
Microchip Technology - ATTINY87-SUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 8-Bit

Speed 16MHz

Connectivity I²C, LINbus, SPI, UART/USART, USI

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 16

Program Memory Size 8KB (4K x 16)

Program Memory Type FLASH

EEPROM Size 512 x 8

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 5.5V

Data Converters A/D 11x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 20-SOIC (0.295", 7.50mm Width)

Supplier Device Package 20-SOIC

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/attiny87-sur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/attiny87-sur-4389846
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2.4 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 2-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 2-2. AVR CPU General Purpose Working Registers

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 2-2, each register is also assigned a Data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

2.4.1 The X-register, Y-register, and Z-register
The registers R26:R31 have some added functions to their general purpose usage. These regis-
ters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 2-3 on page 11.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
10
8265D–AVR–01/2014

ATtiny87/167

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

3.3.6 Preventing EEPROM Corruption
During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This
can be done by enabling the internal Brown-out Detector (BOD). If the detection level of the
internal BOD does not match the needed detection level, an external low VCC reset protec-
tion circuit can be used. If a reset occurs while a write operation is in progress, the write
operation will be completed provided that the power supply voltage is sufficient.

Assembly Code Example

EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out EEARH, r18

out EEARL, r17

; Start eeprom read by writing EERE

sbi EECR,EERE

; Read data from data register

in r16,EEDR

ret

C Code Example

unsigned char EEPROM_read(unsigned char ucAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address register */

EEAR = ucAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from data register */

return EEDR;

}

20
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
Notes: 1. Flash Fuse bits.

2. CLKSELR register bits.

3. Additional delay (+ 4ms) available if RSTDISBL fuse is set.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler” on page
37 for details.

4.2.7 Clock Output Buffer
If not using a crystal oscillator, the device can output the system clock on the CLKO pin. To
enable the output, the CKOUT Fuse or COUT bit of CLKSELR register has to be programmed.
This option is useful when the device clock is needed to drive other circuits on the system. Note
that the clock will not be output during reset and the normal operation of I/O pin will be overrid-
den when the fuses are programmed. If the System Clock Prescaler is used, it is the divided
system clock that is output.

4.3 Dynamic Clock Switch

4.3.1 Features
The ATtiny87/167 provides a powerful dynamic clock switch circuit that allows users to turn on
and off clocks of the device on the fly. The built-in de-glitching circuitry allows clocks to be
enabled or disabled asynchronously. This enables efficient power management schemes to be
implemented easily and quickly. In a safety application, the dynamic clock switch circuit allows
continuous monitoring of the external clock permitting a fallback scheme in case of clock failure.

The control of the dynamic clock switch circuit must be supervised by software. This operation is
facilitated by the following features:

• Safe commands, to avoid unintentional commands, a special write procedure must be
followed to change the CLKCSR register bits (See “CLKPR – Clock Prescaler Register” on
page 38.):

• Exclusive action, the actions are controlled by a decoding table (commands) written to the
CLKCSR register. This ensures that only one command operation can be launched at any
time. The main actions of the decoding table are:

– ‘Disable Clock Source’,

– ‘Enable Clock Source’,

– ‘Request Clock Availability’,

– ‘Clock Source Switching’,

– ‘Recover System Clock Source’,

Table 4-9. Start-up Times for the External Clock Selection

SUT[1:0](1)

CSUT[1:0](2)
Start-up Time from
Power-down/save

Additional Delay from Reset
(VCC = 5.0V) Recommended Usage

00 6 CK 14CK (+ 4.1 ms(3)) BOD enabled

01 6 CK 14CK + 4.1 ms Fast rising power

10 6 CK 14CK + 65 ms Slowly rising power

11 Reserved
31
8265D–AVR–01/2014

ATtiny87/167
The ‘Disable Clock Source’ command disables the clock source indicated by the settings of
CLKSELR register (only CSEL[3:0]). If the clock source indicated is currently the one that is
used to drive the system clock, the command is not executed.

Because the selected configuration is latched at clock source level, it is possible to enable many
clock sources at a given time (ex: the internal RC oscillator for system clock + an oscillator with
external crystal). The user (code) is responsible of this management.

4.3.4 COUT Command
The ‘CKOUT ’ command allows to drive the CLKO pin. Refer to Section 4.2.7 “Clock Output Buf-
fer” on page 31 for using.

4.3.5 Clock Availability
‘Request for Clock Availability’ command enables a hardware oscillation cycle counter driven by
the selected source clock, CSEL[3:0]. The count limit value is determined by the settings of
CSUT[1:0]. The clock is declared ready (CLKRDY = 1) when the count limit value is reached.
The CLKRDY flag is reset when the count starts. Once set, this flag remains unchanged until a
new count is commanded. To perform this checking, the CKSEL and CSUT fields should not be
changed while the operation is running.

Note that once the new clock source is selected (‘Enable Clock Source’ command), the count
procedure is automatically started. The user (code) should wait for the setting of the CLKRDY
flag in CLKSCR register before using a newly selected clock.

At any time, the user (code) can ask for the availability of a clock source. The user (code) can
request it by writing the ‘Request for Clock Availability ’ command in the CLKSCR register. A full
polling of the status of clock sources can thus be done.

4.3.6 System Clock Source Recovering
The ‘Recover System Clock Source’ command returns the current clock source used to drive the
system clock as per Table 4-1 on page 25. The CKSEL field of CLKSELR register is then
updated with this returned value. There is no information on the SUT used or status on CKOUT.

4.3.7 Clock Switching
To drive the system clock, the user can switch from the current clock source to any other of the
following ones (one of them being the current clock source):

1. Calibrated internal RC oscillator 8.0 MHz,

2. Internal watchdog oscillator 128 kHz,

3. External clock,

4. External low-frequency oscillator,

5. External Crystal/Ceramic Resonator.

The clock switching is performed by a sequence of commands. First, the user (code) must make
sure that the new clock source is operating. Then the ‘Clock Source Switching’ command can be
issued. Once this command has been successfully completed using the ‘Recover System Clock
Source’ command, the user (code) may stop the previous clock source.

It is strongly recommended to run this sequence only once the interrupts have been disabled.
The user (code) is responsible for the correct implementation of the clock switching sequence.
33
8265D–AVR–01/2014

The following code example shows one assembly and one C function for changing the time-out
value of the Watchdog Timer.

Notes: 1. See ”About Code Examples” on page 6.

2. The Watchdog Timer should be reset before any change of the WDP bits, since a change in
the WDP bits can result in a time-out when switching to a shorter time-out period.

6.3.2 Clock monitoring
The Watchdog Timer can be used to detect a loss of system clock. This configuration is driven
by the dynamic clock switch circuit. Please refer to Section 4.3.8 “Clock Monitoring” on page 34
for more information.

Assembly Code Example(1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

lds r16, WDTCR

ori r16, (1<<WDCE) | (1<<WDE)

sts WDTCR, r16

; -- Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

sts WDTCR, r16

; -- Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed sequence */

WDTCR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCR = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

56
8265D–AVR–01/2014

ATtiny87/167

9.3.3 Alternate Functions of Port A
The Port A pins with alternate functions are shown in Table 9-3.

Table 9-3. Port A Pins Alternate Functions

Port Pin Alternate Function

PA7

PCINT7 (Pin Change Interrupt 7)

ADC7 (ADC Input Channel 7)

AIN1 (Analog Comparator Positive Input)
XREF (Internal Voltage Reference Output)

AREF (External Voltage Reference Input)

PA6

PCINT6 (Pin Change Interrupt 6)

ADC6 (ADC Input Channel 6)

AIN0 (Analog Comparator Negative Input)
SS (SPI Slave Select Input)

PA5

PCINT5 (Pin Change Interrupt 5)
ADC5 (ADC Input Channel 5)

T1 (Timer/Counter1 Clock Input)

USCK (Three-wire Mode USI Alternate Clock Input)
SCL (Two-wire Mode USI Alternate Clock Input)

SCK (SPI Master Clock)

PA4

PCINT4 (Pin Change Interrupt 4)

ADC4 (ADC Input Channel 4)

ICP1 (Timer/Counter1 Input Capture Trigger)
DI (Three-wire Mode USI Alternate Data Input)

SDA (Two-wire Mode USI Alternate Data Input / Output)

MOSI (SPI Master Output / Slave Input)

PA3

PCINT3 (Pin Change Interrupt 3)

ADC3 (ADC Input Channel 3)
ISRC (Current Source Pin)

INT1 (External Interrupt1 Input)

PA2

PCINT2 (Pin Change Interrupt 2)

ADC2 (ADC Input Channel 2)

OC0A (Output Compare and PWM Output A for Timer/Counter0)
DO (Three-wire Mode USI Alternate Data Output)

MISO (SPI Master Input / Slave Output)

PA1

PCINT1 (Pin Change Interrupt 1)

ADC1 (ADC Input Channel 1)

TXD (UART Transmit Pin)
TXLIN (LIN Transmit Pin)

PA0

PCINT0 (Pin Change Interrupt 0)
ADC0 (ADC Input Channel 0)

RXD (UART Receive Pin)

RXLIN (LIN Receive Pin)
76
8265D–AVR–01/2014

ATtiny87/167

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
10-5.

10.11.3 TCNT0 – Timer/Counter0 Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNT0) while the counter is running,
introduces a risk of missing a Compare Match between TCNT0 and the OCR0x Register.

10.11.4 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC0A pin.

10.11.5 ASSR – Asynchronous Status Register

• Bit 7 – Res: Reserved Bit
This bit is reserved in the ATtiny87/167 and will always read as zero.

• Bit 6 – EXCLK: Enable External Clock Input
When EXCLK is written to one, and asynchronous clock is selected, the external clock input buf-
fer is enabled and an external clock can be input on XTAL1 pin instead of an external crystal.
Writing to EXCLK should be done before asynchronous operation is selected. Note that the crys-
tal oscillator will only run when this bit is zero.

Table 10-5. Clock Select Bit Description

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT0S (No prescaling)

0 1 0 clkT0S/8 (From prescaler)

0 1 1 clkT0S/32 (From prescaler)

1 0 0 clkT0S/64 (From prescaler)

1 0 1 clkT0S/128 (From prescaler)

1 1 0 clkT0S/256 (From prescaler)

1 1 1 clkT0S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0
0x28 (0x48) OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 OCR0A
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB6) – EXCLK AS0 TCN0UB OCR0AUB – TCR0AUB TCR0BUB ASSR

Read/Write R R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
102
8265D–AVR–01/2014

ATtiny87/167

of the general I/O port control registers (DDR and PORT) that are affected by the COM1A/B[1:0]
and OCnxi bits are shown. When referring to the OC1A/B state, the reference is for the internal
OC1A/B Register, not the OC1A/Bi pin. If a system reset occur, the OC1A/B Register is reset to
“0”.

Figure 12-5. Compare Match Output

19 PB1 / OC1BU

DDB1

PINB1
1

0PORTB1

OC1BU(*)

(*) OC1xi: TCCR1D register bit

17 PB3 / OC1BV

DDB3

1

0PORTB3

COM1B0
COM1B1 OC1BV(*)

13 PB5 / OC1BW

DDB5

1

0PORTB5

COM1A0
COM1A1

OCF1A

OC1BW(*)

PINB3

PINB5

11 PB7 / OC1BX

DDB7

1

0PORTB7

OC1BX(*)
PINB7

Waveform
Generation

Waveform
Generation

WGM13
FOC1B

Top

Bottom

FOC1A

WGM12
WGM11
WGM10

12 PB6 / OC1AX

DDB6

1

0PORTB6

OC1AX(*)
PINB6

14 PB4 / OC1AW

DDB4

1

0PORTB4

OC1AW(*)
PINB4

18 PB2 / OC1AV

DDB2

1

0PORTB2

OC1AV(*)
PINB2

20 PB0 / OC1AU

DDB0

1

0PORTB0

OC1AU(*)
PINB0

Count

Clear
TCNT1

16-bit Counter

=

Direction

OCR1A
16-bit Register

=

OCR1B
16-bit Register

OCF1B
120
8265D–AVR–01/2014

ATtiny87/167

or toggle at a compare match (See ”Compare Match Output Unit” on page 119.). The OCnxi bits
over control the setting of the COM1A/B[1:0] bits as shown in Figure 12-6 on page 121.

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 129.

12.9.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM1[3:0] = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV1 flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

12.9.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM1[3:0] = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNT1) matches either the OCR1A (WGM1[3:0] = 4) or the ICR1
(WGM1[3:0] = 12). The OCR1A or ICR1 define the top value for the counter, hence also its res-
olution. This mode allows greater control of the compare match output frequency. It also
simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 12-7. The counter value (TCNT1)
increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1)
is cleared.

Figure 12-7. CTC Mode, Timing Diagram

TCNTn

OCnAi
(Toggle)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 4Period 2 3

(COMnA1:0 = 1)
122
8265D–AVR–01/2014

ATtiny87/167

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM1[3:0] = 1, 2, or 3), the value in ICR1
(WGM1[3:0] = 10), or the value in OCR1A (WGM1[3:0] = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 12-9. The figure
shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNT1 slopes represent compare matches between OCR1A/B and TCNT1. The OC1A/B
interrupt flag will be set when a compare match occurs.

Figure 12-9. Phase Correct PWM Mode, Timing Diagram

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When
either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 flag is set accord-
ingly at the same timer clock cycle as the OCR1A/B Registers are updated with the double
buffer value (at TOP). The interrupt flags can be used to generate an interrupt each time the
counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1A/B.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1A/B Registers are written. As the third period shown in Figure 12-9 illustrates, changing
the TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1A/B
Register. Since the OCR1A/B update occurs at TOP, the PWM period starts and ends at TOP.
This implies that the length of the falling slope is determined by the previous TOP value, while
the length of the rising slope is determined by the new TOP value. When these two values differ
the two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

OCRnx/TOP Update and
OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TOVn Interrupt Flag Set
(Interrupt on Bottom)

TCNTn

Period

OCnxi

OCnxi

(COMnx[1:0] = 2)

(COMnx[1:0] = 3)
126
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
13. SPI - Serial Peripheral Interface
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATtiny87/167 and peripheral devices or between several AVR devices. The ATtiny87/167 SPI
includes the following features:

13.1 Features
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

Figure 13-1. SPI Block Diagram(1)

Note: 1. Refer to Figure 1.4 on page 4, and Table 9-3 on page 76 for SPI pin placement.

S
P

I2
X

S
P

I2
X

DIVIDER
/2/4/8/16/32/64/128

clk IO
139
8265D–AVR–01/2014

ATtiny87/167
The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Note: 1. The example code assumes that the part specific header file is included.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

sbis SPSR,SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)));

/* Return data register */

return SPDR;

}

143
8265D–AVR–01/2014

14.3.3 SPI Slave Operation Example
The following code demonstrates how to use the USI module as a SPI Slave:

init:

ldi r16,(1<<USIWM0)|(1<<USICS1)

sts USICR,r16

...

SlaveSPITransfer:

sts USIDR,r16

ldi r16,(1<<USIOIF)

sts USISR,r16

SlaveSPITransfer_loop:

lds r16, USISR

sbrs r16, USIOIF

rjmp SlaveSPITransfer_loop

lds r16,USIDR

ret

The code is size optimized using only eight instructions (+ ret). The code example assumes that
the DO is configured as output and USCK pin is configured as input in the DDR Register. The
value stored in register r16 prior to the function is called is transferred to the master device, and
when the transfer is completed the data received from the Master is stored back into the r16
Register.

Note that the first two instructions is for initialization only and needs only to be executed
once.These instructions sets Three-wire mode and positive edge USI Data Register clock. The
loop is repeated until the USI Counter Overflow Flag is set.

14.3.4 Two-wire Mode
The USI Two-wire mode is compliant to the Inter IC (TWI) bus protocol, but without slew rate lim-
iting on outputs and input noise filtering. Pin names used by this mode are SCL and SDA.
152
8265D–AVR–01/2014

ATtiny87/167

The LIN protocol says that a message with an identifier from 60 (0x3C) up to 63 (0x3F) uses a
classic checksum (sum over the data bytes only). Software will be responsible for switching cor-
rectly the LIN13 bit to provide/check this expected checksum (the insertion of the ID field in the
computation of the CRC is set - or not - just after entering the Rx or Tx Response command).

15.5.15 Data Management

15.5.15.1 LIN FIFO Data Buffer
To preserve register allocation, the LIN data buffer is seen as a FIFO (with address pointer
accessible). This FIFO is accessed via the LINDX[2:0] field of LINSEL register through the LIN-
DAT register.

LINDX[2:0], the data index, is the address pointer to the required data byte. The data byte can
be read or written. The data index is automatically incremented after each LINDAT access if the
LAINC (active low) bit is cleared. A roll-over is implemented, after data index=7 it is data
index=0. Otherwise, if LAINC bit is set, the data index needs to be written (updated) before each
LINDAT access.

The first byte of a LIN frame is stored at the data index=0, the second one at the data index=1,
and so on. Nevertheless, LINSEL must be initialized by the user before use.

15.5.15.2 UART Data Register
The LINDAT register is the data register (no buffering - no FIFO). In write access, LINDAT will be
for data out and in read access, LINDAT will be for data in.

In UART mode the LINSEL register is unused.

15.5.16 OCD Support
When a debugger break occurs, the state machine of the LIN/UART controller is stopped
(included frame time-out) and further communication may be corrupted.
178
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
• Pull-up resistors on the dW/(RESET) line must not be smaller than 10k. The pull-up resistor
is not required for debugWIRE functionality.

• Connecting the RESET pin directly to VCC will not work.

• Capacitors connected to the RESET pin must be disconnected when using debugWire.

• All external reset sources must be disconnected.

19.4 Software Break Points
DebugWIRE supports Program memory break points by the AVR BREAK instruction. Setting a
break point in AVR Studio® will insert a BREAK instruction in the Program memory. The instruc-
tion replaced by the BREAK instruction will be stored. When program execution is continued, the
stored instruction will be executed before continuing from the Program memory. A break can be
inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a break point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of break points will therefore
reduce the Flash Data retention. Devices used for debugging purposes should not be shipped to
end customers.

19.5 Limitations of DebugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

The debugWIRE system accurately emulates all I/O functions when running at full speed, i.e.,
when the program in the CPU is running. When the CPU is stopped, care must be taken while
accessing some of the I/O Registers via the debugger (AVR Studio).

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse should
be disabled when debugWire is not used.

19.6 DebugWIRE Related Register in I/O Memory
The following section describes the registers used with the debugWire.

19.6.1 DWDR – DebugWIRE Data Register

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

0x31 (0x51) DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
215
8265D–AVR–01/2014

22. Electrical Characteristics

22.1 Absolute Maximum Ratings*

Notes: 1. Maximum current per port = ±30mA

2. Functional corruption may occur .

22.2 DC Characteristics

Operating Temperature...................................– 40°C to +85°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect device
reliability.

Storage Temperature– 65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground– 0.5V to VCC+0.5V

Voltage on RESET with respect to Ground....– 0.5V to +13.0V

Voltage on VCC with respect to Ground.............. – 0.5V to 6.0V

DC Current per I/O Pin ... 40.0 mA

DC Current VCC and GND Pins 200.0 mA

Injection Current at VCC = 0V to 5V(2)...................... ±5.0mA(1)

TA = -40°C to +85°C, VCC = 1.8V to 5.5V (unless otherwise noted)

Symbol Parameter Condition Min. Typ.(1) Max. Units

VIL

Input Low Voltage

Except XTAL1 and
RESET pins

- 0.5 0.2 VCC (2) V

VIL1
XTAL1 pin - External
Clock Selected

- 0.5 0.1 VCC (2) V

VIL2 RESET pin - 0.5 0.2 VCC (2) V

VIL3 RESET pin as I/O - 0.5 0.2 VCC (2) V

VIH

Input High Voltage

Except XTAL1 and
RESET pins

0.7 VCC (3) VCC + 0.5 V

VIH1
XTAL1 pin - External
Clock Selected

0.8 VCC (3) VCC + 0.5 V

VIH2 RESET pin 0.9 VCC (3) VCC + 0.5 V

VIH3 RESET pin as I/O 0.7 VCC (3) VCC + 0.5 V

VOL
Output Low Voltage (4)

(Ports A, B,)
IOL = 10 mA, VCC = 5V

IOL = 5 mA, VCC = 3V
0.6
0.5

V

VOH
Output High Voltage (5)

(Ports A, B)
IOH = – 10 mA, VCC = 5V

IOH = – 5 mA, VCC = 3V
4.3
2.5

V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

< 0.05 1 µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

< 0.05 1 µA
242
8265D–AVR–01/2014

ATtiny87/167

Table 22-10. ADC Characteristics, Differential Channels (-40°C/+85°C)

Symbol Parameter Condition Min Typ Max Units

Resolution Differential conversion 8

TUE Absolute accuracy

Gain = 8x, BIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

1.0 3.0

LSB

Gain = 20x, BIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

1.5 3.5

Gain = 8x, UNIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

2.0 4.5

Gain = 20x, UNIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

2.0 6.0

INL Integral Non Linearity

Gain = 8x, BIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

0.2 1.0

LSB

Gain = 20x, BIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

0.4 1.5

Gain = 8x, UNIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

0.5 2.0

Gain = 20x, UNIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

1.6 5.0

DNL Differential Non Linearity

Gain = 8x, BIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

0.3 0.8

LSB

Gain = 20x, BIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

0.3 0.8

Gain = 8x, UNIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

0.4 0.8

Gain = 20x, UNIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

0.6 1.6

Gain error

Gain = 8x, BIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

-3.0 1.0 3.0

LSB

Gain = 20x, BIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

-4.0 1.5 4.0

Gain = 8x, UNIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

-5.0 -2.5 0.0

Gain = 20x, UNIPOLAR
VREF = 4V, VCC = 5V
ADC clock = 200 kHz

-4.0 -0.5 4.0
248
8265D–AVR–01/2014

ATtiny87/167

23.3 Supply Current of I/O modules
The table below can be used to calculate the additional current consumption for the different I/O
modules Idle mode. The enabling or disabling of the I/O modules are controlled by the Power
Reduction Register. See Section 5.9.3 “PRR – Power Reduction Register” on page 47 for
details.

23.4 Current Consumption in Power-down Mode

Figure 23-8. Power-down Supply Current vs. VCC (Watchdog Timer Disabled)

Table 23-1. Additional Current Consumption for the different I/O modules (absolute values)

Module
VCC = 5.0 V

Freq. = 16 MHz
VCC = 5.0 V

Freq. = 8 MHz
VCC = 3.0 V

Freq. = 8 MHz
VCC = 3.0 V

Freq. = 4 MHz Units

LIN/UART 0.77 0.37 0.20 0.10 mA

SPI 0.31 0.14 0.08 0.04 mA

TIMER-1 0.28 0.13 0.08 0.04 mA

TIMER-0 0.41 0.20 0.10 0.05 mA

USI 0.14 0.05 0.04 0.02 mA

ADC 0.48 0.22 0.10 0.05 mA

POWER-DOWN SUPPLY CURRENT vs. VCC
WATCHDOG TIMER DISABLED

85 °C

25 °C
-40 °C

0

0,5

1

1,5

2

1,5 2 2,5 3 3,5 4 4,5 5 5,5

VCC (V)

I C
C
 (u

A)
258
8265D–AVR–01/2014

ATtiny87/167

25. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clock
ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd  Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd  Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl  Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd  Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd  Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd  Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd  Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl  Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd Rd  Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd  Rd K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd  Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd  Rd  Rr Z,N,V 1

COM Rd One’s Complement Rd  0xFF  Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd  0x00  Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd  Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd  Rd  (0xFF - K) Z,N,V 1

INC Rd Increment Rd  Rd + 1 Z,N,V 1

DEC Rd Decrement Rd  Rd  1 Z,N,V 1

TST Rd Test for Zero or Minus Rd  Rd  Rd Z,N,V 1

CLR Rd Clear Register Rd  Rd  Rd Z,N,V 1

SER Rd Set Register Rd  0xFF None 1

BRANCH INSTRUCTIONS
RJMP k Relative Jump PC PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC  Z None 2

JMP k Direct Jump PC k None 3

RCALL k Relative Subroutine Call PC  PC + k + 1 None 3

ICALL Indirect Call to (Z) PC  Z None 3

CALL k Direct Subroutine Call PC  k None 4

RET Subroutine Return PC  STACK None 4

RETI Interrupt Return PC  STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd  Rr Z, N,V,C,H 1

CPC Rd,Rr Compare with Carry Rd  Rr  C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd  K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC  PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC  PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC  PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC  PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC  PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC  PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC  PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC  PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC  PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC  PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC  PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC  PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N  V= 0) then PC  PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N  V= 1) then PC  PC + k + 1 None 1/2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC  PC + k + 1 None 1/2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC  PC + k + 1 None 1/2

BRTS k Branch if T Flag Set if (T = 1) then PC  PC + k + 1 None 1/2

BRTC k Branch if T Flag Cleared if (T = 0) then PC  PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC  PC + k + 1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC  PC + k + 1 None 1/2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC  PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC  PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS
SBI P,b Set Bit in I/O Register I/O(P,b)  1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b)  0 None 2

LSL Rd Logical Shift Left Rd(n+1)  Rd(n), Rd(0)  0 Z,C,N,V 1
274
8265D–AVR–01/2014

ATtiny87/167

ATtiny87/167
LSR Rd Logical Shift Right Rd(n)  Rd(n+1), Rd(7)  0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n)  Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1

BSET s Flag Set SREG(s)  1 SREG(s) 1

BCLR s Flag Clear SREG(s)  0 SREG(s) 1

BST Rr, b Bit Store from Register to T T  Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b)  T None 1

SEC Set Carry C  1 C 1

CLC Clear Carry C  0 C 1

SEN Set Negative Flag N  1 N 1

CLN Clear Negative Flag N  0 N 1

SEZ Set Zero Flag Z  1 Z 1

CLZ Clear Zero Flag Z  0 Z 1

SEI Global Interrupt Enable I  1 I 1

CLI Global Interrupt Disable I 0 I 1

SES Set Signed Test Flag S  1 S 1

CLS Clear Signed Test Flag S  0 S 1

SEV Set Twos Complement Overflow. V  1 V 1

CLV Clear Twos Complement Overflow V  0 V 1

SET Set T in SREG T  1 T 1

CLT Clear T in SREG T  0 T 1

SEH Set Half Carry Flag in SREG H  1 H 1

CLH Clear Half Carry Flag in SREG H  0 H 1

DATA TRANSFER INSTRUCTIONS
MOV Rd, Rr Move Between Registers Rd  Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd  Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd  K None 1

LD Rd, X Load Indirect Rd  (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd  (X), X  X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X  X - 1, Rd  (X) None 2

LD Rd, Y Load Indirect Rd  (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd  (Y), Y  Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y  Y - 1, Rd  (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd  (Y + q) None 2

LD Rd, Z Load Indirect Rd  (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd  (Z), Z  Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z  Z - 1, Rd  (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd  (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd  (k) None 2

ST X, Rr Store Indirect (X) Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X  X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X  X - 1, (X)  Rr None 2

ST Y, Rr Store Indirect (Y)  Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y)  Rr, Y  Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y  Y - 1, (Y)  Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q)  Rr None 2

ST Z, Rr Store Indirect (Z)  Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z)  Rr, Z  Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z  Z - 1, (Z)  Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q)  Rr None 2

STS k, Rr Store Direct to SRAM (k)  Rr None 2

LPM Load Program Memory R0  (Z) None 3

LPM Rd, Z Load Program Memory Rd  (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Inc Rd  (Z), Z  Z+1 None 3

SPM Store Program Memory (Z)  R1:R0 None -

IN Rd, P In Port Rd  P None 1

OUT P, Rr Out Port P  Rr None 1

PUSH Rr Push Register on Stack STACK  Rr None 2

POP Rd Pop Register from Stack Rd  STACK None 2

MCU CONTROL INSTRUCTIONS
NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

Mnemonics Operands Description Operation Flags #Clock
275
8265D–AVR–01/2014

