
Microchip Technology - ATTINY167-MU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, LINbus, SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 16

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 32-VFQFN Exposed Pad

Supplier Device Package 32-VQFN (5x5)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/attiny167-mu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/attiny167-mu-4389957
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

1. Description

1.1 Comparison Between ATtiny87 and ATtiny167
ATtiny87 and ATtiny167 are hardware and software compatible. They differ only in memory
sizes as shown in Table 1-1.

1.2 Part Description
The ATtiny87/167 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC
architecture. By executing powerful instructions in a single clock cycle, the ATtiny87/167
achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize
power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

The ATtiny87/167 provides the following features: 8K/16K byte of In-System Programmable
Flash, 512 bytes EEPROM, 512 bytes SRAM, 16 general purpose I/O lines, 32 general purpose
working registers, one 8-bit Timer/Counter with compare modes, one 8-bit high speed
Timer/Counter, Universal Serial Interface, a LIN controller, Internal and External Interrupts, a
11-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and three
software selectable power saving modes. The Idle mode stops the CPU while allowing the
SRAM, Timer/Counter, ADC, Analog Comparator, and Interrupt system to continue functioning.
The Power-down mode saves the register contents, disabling all chip functions until the next
Interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O mod-
ules except ADC, to minimize switching noise during ADC conversions.

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the Program memory to be re-programmed In-System through an SPI
serial interface, by a conventional non-volatile memory programmer or by an On-chip boot code
running on the AVR core. The Boot program can use any interface to download the application
program in the Flash memory. By combining an 8-bit RISC CPU with In-System Self-Program-
mable Flash on a monolithic chip, the Atmel ATtiny87/167 is a powerful microcontroller that
provides a highly flexible and cost effective solution to many embedded control applications.

The ATtiny87/167 AVR is supported with a full suite of program and system development tools
including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators,
and Evaluation kits.

Table 1-1. Memory Size Summary

Device Flash EEPROM SRAM Interrupt Vector size

ATtiny167 16K Bytes 512 Bytes 512 Bytes 2-instruction-words / vector

ATtiny87 8K Bytes 512 Bytes 512 Bytes 2-instruction-words / vector
2
8265D–AVR–01/2014

ATtiny87/167

1.6 Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

1.7 About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

1.8 Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85C or 100 years at 25C.

1.9 Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device has been characterized.
6
8265D–AVR–01/2014

ATtiny87/167

3.3.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the I/O space.

The write access times for the EEPROM are given in Table 3-2. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, VCC is likely to rise or fall slowly on Power-up/down. This causes the device for some
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See “Preventing EEPROM Corruption” on page 20 for details on how to avoid problems in these
situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to “Atomic Byte Programming” on page 18 and “Split Byte Programming” on page 18 for
details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

3.3.2 Atomic Byte Programming
Using Atomic Byte Programming is the simplest mode. When writing a byte to the EEPROM, the
user must write the address into the EEARL Register and data into EEDR Register. If the
EEPMn bits are zero, writing EEPE (within four cycles after EEMPE is written) will trigger the
erase/write operation. Both the erase and write cycle are done in one operation and the total
programming time is given in Table 1. The EEPE bit remains set until the erase and write opera-
tions are completed. While the device is busy with programming, it is not possible to do any
other EEPROM operations.

3.3.3 Split Byte Programming
It is possible to split the erase and write cycle in two different operations. This may be useful if
the system requires short access time for some limited period of time (typically if the power sup-
ply voltage falls). In order to take advantage of this method, it is required that the locations to be
written have been erased before the write operation. But since the erase and write operations
are split, it is possible to do the erase operations when the system allows doing time-critical
operations (typically after Power-up).

3.3.4 Erase
To erase a byte, the address must be written to EEAR. If the EEPMn bits are 0b01, writing the
EEPE (within four cycles after EEMPE is written) will trigger the erase operation only (program-
ming time is given in Table 1). The EEPE bit remains set until the erase operation completes.
While the device is busy programming, it is not possible to do any other EEPROM operations.

3.3.5 Write
To write a location, the user must write the address into EEAR and the data into EEDR. If the
EEPMn bits are 0b10, writing the EEPE (within four cycles after EEMPE is written) will trigger
the write operation only (programming time is given in Table 1). The EEPE bit remains set until
the write operation completes. If the location to be written has not been erased before write, the
data that is stored must be considered as lost. While the device is busy with programming, it is
not possible to do any other EEPROM operations.
18
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
The calibrated Oscillator is used to time the EEPROM accesses. Make sure the Oscillator fre-
quency is within the requirements described in “OSCCAL – Oscillator Calibration Register” on
page 37.

The following code examples show one assembly and one C function for erase, write, or atomic
write of the EEPROM. The examples assume that interrupts are controlled (e.g., by disabling
interrupts globally) so that no interrupts will occur during execution of these functions.

Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write

; Set Programming mode

ldi r16, (0<<EEPM1)|(0<<EEPM0)

out EECR, r16

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Write data (r16) to data register

out EEDR, r16

; Write logical one to EEMPE

sbi EECR,EEMPE

; Start eeprom write by setting EEPE

sbi EECR,EEPE

ret

C Code Example

void EEPROM_write(unsigned char ucAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set Programming mode */

EECR = (0<<EEPM1)|(0<<EEPM0);

/* Set up address and data registers */

EEAR = ucAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}

19
8265D–AVR–01/2014

4. System Clock and Clock Options
The ATtiny87/167 provides a large number of clock sources. They can be divided into two cate-
gories: internal and external. Some external clock sources can be shared with the asynchronous
timer. After reset, the clock source is determined by the CKSEL Fuses. Once the device is run-
ning, software clock switching is possible to any other clock sources.
Hardware controls are provided for clock switching management but some specific procedures
must be observed. Clock switching should be performed with caution as some settings could
result in the device having an incorrect configuration.

4.1 Clock Systems and their Distribution
Figure 4-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
may not need to be active at any given time. In order to reduce power consumption, the clocks to
modules not being used can be halted by using different sleep modes or by using features of the
dynamic clock switch circuit (See “Power Management and Sleep Modes” on page 42 and
“Dynamic Clock Switch” on page 31). The clock systems are detailed below.

Figure 4-1. Clock Distribution

Modules

clkI/O

clkASY

AVR Clock
Control Unit

clkCPU

clkFLASH

Source Clock

Watchdog Timer

Watchdog
Oscillator

Reset Logic

Prescaler

Multiplexer

Watchdog Clock

Low-frequency
Crystal Oscillator

Crystal
OscillatorExternal Clock

clkADC

Asynchronous
Timer/Counter0 General I/O ADC CPU Core RAM Flash and

EEPROM

Calibrated RC
Oscillator

PB5 / XTAL2 / CLKOPB4 / XTAL1 / CLKI

CKOUT
Fuse

Clock Switch
24
8265D–AVR–01/2014

ATtiny87/167

Figure 6-7. Watchdog Timer

The WDT gives an interrupt or a system reset when the counter reaches a given time-out value.
In normal operation mode, it is required that the system uses the WDR - Watchdog Timer Reset
- instruction to restart the counter before the time-out value is reached. If the system doesn't
restart the counter, an interrupt or system reset will be issued.

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-
tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt
mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security, altera-
tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and
changing time-out configuration is as follows:

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE)
and WDE. A logic one must be written to WDE regardless of the previous value of the
WDE bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as
desired, but with the WDCE bit cleared. This must be done in one operation.

MCU
RESET

WATCHDOG
RESET

CLOCK
MONITORING

INTERRUPT

WDE

WDIF

WDIE

WDP0
WDP1
WDP2
WDP3

O
S

C
 /

10
24

K
O

S
C

 /
51

2K

O
S

C
 /

4K
O

S
C

 /
2K

O
S

C
 /

25
6K

O
S

C
 /

12
8K

O
S

C
 /

64
K

O
S

C
 /

32
K

O
S

C
 /

16
K

O
S

C
 /

8K

WATCHDOG
PRESCALER

~128 KHz
OSCILLATOR
54
8265D–AVR–01/2014

ATtiny87/167

The following code example shows one assembly and one C function for changing the time-out
value of the Watchdog Timer.

Notes: 1. See ”About Code Examples” on page 6.

2. The Watchdog Timer should be reset before any change of the WDP bits, since a change in
the WDP bits can result in a time-out when switching to a shorter time-out period.

6.3.2 Clock monitoring
The Watchdog Timer can be used to detect a loss of system clock. This configuration is driven
by the dynamic clock switch circuit. Please refer to Section 4.3.8 “Clock Monitoring” on page 34
for more information.

Assembly Code Example(1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

lds r16, WDTCR

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCR, r16

; -- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

sts WDTCR, r16

; -- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed sequence */

WDTCR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

56
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
The alternate pin configuration is as follows:

• Port A, Bit 7 – PCINT7/ADC7/AIN1/XREF/AREF

• PCINT7: Pin Change Interrupt, source 7.

• ADC7: Analog to Digital Converter, channel 7.

• AIN1: Analog Comparator Positive Input. This pin is directly connected to the positive input of
the Analog Comparator.

• XREF: Internal Voltage Reference Output. The internal voltage reference 2.56V or 1.1V is
output when XREFEN is set and if either 2.56V or 1.1V is used as reference for ADC
conversion. When XREF output is enabled, the pin port pull-up and digital output driver are
turned off.

• AREF: External Voltage Reference Input for ADC. The pin port pull-up and digital output
driver are disabled when the pin is used as an external voltage reference input for ADC or as
when the pin is only used to connect a bypass capacitor for the voltage reference of the ADC.

• Port A, Bit 6 – PCINT6/ADC6/AIN0/SS

• PCINT6: Pin Change Interrupt, source 6.

• ADC6: Analog to Digital Converter, channel 6.

• AIN0: Analog Comparator Negative Input. This pin is directly connected to the negative input
of the Analog Comparator.

• SS: SPI Slave Select Input. When the SPI is enabled as a slave, this pin is configured as an
input regardless of the setting of DDA6. As a slave, the SPI is activated when this pin is
driven low. When the SPI is enabled as a master, the data direction of this pin is controlled by
DDA6. When the pin is forced to be an input, the pull-up can still be controlled by the
PORTA6 bit.

• Port A, Bit 5 – PCINT5/ADC5/T1/USCK/SCL/SCK

• PCINT5: Pin Change Interrupt, source 5.

• ADC5: Analog to Digital Converter, channel 5.

• T1: Timer/Counter1 Clock Input.

• USCK: Three-wire Mode USI Clock Input.

• SCL: Two-wire Mode USI Clock Input.

• SCK: SPI Master Clock output, Slave Clock input pin. When the SPI is enabled as a slave,
this pin is configured as an input regardless of the setting of DDA5. When the SPI is enabled
as a master, the data direction of this pin is controlled by DDA5. When the pin is forced to be
an input, the pull-up can still be controlled by the PORTA5 bit.

• Port A, Bit 4 – PCINT4/ADC4/ICP1/DI/SDA/MOSI

• PCINT4: Pin Change Interrupt, source 4.

• ADC4: Analog to Digital Converter, channel 4.

• ICP1: Timer/Counter1 Input Capture Trigger. The PA3 pin can act as an Input Capture pin for
Timer/Counter1.

• DI: Three-wire Mode USI Data Input. USI Three-wire mode does not override normal port
functions, so pin must be configure as an input for DI function.

• SDA: Two-wire Mode Serial Interface (USI) Data Input / Output.
77
8265D–AVR–01/2014

ATtiny87/167
• Bits 1:0 – WGM0[1:0]: Waveform Generation Mode
These bits control the counting sequence of the counter, the source for the maximum (TOP)
counter value, and what type of waveform generation to be used, see Table 10-4. Modes of
operation supported by the Timer/Counter unit are: Normal mode (Counter), Clear Timer on
Compare match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes (See
”Modes of Operation” on page 91.).

Notes: 1. MAX = 0xFF,

2. BOTTOM = 0x00.

10.11.2 TCCR0B – Timer/Counter0 Control Register B

• Bit 7 – FOC0A: Force Output Compare A
The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC0A output is
changed according to its COM0A[1:0] bits setting. Note that the FOC0A bit is implemented as a
strobe. Therefore it is the value present in the COM0A[1:0] bits that determines the effect of the
forced compare.

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bits 6:3 – Res: Reserved Bits
These bits are reserved in the ATtiny87/167 and will always read as zero.

• Bits 2:0 – CS0[2:0]: Clock Select

Table 10-4. Waveform Generation Mode Bit Description

Mode
WGM01
(CTC0)

WGM00
(PWM0)

Timer/Counter
Mode of Operation TOP

Update of
OCR0A at

TOV0 Flag
Set on(1)(2)

0 0 0 Normal 0xFF Immediate MAX

1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM

2 1 0 CTC OCR0A Immediate MAX

3 1 1 Fast PWM 0xFF TOP MAX

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) FOC0A – – – – CS02 CS01 CS00 TCCR0B

Read/Write W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
101
8265D–AVR–01/2014

ATtiny87/167
Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location
before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 111.

12.6.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICP1). Only
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the T1 pin (Figure 11-1 on page 106). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

12.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

12.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICF1 flag is not required (if an interrupt handler is used).
117
8265D–AVR–01/2014

The interconnection between Master and Slave CPUs with SPI is shown in Figure 13-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
transmission flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of transmission
flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is
requested. The Slave may continue to place new data to be sent into SPDR before reading the
incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 13-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed fclkio/4.

SHIFT
ENABLE
140
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
• Bit 1 – USICLK: Clock Strobe
Writing a one to this bit location strobes the USI Data Register to shift one step and the counter
to increment by one, provided that the USICS[1:0] bits are set to zero and by doing so the soft-
ware clock strobe option is selected. The output will change immediately when the clock strobe
is executed, i.e., in the same instruction cycle. The value shifted into the USI Data Register is
sampled the previous instruction cycle. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1), the USICLK function is changed from
a clock strobe to a Clock Select Register. Setting the USICLK bit in this case will select the
USITC strobe bit as clock source for the 4-bit counter (see Table 14-2).

• Bit 0 – USITC: Toggle Clock Port Pin
Writing a one to this bit location toggles the USCK/SCL value either from 0 to 1, or from 1 to 0.
The toggling is independent of the setting in the Data Direction Register, but if the PORT value is
to be shown on the pin the DDB2 must be set as output (to one). This feature allows easy clock
generation when implementing master devices. The bit will be read as zero.

When an external clock source is selected (USICS1 = 1) and the USICLK bit is set to one, writ-
ing to the USITC strobe bit will directly clock the 4-bit counter. This allows an early detection of
when the transfer is done when operating as a master device.

Table 14-2. Relations between the USICS[1:0] and USICLK Setting

USICS1 USICS0 USICLK
USI Data Register Clock
Source 4-bit Counter Clock Source

0 0 0 No Clock No Clock

0 0 1
Software clock strobe
(USICLK)

Software clock strobe
(USICLK)

0 1 X
Timer/Counter0 Compare
Match

Timer/Counter0 Compare
Match

1 0 0 External, positive edge External, both edges

1 1 0 External, negative edge External, both edges

1 0 1 External, positive edge Software clock strobe (USITC)

1 1 1 External, negative edge Software clock strobe (USITC)
159
8265D–AVR–01/2014

15.4.5 Enable / Disable
Setting the LENA bit in LINCR register enables the LIN/UART controller. To disable the
LIN/UART controller, LENA bit must be written to 0. No wait states are implemented, so, the dis-
able command is taken into account immediately.

15.4.6 LIN Commands
Clearing the LCMD[2] bit in LINCR register enables LIN commands.

As shown in Table 15-1 on page 166, four functions controlled by the LCMD[1:0] bits of LINCR
register are available (c.f. Figure 15-5 on page 165).

15.4.6.1 Rx Header / LIN Abort Function
This function (or state) is mainly the withdrawal mode of the controller.

When the controller has to execute a master task, this state is the start point before enabling a
Tx Header command.

When the controller has only to execute slave tasks, LIN header detection/acquisition is enabled
as background function. At the end of such an acquisition (Rx Header function), automatically
the appropriate flags are set, and in LIN 1.3, the LINDLR register is set with the uncoded length
value.

This state is also the start point before enabling the Tx or the Rx Response command.

A running function (i.e. Tx Header, Tx or Rx Response) can be aborted by clearing LCMD[1:0]
bits in LINCR register (See ”Break-in-data” on page 176.). In this case, an abort flag - LABORT -
in LINERR register will be set to inform the other software tasks. No wait states are imple-
mented, so, the abort command is taken into account immediately.

Rx Header function is responsible for:

• The BREAK field detection,

• The hardware re-synchronization analyzing the SYNCH field,

• The reception of the PROTECTED IDENTIFIER field, the parity control and the update of the
LINDLR register in case of LIN 1.3,

• The starting of the Frame_Time_Out,

• The checking of the LIN communication integrity.

Table 15-1. LIN/UART Command List

LENA LCMD[2] LCMD[1] LCMD[0] Command Comment

0 x x x Disable peripheral

1

0

0
0 Rx Header - LIN Abort LIN Withdrawal

1 Tx Header LCMD[2:0]=000 after Tx

1
0 Rx Response LCMD[2:0]=000 after Rx

1 Tx Response LCMD[2:0]=000 after Tx

1

0 0 Byte transfer
no CRC, no Time out

LTXDL=LRXDL=0
(LINDLR: read only register)

1 0 Rx Byte

0 1 Tx Byte

1 1 Full duplex
166
8265D–AVR–01/2014

ATtiny87/167

• Bit 3 – LAINC: Auto Increment of Data Buffer Index
In LIN mode:

– 0 = Auto incrementation of FIFO data buffer index (default),

– 1 = No auto incrementation.

In UART mode this field is unused.

• Bits 2:0 – LINDX[2:0]: FIFO LIN Data Buffer Index
In LIN mode: location (index) of the LIN response data byte into the FIFO data buffer. The

FIFO data buffer is accessed through LINDAT.

In UART mode this field is unused.

15.6.10 LINDAT – LIN Data Register

• Bits 7:0 – LDATA[7:0]: LIN Data In / Data out
In LIN mode: FIFO data buffer port.

In UART mode: data register (no data buffer - no FIFO).

– In Write access, data out.

– In Read access, data in.

Bit 7 6 5 4 3 2 1 0

(0xD2) LDATA7 LDATA6 LDATA5 LDATA4 LDATA3 LDATA2 LDATA1 LDATA0 LINDAT

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
186
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
Figure 17-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Figure 17-5. ADC Timing Diagram, Single Conversion

Figure 17-6. ADC Timing Diagram, Auto Triggered Conversion

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

Sample & Hold

ADIF

ADCH

ADCL

Cycle Number

ADEN

1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 1 2

First Conversion
Next
Conversion

3

MUX and REFS
Update

MUX
and REFS

Update
Conversion

Complete

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

ADSC

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

3

Sample & Hold
MUX and REFS
Update

Conversion
Complete

MUX and REFS
Update

1 2 3 4 5 6 7 8 9 10 11 12 13

Sign and MSB of Result

LSB of Result

ADC Clock

Trigger
Source

ADIF

ADCH

ADCL

Cycle Number 1 2

One Conversion Next Conversion

Conversion
CompletePrescaler

Reset

ADATE

Prescaler
Reset

Sample &
Hold

MUX and REFS
Update
195
8265D–AVR–01/2014

ATtiny87/167
18.1.2 Analog Compare Negative Input
It is possible to select an internal voltage reference to replace the negative input to the Analog
Comparator. The output of a 2-bit DAC using the Internal Voltage Reference of the DAC is avail-
able when ACIRS bit of ACSR register is set. The voltage reference division factor is done by
ACIR[1:0] of ADCSRB register.
If ACIRS is cleared, AIN0 pin is applied to the negative input to the Analog Comparator.

Table 18-1. Analog Comparator Positive Input

ACME ADEN MUX[4:0] Analog Comparator Positive Input - Comment

0 x x xxxx b AIN1
ADC Switched On

x 1 x xxxx b AIN1

1 0 0 0000 b ADC0

ADC Switched Off.

1 0 0 0001 b ADC1

1 0 0 0010 b ADC2

1 0 0 0011 b ADC3 / ISRC

1 0 0 0100 b ADC4

1 0 0 0101 b ADC5

1 0 0 0110 b ADC6

1 0 0 0111 b ADC7

1 0 0 1000 b ADC8

1 0 0 1001 b ADC9

1 0 0 1010 b ADC10

1 0 Other This doesn’t make sense - Don’t use.

Table 18-2. Analog Comparator Negative Input

ACIRS ACIR[1:0] REFS[1:0] Analog Comparator Negative Input - Comment

0 x x AIN0

1 x
0 0 b

0 1 b

1 0 b

Reserved

1 0 0 b 1 1 b 2.56 V - using Internal 2.56V Voltage Reference

1 0 1 b 1 1 b 1.28 V (1/2 of 2.56 V) - using Internal 2.56V Voltage Reference

1 1 0 b 1 1 b 0.64 V (1/4 of 2.56 V - using Internal 2.56V Voltage Reference

1 1 1 b 1 1 b 0.32 V (1/8 of 2.56 V) - using Internal 2.56V Voltage Reference
211
8265D–AVR–01/2014

ATtiny87/167
Notes: 1. tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits
commands.

2. tWLRH_CE is valid for the Chip Erase command.

Table 22-11. Parallel Programming Characteristics, VCC = 5V ± 10%

Symbol Parameter Min Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 µA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 µs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns
251
8265D–AVR–01/2014

ATtiny87/167
Figure 23-2. Active Supply Current vs. Frequency (1 - 16 MHz)

Figure 23-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

I C
C

(m
A

)

Frequency (MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY
PRR=0xFF / ATD ON

5.5 V

5.0 V

4.5 V

3.3 V

2.7 V

1.8 V

ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR 8MHz (No ATD influence)

85 °C
25 °C

-40 °C

0

1

2

3

4

5

6

7

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

255
8265D–AVR–01/2014

; Select watchdog clock (128KHz, fast rising power)

ldi temp3,((0x03<<CSEL0)|(0x02<<CSUT0))

sts CLKSELR, temp3 ; (*)

; (*) !!! Loose gain control of crystal oscillator !!!

; ==> WORKAROUND ...

sts CLKSELR, temp1

; ...

3. ‘Disable Clock Source’ command remains enabled.
In the Dynamic Clock Switch module, the ‘Disable Clock Source’ command remains running
after disabling the targeted clock source (the clock source is set in the CLKSELR register).

Problem fix / workaround.
After a ‘Disable Clock Source’ command, reset the CLKCSR register writing 0x80.

Code example:
; Select crystal oscillator

ldi temp1,(0x0F<<CSEL0)

sts CLKSELR, temp1

; Disable clock source (crystal oscillator)

ldi temp2,(1<<CLKCCE)

ldi temp3,(0x01<<CLKC0) ; CSEL = "0001"

sts CLKCSR,temp2 ; Enable CLKCSR register access

sts CLKCSR,temp3 ; (*) Disable crystal oscillator clock

; (*) !!! At this moment, if any other clock source is selected by CLKSELR,
; this clock source will also stop !!!

; ==> WORKAROUND ...

sts CLKCSR,temp2
282
8265D–AVR–01/2014

ATtiny87/167

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2014 Atmel Corporation. / Rev.: 8265D-AVR-01/2014.

Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

https://plus.google.com/117391618085377601886/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com
www.atmel.com

