
Microchip Technology - ATTINY167-XU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, LINbus, SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 16

Program Memory Size 16KB (8K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 20-TSSOP (0.173", 4.40mm Width)

Supplier Device Package 20-TSSOP

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/attiny167-xu

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/attiny167-xu-4379084
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

– ‘Enable Watchdog in Automatic Reload Mode’.

• Command status return. The ‘Request Clock Availability ’ command returns status via the
CLKRDY bit in the CLKCSR register. The ‘Recover System Clock Source ’ command returns
a code of the current clock source in the CLKSELR register. This information is used in the
supervisory software routines as shown in Section 4.3.7 on page 33.

4.3.2 CLKSELR Register

4.3.2.1 Fuses Substitution
At reset, bits of the Low Fuse Byte are copied into the CLKSELR register. The content of this
register can subsequently be user modified to overwrite the default values from the Low Fuse
Byte. CKSEL[3:0], SUT[1:0] and CKOUT fuses correspond respectively to CSEL[3:0],
CSUT[1:0] and ~(COUT) bits of the CLKSELR register as shown in Figure 4-5 on page 32.

4.3.2.2 Source Selection
The available codes of clock source are given in Table 4-1 on page 25.

Figure 4-5. Fuses substitution and Clock Source Selection

The CLKSELR register contains the CSEL, CSUT and COUT values which will be used by the
‘Enable/Disable Clock Source’, ‘Request for Clock Availability’ or ‘Clock Source Switching’
commands.

4.3.2.3 Source Recovering
The ‘Recover System Clock Source’ command updates the CKSEL field of CLKSELR register
(See “System Clock Source Recovering” on page 33.).

4.3.3 Enable/Disable Clock Source
The ‘Enable Clock Source’ command selects and enables a clock source configured by the set-
tings in the CLKSELR register. CSEL[3:0] will select the clock source and CSUT[1:0] will select
the start-up time (just as CKSEL and SUT fuse bits do). To be sure that a clock source is operat-
ing, the ‘Request for Clock Availability ’ command must be executed after the ‘Enable Clock
Source’ command. This will indicate via the CLKRDY bit in the CLKCSR register that a valid
clock source is available and operational.

C
LK

S
E

L[
3.

.0
]

S
U

T[
1.

.0
]

C
K

O
U

T

Register:
CLKSELR

Fuse:
Fuse Low Byte

C
S

E
L[

3.
.0

]
C

S
U

T[
1.

.0
]

C
O

U
T

D
ef

au
lt

R
/W

 R
eg

.

SE
L

D
ec

od
er SEL-1

SEL-0

SEL-2

SEL-n

CKSEL[3..0]

SUT[1..0]
SE

L
En

co
de

r

EN-1

EN-0

EN-2

EN-n

CKOUT

Reset

SCLKRq
(*)

SCLKRq
(*)

: Command of Clock Control & Status Register

In
te

rn
al

�
D

at
a

B
us

Selected
Configuration

Clock
Switch
Current

Configuration
32
8265D–AVR–01/2014

ATtiny87/167

range. Incrementing CAL[6:0] by 1 will give a frequency increment of less than 2% in the fre-
quency range 7.3 - 8.1 MHz.

4.5.2 CLKPR – Clock Prescaler Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when the CLKPS bits are written. Rewriting
the CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE bit.

• Bits 6:4 – Res: Reserved Bits
These bits are reserved bits in the ATtiny87/167 and will always read as zero.

• Bits 3:0 – CLKPS[3:0]: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 4-10.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting in order not to disturb the
procedure.

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of eight at start up. This feature should be used if the selected
clock source has a higher frequency than the maximum frequency of the device at the present
operating conditions. Note that any value can be written to the CLKPS bits regardless of the
CKDIV8 Fuse setting. The Application software must ensure that a sufficient division factor is
chosen if the selected clock source has a higher frequency than the maximum frequency of the
device at the present operating conditions. The device is shipped with the CKDIV8 Fuse
programmed.

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
38
8265D–AVR–01/2014

ATtiny87/167

the clock frequency and, of course, if the clock is alive. The user’s code has to differentiate
between ‘no_clock_signal’ and ‘clock_signal_not_yet_available’ condition.

• Bits 3:0 – CLKC[3:0]: Clock Control Bits 3 - 0
These bits define the command to provide to the ‘Clock Switch’ module. The special write proce-
dure must be followed to change the CLKC[3:0] bits (See ”Bit 7 – CLKCCE: Clock Control
Change Enable” on page 39.).

1. Write the Clock Control Change Enable (CLKCCE) bit to one and all other bits in
CLKCSR to zero.

2. Within 4 cycles, write the desired value to CLKCSR register while clearing CLKCCE bit.

Interrupts should be disabled when setting CLKCSR register in order not to disturb the
procedure.

4.5.4 CLKSELR – Clock Selection Register

• Bit 7 – Res: Reserved Bit
This bit is a reserved bit in the ATtiny87/167 and will always read as zero.

• Bit 6 – COUT: Clock Out
The COUT bit is initialized with ~(CKOUT) Fuse bit.
The COUT bit is only used in case of ‘CKOUT’ command. Refer to Section 4.2.7 “Clock Output
Buffer” on page 31 for using.
In case of ‘Recover System Clock Source’ command, COUT it is not affected (no recovering of
this setting).

• Bits 5:4 – CSUT[1:0]: Clock Start-up Time

Table 4-11. Clock command list.

Clock Command CLKC[3:0]

No command 0000 b

Disable clock source 0001 b

Enable clock source 0010 b

Request for clock availability 0011 b

Clock source switch 0100 b

Recover system clock source code 0101 b

Enable watchdog in automatic reload mode 0110 b

CKOUT command 0111 b

No command 1xxx b

Bit 7 6 5 4 3 2 1 0

(0x63) – COUT CSUT1 CSUT0 CSEL3 CSEL2 CSEL1 CSEL0 CLKSELR

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 ~ (CKOUT)
fuse

SUT[1:0]
fuses

CKSEL[3:0]
fuses
40
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
7. Interrupts
This section describes the specifics of the interrupt handling as performed in ATtiny87/167. For
a general explanation of the AVR interrupt handling, refer to “Reset and Interrupt Handling” on
page 12.

7.1 Interrupt Vectors in ATtiny87/167

Table 7-1. Reset and Interrupt Vectors in ATtiny87/167

Vector
Nb.

Program Address

Source Interrupt DefinitionATtiny87 ATtiny167

1 0x0000 0x0000 RESET
External Pin, Power-on Reset, Brown-out Reset and
Watchdog System Reset

2 0x0001 0x0002 INT0 External Interrupt Request 0

3 0x0002 0x0004 INT1 External Interrupt Request 1

4 0x0003 0x0006 PCINT0 Pin Change Interrupt Request 0

5 0x0004 0x0008 PCINT1 Pin Change Interrupt Request 1

6 0x0005 0x000A WDT Watchdog Time-out Interrupt

7 0x0006 0x000C TIMER1 CAPT Timer/Counter1 Capture Event

8 0x0007 0x000E TIMER1 COMPA Timer/Counter1 Compare Match A

9 0x0008 0x0010 TIMER1 COMPB Timer/Coutner1 Compare Match B

10 0x0009 0x0012 TIMER1 OVF Timer/Counter1 Overflow

11 0x000A 0x0014 TIMER0 COMPA Timer/Counter0 Compare Match A

12 0x000B 0x0016 TIMER0 OVF Timer/Counter0 Overflow

13 0x000C 0x0018 LIN TC LIN/UART Transfer Complete

14 0x000D 0x001A LIN ERR LIN/UART Error

15 0x000E 0x001C SPI, STC SPI Serial Transfer Complete

16 0x000F 0x001E ADC ADC Conversion Complete

17 0x0010 0x0020 EE READY EEPROM Ready

18 0x0011 0x0022 ANALOG COMP Analog Comparator

19 0x0012 0x0024 USI START USI Start Condition Detection

20 0x0013 0x0026 USI OVF USI Counter Overflow
59
8265D–AVR–01/2014

8. External Interrupts

8.1 Overview
The External Interrupts are triggered by the INT0 or INT1 pin or any of the PCINT[15:0] pins.
Observe that, if enabled, the interrupts will trigger even if the INT0, INT1 or PCINT[15:0] pins are
configured as outputs. This feature provides a way of generating a software interrupt.

The pin change interrupt PCINT1 will trigger if any enabled PCINT[15:8] pin toggles. The pin
change interrupt PCINT0 will trigger if any enabled PCINT[7:0] pin toggles. The PCMSK1 and
PCMSK0 Registers control which pins contribute to the pin change interrupts. Pin change inter-
rupts on PCINT[15:0] are detected asynchronously. This implies that these interrupts can be
used for waking the part also from sleep modes other than Idle mode.

The INT0 or INT1 interrupt can be triggered by a falling or rising edge or a low level. This is set
up as indicated in the specification for the External Interrupt Control Register A – EICRA. When
the INT0 or INT1 interrupt is enabled and is configured as level triggered, the interrupt will trigger
as long as the pin is held low. The recognition of falling or rising edge interrupts on INT0 or INT1
requires the presence of an I/O clock, described in “Clock Systems and their Distribution” on
page 24. Low level interrupts and the edge interrupt on INT0 or INT1 are detected asynchro-
nously. This implies that these interrupts can be used for waking the part also from sleep modes
other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note that if a level triggered interrupt is used for wake-up from Power-down or Power-save, the
required level must be held long enough for the MCU to complete the wake-up to trigger the
level interrupt. If the level disappears before the end of the Start-up Time, the MCU will still wake
up, but no interrupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses
as described in “Clock Systems and their Distribution” on page 24.

8.2 Pin Change Interrupt Timing
An example of timing of a pin change interrupt is shown in Figure 8-1.

Figure 8-1. Timing of pin change interrupts

LE

D Q D Q

clk

pin_lat pin_sync pcint_in[i]PCINT[i]�
pin

PCINT[i] bit�
(of PCMSKn)

D Q D Q D Q

clk

pcint_sync pcint_set/flag
0

7

PCIFn�
 (interrupt flag)

PCINT[i] pin

pin_lat

pin_sync

clk

pcint_in[i]

pcint_syn

pcint_set/flag

PCIFn
62
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
Figure 9-5. Synchronization when Reading a Software Assigned Pin Value

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

Note: 1. For the assembly program, two temporary registers are used to minimize the time from
pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and
3 as low and redefining bits 0 and 1 as strong high drivers.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...

out PORTx, r16 nop in r17, PINx

0xFF

0x00 0xFF

SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17

t pd
71
8265D–AVR–01/2014

ATtiny87/167
Figure 9-6. Alternate Port Functions(1)

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

clk

RPx

RRx
WRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER

RPx: READ PORTx PIN

PUD: PULLUP DISABLE

clkI/O: I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

SET

CLR

0

1

0

1

0

1

DIxn

AIOxn

DIEOExn

PVOVxn

PVOExn

DDOVxn

DDOExn

PUOExn

PUOVxn

PUOExn: Pxn PULL-UP OVERRIDE ENABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE

DIxn: DIGITAL INPUT PIN n ON PORTx
AIOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

RESET

RESET

Q

Q D

CLR

Q

Q D

CLR

Q

QD

CLR

PINxn

PORTxn

DDxn

D
AT

A
B

U
S

0

1
DIEOVxn

SLEEP

DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE

SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

WPx

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx
73
8265D–AVR–01/2014

ATtiny87/167
Table 9-4 and Table 9-5 relate the alternate functions of Port A to the overriding signals shown
in Figure 9-6 on page 73.

Table 9-4. Overriding Signals for Alternate Functions in PA[7:4]

Signal
Name

PA7/PCINT7/
ADC7/AIN1/
XREF/AREF

PA6/PCINT6/
ADC6/AIN0/SS

PA5/PCINT5/
ADC5/T1/USCK/

SCL/SCK

PA4/PCINT4/
ADC4/ICP1/DI/

SDA/MOSI

PUOE 0 SPE & MSTR SPE & MSTR SPE & MSTR

PUOV 0 PORTA6 & PUD PORTA5 & PUD PORTA4 & PUD

DDOE 0 SPE & MSTR
(SPE & MSTR) |

(USI_2_WIRE & USIPOS)

(SPE & MSTR) |
(USI_2_WIRE &

USIPOS)

DDOV 0 0
(USI_SCL_HOLD |

PORTA5)
& DDRA6

{ (SPE & MSTR) ?
(0) :

(USI_SHIFTOUT |
PORTA4)

& DDRA4) }

PVOE 0 0
(SPE & MSTR) |

(USI_2_WIRE & USIPOS
& DDRA5)

(SPE & MSTR) |
(USI_2_WIRE & USIPOS

& DDRA4)

PVOV 0 0

{ (SPE & MSTR) ?
(SCK_OUTPUT) :
~ (USI_2_WIRE &

USIPOS
& DDRA5) }

{ (SPE & MSTR) ?
(MOSI_OUTPUT) :
~ (USI_2_WIRE &

USIPOS
& DDRA4) }

PTOE 0 0 USI_PTOE & USIPOS 0

DIEOE
ADC7D |
(PCIE0 &

PCMSK07)

ADC6D |
(PCIE0 &

PCMSK06)

ADC5D |
(USISIE & USIPOS) |
(PCIE0 & PCMSK05)

ADC4D |
(USISIE & USIPOS) |
(PCIE0 & PCMSK04)

DIEOV
PCIE0 &

PCMSK07
PCIE0 &

PCMSK06
(USISIE & USIPOS) |
(PCIE0 & PCMSK05)

(USISIE & USIPOS) |
(PCIE0 & PCMSK04)

DI PCINT7 PCINT6 -/- SS
PCINT5 -/- T1

-/- USCK -/- SCL -/- SCK
PCINT4 -/- ICP1

-/- DI -/- SDA -/- MOSI

AIO
ADC7 -/- AIN1 -/-
XREF -/- AREF

ADC6 -/- AIN0 ADC5 ADC4
79
8265D–AVR–01/2014

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0A pin.
Setting the COM0A[1:0] bits to two will produce a non-inverted PWM and an inverted PWM out-
put can be generated by setting the COM0A[1:0] to three (See Table 10-2 on page 100). The
actual OC0A value will only be visible on the port pin if the data direction for the port pin is set as
output. The PWM waveform is generated by setting (or clearing) the OC0A Register at the com-
pare match between OCR0A and TCNT0, and clearing (or setting) the OC0A Register at the
timer clock cycle the counter is cleared (changes from MAX to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM0A[1:0]
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC0A to toggle its logical level on each compare match (COM0A[1:0] = 1). The waveform
generated will have a maximum frequency of foc0A = fclk_I/O/2 when OCR0A is set to zero. This
feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

10.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM0[1:0] = 1) provides a high resolution phase correct PWM
waveform generation option. The phase correct PWM mode is based on a dual-slope operation.
The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In
non-inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare
match between TCNT0 and OCR0A while upcounting, and set on the compare match while
downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope
operation has lower maximum operation frequency than single slope operation. However, due to
the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor con-
trol applications.

The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct
PWM mode the counter is incremented until the counter value matches MAX. When the counter
reaches MAX, it changes the count direction. The TCNT0 value will be equal to MAX for one
timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 10-7.
The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT0 slopes represent compare matches between OCR0A and TCNT0.

fOCnxPWM

fclk_I/O

N 256
------------------=
94
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkTn).

The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Coun-
ter value at all time. The result of the compare can be used by the Waveform Generator to
generate a PWM or variable frequency output on the Output Compare pins See ”Output Com-
pare Units” on page 118.. The compare match event will also set the Compare Match Flag
(OCF1A/B) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See
”AnaComp - Analog Comparator” on page 210.). The Input Capture unit includes a digital filter-
ing unit (Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using
OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used
as an alternative, freeing the OCR1A to be used as PWM output.

12.2.2 Definitions
The following definitions are used extensively throughout the section:

12.3 Accessing 16-bit Registers
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via
the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations.
Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit
access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B
16-bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65,535).

TOP The counter reaches the TOP when it becomes equal to the highest value in
the count sequence. The TOP value can be assigned to be one of the fixed val-
ues: 0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCR1A or ICR1
Register. The assignment is dependent of the mode of operation.
111
8265D–AVR–01/2014

ATtiny87/167
Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1A/B pins.
Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM1A/B[1:0] to three (see Table 12-2 on page 132). The
actual OC1A/B value will only be visible on the port pin if the data direction for the port pin is set
as output (DDR_OC1A/B) and OC1A/Bi is set. The PWM waveform is generated by setting (or
clearing) the OC1A/B Register at the compare match between OCR1A/B and TCNT1, and clear-
ing (or setting) the OC1A/B Register at the timer clock cycle the counter is cleared (changes
from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1A/B Register represents special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR1A/B is set equal to BOTTOM
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the
OCR1A/B equal to TOP will result in a constant high or low output (depending on the polarity of
the output set by the COM1A/B[1:0] bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC1A to toggle its logical level on each compare match (COM1A[1:0] = 1). The waveform
generated will have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero
(0x0000). This feature is similar to the OC1A toggle in CTC mode, except the double buffer fea-
ture of the Output Compare unit is enabled in the fast PWM mode.

12.9.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM1[3:0] = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a
dual-slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then
from TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1A/B)
is cleared on the compare match between TCNT1 and OCR1A/B while upcounting, and set on
the compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope
operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or defined
by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to
0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolu-
tion in bits can be calculated by using the following equation:

fOCnxPWM

fclk_I/O

N 1 TOP+
-----------------------------------=

RPCPWM
TOP 1+ log

2 log
-----------------------------------=
125
8265D–AVR–01/2014

The interconnection between Master and Slave CPUs with SPI is shown in Figure 13-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out – Slave In, MOSI, line, and from Slave to Master on the Master In
– Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
transmission flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of transmission
flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is
requested. The Slave may continue to place new data to be sent into SPDR before reading the
incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 13-2. SPI Master-slave Interconnection

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the frequency of the SPI clock should never exceed fclkio/4.

SHIFT
ENABLE
140
8265D–AVR–01/2014

ATtiny87/167

13.2 SS Pin Functionality

13.2.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS)pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

13.2.2 Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG
is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

13.2.3 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and if the
Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
144
8265D–AVR–01/2014

ATtiny87/167

14.5.5 USIPP – USI Pin Position

• Bits 7:1 – Res: Reserved Bits
These bits are reserved bits in the ATtiny87/167 and always reads as zero.

• Bit 0 – USIPOS: USI Pin Position
Setting or clearing this bit changes the USI pin position.

Bit 7 6 5 4 3 2 1 0

(0xBC) – – – – – – – USIPOS USIPP

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-3. USI Pin Position

USIPOS USI Pin Position

0
PortB

(Default)

DI, SDA PB0 - (PCINT8/OC1AU)

DO PB1 - (PCINT9/OC1BU)

USCK, SCL PB2 - (PCINT10/OC1AV)

1
Port A

(Alternate)

DI, SDA PA4 - (PCINT4/ADC4/ICP1/MOSI)

DO PA2 - (PCINT2/ADC2/OC0A/MISO)

USCK, SCL PA5 - (PCINT5/ADC5/T1/SCK)
160
8265D–AVR–01/2014

ATtiny87/167

15.3 LIN Protocol

15.3.1 Master and Slave
A LIN cluster consists of one master task and several slave tasks. A master node contains the
master task as well as a slave task. All other nodes contain a slave task only.

Figure 15-1. LIN cluster with one master node and “n” slave nodes

The master task decides when and which frame shall be transferred on the bus. The slave tasks
provide the data transported by each frame. Both the master task and the slave task are parts of
the Frame handler

15.3.2 Frames
A frame consists of a header (provided by the master task) and a response (provided by a slave
task).

The header consists of a BREAK and SYNC pattern followed by a PROTECTED IDENTIFIER.
The identifier uniquely defines the purpose of the frame. The slave task appointed for providing
the response associated with the identifier transmits it. The response consists of a DATA field
and a CHECKSUM field.

Figure 15-2. Master and slave tasks behavior in LIN frame

The slave tasks waiting for the data associated with the identifier receives the response and
uses the data transported after verifying the checksum.

Figure 15-3. Structure of a LIN frame

master task

slave task

master node

slave task

slave node
1

slave task

slave node
n

LIN bus

Master Task

Slave Task 1

Slave Task 2

HEADER

RESPONSE

HEADER

RESPONSE

BREAK
Field

SYNC
Field

CHECKSUM
Field

DATA-0
FieldField

IDENTIFIER
PROTECTED

DATA-n
Field

Break Delimiter Response Space Inter-Byte Space Inter-Frame Space

RESPONSEHEADER

FRAME SLOT

Each byte field is transmitted as a serial byte, LSB first.
162
8265D–AVR–01/2014

ATtiny87/167

17.11.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.

• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a con-
version on a positive edge of the selected trigger signal. The trigger source is selected by setting
the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the data registers are updated. The ADC
Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
ADIF is cleared by writing a logical one to the flag. Beware that if doing a Read-Modify-Write on
ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions
are used.

• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.

• Bits 2:0 – ADPS[2:0]: ADC Prescaler Select Bits
These bits determine the division factor between the system clock frequency and the input clock
to the ADC.

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-6. ADC Prescaler Selections

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8
206
8265D–AVR–01/2014

ATtiny87/167

Similarly, when reading the Extended Fuse byte (EFB), load 0x0002 in the Z-pointer. When an
LPM instruction is executed within three cycles after the RFLB and SPMEN bits are set in the
SPMCSR, the value of the Extended Fuse byte will be loaded in the destination register as
shown below. See Table 21-3 on page 225 for detailed description and mapping of the Extended
Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

20.2.4 Reading the Signature Row from Software
To read the Signature Row from software, load the Z-pointer with the signature byte address
given in Table 20-1 on page 220 and set the SIGRD and SPMEN bits in SPMCSR. When an
LPM instruction is executed within three CPU cycles after the SIGRD and SPMEN bits are set in
SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD and
SPMEN bits will auto-clear upon completion of reading the Signature Row Lock bits or if no LPM
instruction is executed within three CPU cycles. When SIGRD and SPMEN are cleared, LPM will
work as described in the Instruction set Manual.

Note: All other addresses are reserved for future use.

Bit 7 6 5 4 3 2 1 0

Rd (Z=0x0002) – – – – – – – EFB0

Table 20-1. Signature Row Addressing

Signature Byte Z-Pointer Address

Device Signature Byte 0 0x0000

Device Signature Byte 1 0x0002

Device Signature Byte 2 0x0004

8MHz RC Oscillator Calibration Byte 0x0001

TSOFFSET - Temp Sensor Offset 0x0003

TSGAIN - Temp Sensor Gain 0x0005
220
8265D–AVR–01/2014

ATtiny87/167

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high periods
for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz

21.8.1 Serial Programming Algorithm
When writing serial data to the ATtiny87/167, data is clocked on the rising edge of SCK.

When reading data from the ATtiny87/167, data is clocked on the falling edge of SCK. See Fig-
ure 21-7 and Figure 21-8 for timing details.

To program and verify the ATtiny87/167 in the Serial Programming mode, the following
sequence is recommended (see four byte instruction formats in Table 21-15 on page 239):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some sys-
tems, the programmer can not guarantee that SCK is held low during power-up. In this
case, RESET must be given a positive pulse of at least two CPU clock cycles duration
after SCK has been set to “0”.

2. Wait for at least 20 ms and enable serial programming by sending the Programming
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the
third byte of the Programming Enable instruction. Whether the echo is correct or not, all
four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give
RESET a positive pulse and issue a new Programming Enable command.

4. The Flash is programmed one page at a time. The memory page is loaded one byte at
a time by supplying the 5 LSB of the address and data together with the Load Program
memory Page instruction. To ensure correct loading of the page, the data low byte must
be loaded before data high byte is applied for a given address. The Program memory
Page is stored by loading the Write Program memory Page instruction with the 6 MSB
of the address. If polling (RDY/BSY) is not used, the user must wait at least t WD_FLASH
before issuing the next page. (See Table 21-14) Accessing the serial programming
interface before the Flash write operation completes can result in incorrect
programming.

5. A: The EEPROM array is programmed one byte at a time by supplying the address and
data together with the appropriate Write instruction. An EEPROM memory location is
first automatically erased before new data is written. If polling (RDY/BSY) is not used,
the user must wait at least t WD_EEPROM before issuing the next byte. (See Table 21-14)
In a chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is loaded
one byte at a time by supplying the 2 LSB of the address and data together with the
Load EEPROM Memory Page instruction. The EEPROM Memory Page is stored by
loading the Write EEPROM Memory Page Instruction with the 6 MSB of the address.
When using EEPROM page access only byte locations loaded with the Load EEPROM
Memory Page instruction is altered. The remaining locations remain unchanged. If poll-
ing (RDY/BSY) is not used, the used must wait at least t WD_EEPROM before issuing the
next page (See Table 21-8). In a chip erased device, no 0xFF in the data file(s) need to
be programmed.

6. Any memory location can be verified by using the Read instruction which returns the
content at the selected address at serial output MISO.
238
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
Figure 23-2. Active Supply Current vs. Frequency (1 - 16 MHz)

Figure 23-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

I C
C

(m
A

)

Frequency (MHz)

ACTIVE SUPPLY CURRENT vs. FREQUENCY
PRR=0xFF / ATD ON

5.5 V

5.0 V

4.5 V

3.3 V

2.7 V

1.8 V

ACTIVE SUPPLY CURRENT vs. VCC
INTERNAL RC OSCILLATOR 8MHz (No ATD influence)

85 °C
25 °C

-40 °C

0

1

2

3

4

5

6

7

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (m

A
)

255
8265D–AVR–01/2014

XX X XX X
Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2014 Atmel Corporation. / Rev.: 8265D-AVR-01/2014.

Atmel®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right
is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE
ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT
SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information
contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended,
authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where
the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without an Atmel officer's specific written
consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems.
Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are
not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.

https://plus.google.com/117391618085377601886/posts
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
http://www.youtube.com/user/AtmelCorporation
https://www.facebook.com/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
www.atmel.com
www.atmel.com

