedure in Case of Overrun Error 

Software Manipulation Hardware Status Remark 
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(SSRmn). 
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Writes 1 to serial flag clear trigger 
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Error flag is cleared. Error can be cleared only during 

reading, by writing the value read from 

the SSRmn register to the SIRmn 

register without modification. 

 

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00, 01, 03, 10 
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Figure 11-78.  Procedure for Stopping UART Transmission 
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12.4.2  Setting transfer clock by using IICWL0 and IICWH0 registers 

 

(1) Setting transfer clock on master side 

 

Transfer clock = 
fMCK

 IICWL + IICWH + fMCK (tR + tF)  

 

At this time, the optimal setting values of the IICWL0 and IICWH0 registers are as follows. 

(The fractional parts of all setting values are rounded up.) 

 

 When the fast mode 

 

  IICWL0 = 
0.52

 Transfer clock   fMCK 

  IICWH0 = (
0.48

 Transfer clock   tR  tF)  fMCK 

 

 When the normal mode 

 

  IICWL0 = 
0.47

 Transfer clock   fMCK 

  IICWH0 = (
0.53

 Transfer clock   tR  tF)  fMCK 

 

(2) Setting IICWL0 and IICWH0 registers on slave side 

(The fractional parts of all setting values are truncated.) 

 

 When the fast mode 

 

  IICWL0 = 1.3 s  fMCK 

  IICWH0 = (1.2 s  tR  tF)  fMCK 

 

 When the normal mode 

 

  IICWL0 = 4.7 s  fMCK 

  IICWH0 = (5.3 s  tR  tF)  fMCK 

 

Cautions 1. The fastest operation frequency of IICA operation clock (fMCK) is 20 MHz (max.). When only the fCLK 

exceeds 20 MHz, set bit 0 (PRSn) of the IICA control register n1 (IICCTLn1) to 1. 

 2. Note the minimum fCLK operation frequency when setting the transfer clock.  The minimum fCLK operation 

frequency for serial interface IICA is determined according to the mode. 

    Fast mode: fCLK = 3.5 MHz (min.) 

    Normal mode: fCLK = 1 MHz (min.) 

 

Remarks  1. Calculate the rise time (tR) and fall time (tF) of the SDAA0 and SCLA0 signals separately, because 

they differ depending on the pull-up resistance and wire load. 

 2. IICWL0:  IICA low-level width setting register 0 

  IICWH0:  IICA high-level width setting register 0 

  tF:  SDAA0 and SCLA0 signal falling times 

  tR:  SDAA0 and SCLA0 signal rising times 

  fMCK:  IICA operation clock frequency <R> 
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The meanings of <8> to <19> in (3) Data ~ data ~ stop condition in Figure 12-33 are explained below. 

 

<8> The master device sets a wait status (SCLA0 = 0) at the falling edge of the 8th clock, and issues an 

interrupt (INTIICA0: end of transfer).  Because of ACKE0 = 0 in the master device, the master device then 

sends an ACK by hardware to the slave device. 

<9> The master device reads the received data and releases the wait status (WREL0 = 1). 

<10> The ACK is detected by the slave device (ACKD0 = 1) at the rising edge of the 9th clock. 

<11> The slave device set a wait status (SCLA0 = 0) at the falling edge of the 9th clock, and the slave device 

issue an interrupt (INTIICA0: end of transfer). 

<12> By the slave device writing the data to transmit to the IICA register, the wait status set by the slave device is 

released.  The slave device then starts transferring data to the master device. 

<13> The master device issues an interrupt (INTIICA0: end of transfer) at the falling edge of the 8th clock, and 

sets a wait status (SCLA0 = 0).  Because ACK control (ACKE0 = 1) is performed, the bus data line is at the 

low level (SDAA0 = 0) at this stage. 

<14> The master device sets NACK as the response (ACKE0 = 0) and changes the timing at which it sets the 

wait status to the 9th clock (WTIM0 = 1). 

<15> If the master device releases the wait status (WREL0 = 1), the slave device detects the NACK (ACK = 0) at 

the rising edge of the 9th clock. 

<16> The master device and slave device set a wait status (SCLA0 = 0) at the falling edge of the 9th clock, and 

both the master device and slave device issue an interrupt (INTIICA0: end of transfer). 

<17> When the master device issues a stop condition (SPT0 = 1), the bus data line is cleared (SDAA0 = 0) and 

the master device releases the wait status.  The master device then waits until the bus clock line is set 

(SCLA0 = 1). 

<18> The slave device acknowledges the NACK, halts transmission, and releases the wait status (WREL0 = 1) to 

end communication.  Once the slave device releases the wait status, the bus clock line is set (SCLA0 = 1). 

<19> Once the master device recognizes that the bus clock line is set (SCLA0 = 1) and after the stop condition 

setup time has elapsed, the master device sets the bus data line (SDAA0 = 1) and issues a stop condition 

(i.e. SCLA0 =1 changes SDAA0 from 0 to 1).  When a stop condition is generated, the slave device detects 

the stop condition and issues an interrupt (INTIICA0: stop condition). 

 

Remark <1> to <19> in Figure 12-33 show descriptions the entire procedure for communicating data using the 

I2C bus.   

Figure 12-33 (1) Start condition ~ address ~ data shows the processing from <1> to <7>, Figure 12-33 

(2) Address ~ data ~ data shows the processing from <3> to <12>, and Figure 12-33 (3) Data ~ data ~ 

stop condition shows the processing from <8> to <19>. 
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Figure 13-9.  Timing Diagram of Multiply-Accumulation (signed) Operation 

(2  3 + (4) = 2  32767  (1) + (2147483647) = 2147450882 (overflow occurs.))  

 

<1>

<3> <3>

<3> <3>

<2> <5> <6><4>

00H

MDCH 0000H 8000H 7FFFH

MDUC

MDSM L

<7> <8> <2> <5> <6><4> <7> <8>

<10>, <11>

<12>

<9>

48H

0000H FFFFH

MDCL 8002H0000H FFFCH 0002H 0001H

MDAL 0000H 0002H 7FFFH

MDAH

INTMD

0000H 0003H FFFFH

MDBH
MDBL 

0000H
0000H

0000H
0006H

FFFFH
8001H

MACOF

MACSF L

4AH

Operation clock

4CH

<9>

48H 4AH
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Table 15-6.  Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing  

During Interrupt Servicing 

Maskable Interrupt Request 

Priority Level 0 
(PR = 00) 

Priority Level 1 
(PR = 01) 

Priority Level 2 
(PR = 10) 

Priority Level 3 
(PR = 11) 

Multiple Interrupt Request

Interrupt Being Serviced IE = 1 IE = 0 IE = 1 IE = 0 IE = 1 IE = 0 IE = 1 IE = 0 

Software 
Interrupt  
Request 

ISP1 = 0
ISP0 = 0

         

ISP1 = 0
ISP0 = 1

         

ISP1 = 1
ISP0 = 0

         

Maskable interrupt 

ISP1 = 1
ISP0 = 1

         

Software interrupt          

 

Remarks 1. :  Multiple interrupt servicing enabled 

 2. :  Multiple interrupt servicing disabled 

 3. ISP0, ISP1, and IE are flags contained in the PSW. 

  ISP1 = 0, ISP0 = 0:  An interrupt of level 1 or level 0 is being serviced.  

  ISP1 = 0, ISP0 = 1:  An interrupt of level 2 is being serviced. 

  ISP1 = 1, ISP0 = 0:  An interrupt of level 3 is being serviced.   

  ISP1 = 1, ISP0 = 1:  Wait for an interrupt acknowledgment (all interrupts are enabled). 

  IE = 0:  Interrupt request acknowledgment is disabled.  

  IE = 1:  Interrupt request acknowledgment is enabled.  

 4. PR is a flag contained in the PR00L, PR00H, PR01L, PR10L, PR10H, PR11L registers.  

  PR = 00: Specify level 0 with PR1 = 0, PR0 = 0 (higher priority level) 

  PR = 01: Specify level 1 with PR1 = 0, PR0 = 1 

  PR = 10: Specify level 2 with PR1 = 1, PR0 = 0 

  PR = 11: Specify level 3 with PR1 = 1, PR0 = 1 (lower priority level) 
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16.4.2  When using the key interrupt flag (KRMD = 1) 

A key interrupt (INTKR) is generated when the valid edge specified by the setting of the KREG bit is input to a key 

interrupt pin (KR0 to KR5).  The channels to which the valid edge was input can be identified by reading the key return flag 

register (KRF) after the key interrupt (INTKR) is generated. 

If the KRMD bit is set to 1, the INTKR signal is cleared by clearing the corresponding bit in the KRF register. 

As shown in Figure 16-8, only one interrupt is generated each time a falling edge is input to one channel (when KREG 

= 0), regardless of whether the KRFn bit is cleared before or after a rising edge is input. 

 

Figure 16-8. Basic Operation of the INTKR Signal When the Key Interrupt Flag Is Used  

(When KRMD = 1 and KREG = 0) 

 

(a) KRF0 is cleared after a rising edge is input to the KR0 pin 

 

KR0

KRF0

INTKR

KRIF

Cleared

Note 2

Note 1Delay time

Cleared by the software

 
 

(b) KRF0 is cleared before a rising edge is input to the KR0 pin 

 

KR0

KRF0

INTKR

KRIF

Cleared

Cleared by the software

Note 2

Note 1
Delay time

 
 

Notes 1. The maximum delay time is the maximum value of the high-level width and low-level width of the key 

interrupt input (see 28.4  AC Characteristics or 29.4  AC Characteristics). 

 2. Cleared by acknowledgment of vectored interrupt request or bit cleared by software. 

 



 

RL78/G12  CHAPTER  17   STANDBY FUNCTION 

R01UH0200EJ0210  Rev.2.10    616  
Mar 25, 2016 

CHAPTER  17   STANDBY FUNCTION 
 

 

17.1  Standby Function 
 

The standby function reduces the operating current of the system, and the following three modes are available. 

 

(1) HALT mode 

HALT instruction execution sets the HALT mode.  In the HALT mode, the CPU operation clock is stopped.  If the high-

speed system clock oscillator or high-speed on-chip oscillator is operating before the HALT mode is set, oscillation of 

each clock continues.  In this mode, the operating current is not decreased as much as in the STOP mode, but the 

HALT mode is effective for restarting operation immediately upon interrupt request generation and carrying out 

intermittent operations frequently. 

 

(2) STOP mode 

STOP instruction execution sets the STOP mode.  In the STOP mode, the high-speed system clock oscillator and 

high-speed on-chip oscillator stop, stopping the whole system, thereby considerably reducing the CPU operating 

current. 

Because this mode can be cleared by an interrupt request, it enables intermittent operations to be carried out.  

However, because a wait time is required to secure the oscillation stabilization time after the STOP mode is released 

when the X1 clock is selected, select the HALT mode if it is necessary to start processing immediately upon interrupt 

request generation. 

 

(3) SNOOZE mode 

In the case of CSI00 or UART0 data reception and an A/D conversion request by the timer trigger signal (the interrupt 

request signal (INTIT)), the STOP mode is exited, the CSI00 or UART0 data is received without operating the CPU, 

and A/D conversion is performed.  This can only be specified when the high-speed on-chip oscillator clock is selected 

for the CPU/peripheral hardware clock (fCLK). 

 

In either of these two modes, all the contents of registers, flags and data memory just before the standby mode is set 

are held.  The I/O port output latches and output buffer statuses are also held. 

 

Cautions 1. When shifting to the STOP mode, be sure to stop the peripheral hardware operation operating with main 

system clock before executing STOP instruction (other than SNOOZE mode setting unit). 

 2. When using CSI00, UART0, or the A/D converter in the SNOOZE mode, set up serial standby control 

register 0 (SSC0) and A/D converter mode register 2 (ADM2) before switching to the STOP mode.  For 

details, see 11.3  Registers Controlling Serial Array Unit and 10.3  Registers Controlling A/D Converter. 

 3. To reduce the current consumption of the A/D converter when the standby function is used, first clear bit 

7 (ADCS) and bit 0 (ADCE) of A/D converter mode register 0 (ADM0) to 0 to stop the A/D conversion, 

and then execute the STOP instruction. 

 4. It can be selected by the option byte whether the low-speed on-chip oscillator continues oscillating or 

stops in the HALT or STOP mode.  For details, see CHAPTER 23  OPTION BYTE. 
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Table 27-5.  Operation List (2/17) 

Notes 1. Number of CPU clocks (fCLK) when the internal RAM area, SFR area, or extended SFR area is accessed, or 

when no data is accessed. 

 2. Number of CPU clocks (fCLK) when the code flash memory is accessed, or when the data flash memory is 

accessed by an 8-bit instruction. 

 

Remark Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction 

from the internal RAM area, the number becomes double number plus 3 clocks at a maximum. 

 

Clocks Flag Instruction 

Group 

Mnemonic Operands Bytes 

Note 1 Note 2

Clocks 

Z AC CY

A, sfr 2 1  A  sfr  

sfr, A 2 1  sfr  A  

A, [DE] 1 1 4 A  (DE)  

[DE], A 1 1  (DE)  A  

A, ES:[DE] 2 2 5 A  (ES, DE)  

ES:[DE], A 2 2  (ES, DE)  A  

A, [HL] 1 1 4 A  (HL)  

[HL], A 1 1  (HL)  A  

A, ES:[HL] 2 2 5 A  (ES, HL)  

ES:[HL], A 2 2  (ES, HL)  A  

A, [DE+byte] 2 1 4 A  (DE + byte)  

[DE+byte], A 2 1  (DE + byte)  A  

A, ES:[DE+byte] 3 2 5 A  ((ES, DE) + byte)  

ES:[DE+byte], A 3 2  ((ES, DE) + byte)  A  

A, [HL+byte] 2 1 4 A  (HL + byte)  

[HL+byte], A 2 1  (HL + byte)  A  

A, ES:[HL+byte] 3 2 5 A  ((ES, HL) + byte)  

ES:[HL+byte], A 3 2  ((ES, HL) + byte)  A  

A, [SP+byte] 2 1  A  (SP + byte)  

[SP+byte], A 2 1  (SP + byte)  A  

A, word[B] 3 1 4 A  (B + word)  

word[B], A 3 1  (B + word)  A  

A, ES:word[B] 4 2 5 A  ((ES, B) + word)  

ES:word[B], A 4 2  ((ES, B) + word)  A  

A, word[C] 3 1 4 A  (C + word)  

word[C], A 3 1  (C + word)  A  

A, ES:word[C] 4 2 5 A  ((ES, C) + word)  

ES:word[C], A 4 2  ((ES, C) + word)  A  

A, word[BC] 3 1 4 A  (BC + word)  

word[BC], A 3 1  (BC + word)  A  

A, ES:word[BC] 4 2 5 A  ((ES, BC) + word)   

8-bit data 

transfer 

MOV 

ES:word[BC], A 4 2  ((ES, BC) + word)  A   



 

RL78/G12  CHAPTER  28   ELECTRICAL SPECIFICATIONS (TA = 40 to +85C) 

R01UH0200EJ0210  Rev.2.10    765  
Mar 25, 2016  

CSI mode connection diagram (during communication at different potential) 

 

RL78

microcontroller

SOp

SCK

SI

User's deviceSIp SO

Vb

Rb

SCKp

<Slave>

 
 

Remarks 1. Rb []: Communication line (SOp) pull-up resistance, Cb [F]: Communication line (SOp) load capacitance,  

  Vb [V]: Communication line voltage 

 2. p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0) 

 3. fMCK: Serial array unit operation clock frequency  

  (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode 

register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 10)) 

 

CSI mode serial transfer timing (slave mode) (during communication at different potential) 

(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) 

 
tKCY2

tKL2 tKH2

tSIK2 tKSI2

tKSO2

SIp

SOp

SCKp

Input data

Output data
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CSI mode serial transfer timing (during communication at same potential) 

(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.) 

 

SIp

SOp

tKCY1, 2

tKL1, 2 tKH1, 2

tSIK1, 2 tKSI1, 2

tKSO1, 2

SCKp

Input data

Output data

 
 

CSI mode serial transfer timing (during communication at same potential) 

(When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.) 

 

SIp

SOp

tKCY1, 2

tKH1, 2 tKL1, 2

tSIK1, 2 tKSI1, 2

tKSO1, 2

SCKp

Input data

Output data

 
 

Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3) 

 2. fMCK: Serial array unit operation clock frequency  

 (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial 

mode register mn (SMRmn). m: Unit number (m = 0,1), n: Channel number (n = 0, 1, 3)) 
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