

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	1KB (1K x 8)
Program Memory Type	ROM
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-DIP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86c0412pecr5036

GENERAL DESCRIPTION (Continued)

Note: All signals with a preceding front slash, "/", are active Low. For example, B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	V_{ss}

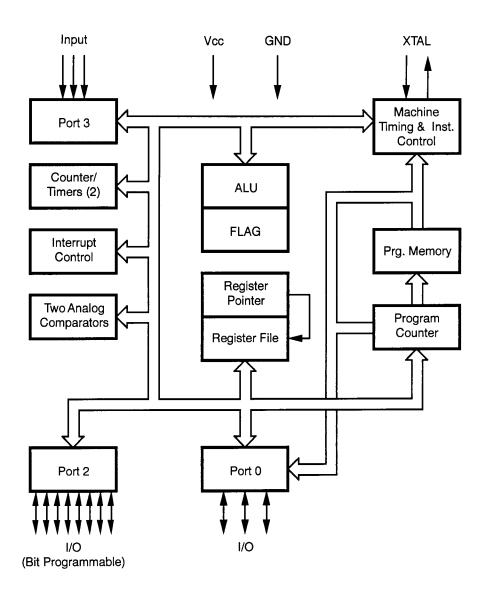


Figure 1. Z86C04/C08 Functional Block Diagram

				0°C to 0°C	• • •	0°C to	Typical			
Symbol	Parameter	v_{cc}	Min	Max	Min	Max	@ 25°C	Units	Conditions	Notes
V _{CH}	Clock Input High Voltage	3.0V	0.8 V _{CC}	V _{CC} +0.3	0.8 V _{CC}	V _{CC} +0.3	1.7	V	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	3.0V	V _{SS} 0.3	0.2 V _{CC}	V _{SS} -0.3	0.2 V _{CC}	0.8	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2 V _{CC}	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V_{IH}	Input High Voltage	3.0V	0.7 V _{CC}	V _{CC} +0.3	0.7 V _{CC}	V _{CC} +0.3	1.8	V		1
		5.5V	0.7 V _{CC}	V _{CC} +0.3	0.7 V _{CC}	V _{CC} +0.3	2.8	V	,	1
$\overline{V_{_{IL}}}$	Input Low Voltage	3.0V	V _{SS} -0.3	0.2 V _{CC}	V _{SS} -0.3	0.2 V _{CC}	0.8	٧		1
		5.5V	V _{SS} -0.3	0.2 V _{CC}	V _{SS} -0.3	0.2 V _{CC}	1.5	V		1
\overline{V}_{OH}	Output High Voltage	3.0V	V _{CC} -0.4		V _{CC} -0.4		3.0	V	I _{OH} = -2.0 mA	5
		5.5V	V _{CC} -0.4		V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	5
		3.0V	V _{CC} -0.4		V _{CC} -0.4		3.0	V	Low Noise @ I _{OH} = -0.5 mA	6
		5.5V	V _{CC} -0.4		V _{CC} -0.4		4.8	V	Low Noise @ I _{OH} = -0.5 mA	6
V _{OL1}	Output Low Voltage	3.0V		0.8		0.8	0.2	V	I _{OL} = +4.0 mA	5
		5.5V		0.4		0.4	0.1	V	I _{OL} = +4.0 mA	5
		3.0V		0.4		0.4	0.2	V	Low Noise @ I _{OL} = 1.0 mA	6
		5.5V		0.4		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	6
V _{OL2}	Output Low Voltage	3.0V		1.0		1.0	0.8	V	I _{OL} = +12 mA	5
		5.5V		0.8		0.8	0.3	٧	I _{OL} = +12 mA	5
VOFFSET	Comparator Input	3.0V		25		25	10	mV		
	Offset Voltage	5.5V		25	<u> </u>	25	10	mV		
V _{LV}	V _{CC} Low Voltage Auto Reset		2.0	2.8			2.6	V	Int. CLK Freq @ 6 MHz Max.	
					1.8	3.0	2.6	V	Int. CLK Freq @ 4 MHz Max.	
I _{IL}	Input Leakage	3.0V	-1.0	1.0	-1.0	1.0		μА	$V_{IN} = 0V, V_{CC}$	
	(Input Bias Current of Comparator)	5.5V	-1.0	1.0	-1.0	1.0		μΑ	$V_{IN} = 0V, V_{CC}$	
OL	Output Leakage	3.0V	-1.0	1.0	-1.0	1.0		μΑ	$V_{IN} = 0V, V_{CC}$	
		5.5V	-1.0	1.0	-1.0	1.0		μА	$V_{IN} = 0V, V_{CC}$	
V _{VICR}	Comparator Input Common Mode Voltage Range		0	V _{CC} -1.0	0	V _{CC} -1.5		V		
CC	Supply Current	3.0V		3.5		3.5	1.5	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		7.0		7.0	3.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7

DS97Z8X1003 PRELIMINARY 7

8

DC ELECTRICAL CHARACTERISTICS (Continued)

			• • •	0°C to	T _A = -4 +10		Typical			
Symbol	Parameter	V _{cc}	Min	Max	Min	Max	@ 25°C	Units	Conditions	Notes
CC	Supply Current	3.0V		8.0		8.0	3.0	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		11.0		11.0	4.4	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		3.0V		10		10	3.6	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		15		15	9.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
CC1	Standby Current	3.0V		2.5		2.5	0.7	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 2 MHz	5,7
		5.5V		4.0		4.0	2.5		HALT Mode $V_{IN} = 0V$, $V_{CC} @ 2 MHz$	
		3.0V		4.0		4.0	1.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		5.5V		5.0	- "	5.0	3.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		3.0V		4.5		4.5	1.5	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 12 MHz	5,7
		5.5V		7.0		7.0	4.0	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 12 MHz	5,7
I _{cc}	Supply Current (Low Noise)	3.0V		3.5		3.5	1.5	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		7.0		7.0	3.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		3.0V		5.8		5.8	2.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		9.0		9.0	4.0	mA	All Output and I/O Pins Floating @ 2 MHz	7
		3.0V		8.0		8.0	3.0	mA	All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		11.0		11.0	4.4	mA	All Output and I/O Pins Floating @ 4 MHz	7

			T _A = 0' +70		T _A = -4 +10		Typical			
Symbol	Parameter	v_{cc}	Min	Max	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current (Low Noise Mode)	3.0V		2.5		2.5	0.7	mA	HALT Mode V _{IN} = 0V, V _{cc} @ 2 MHz	5,7
		5.5V		4.0		4.0	2.5	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 2 MHz	5,7
		3.0V		3.5		5.0	0.9	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 4 MHz	5,7
		5.5V		5.0		5.0	2.8	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 4MHz	5,7
I _{CC2}	Standby Current	3.0V		10		20	1.0	μА	STOP Mode V _{IN} = 0V,Vcc WDT is not Running	7
		5.5V		10		20	1.0	μА	STOP Mode V _{IN} = 0V,Vcc WDT is not Running	7
I _{ALL}	Auto Latch Low	3.0V		12		8.0	3.0	μΑ	OV < V _{IN} < V _{CC}	
	Current	5.5V		30		32	16		0V < V _{IN} < V _{cc}	
I _{ALH}	Auto Latch High	3.0V		-8		- 5.0	-1.5	μА	0V < V _{IN} < V _{CC}	
	Current	5.5V		-16		- 20	-8.0	μΑ	0V < V _{IN} < V _{CC}	

- 1. Port 0, 2, and 3 only
- 2. $V_{SS} = 0V = GND$
- 3. The device operates down to V_{LV} . The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.
- 4. V_{CC} = 3.0V to 5.5V, typical values measured at V_{CC} = 3.3V and V_{CC} = 5.0V.
- 5. Standard Mode (not Low EMI Mode).
- 6. Z86C08 only
- 7. Inputs at power rail and outputs are unloaded.

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)

`					T _A = -400	to +125C	101		
				8 N	1Hz	12 N	ИHz		
No	Symbol	Parameter	v_{cc}	Min	Max	Min	Max	Units	Notes
1	TpC	Input Clock Period	3.0V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	3.0V		25		15	ns	1
		and Fall Times	5.5V		25		15	ns	1
3	TwC	Input Clock Width	3.0V		62		41	ns	1
			5.5V		62		41	ns	1
4	TwTinL	Timer Input Low Width	3.0V	100		100		ns	1
			5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	3.0V	5TpC		5TpC			1
			5.5V	5TpC		5TpC			1
6	6 TpTin	Timer Input Period	3.0V	8ТрС		8TpC	,		1
			5.5V	8TpC		8TpC			1
7	TrTin,	Timer Input Rise	3.0V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwiL	Int. Request Input	3.0V	100		100		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwlH	Int. Request Input	3.0V	5TpC		5TpC			1
		High Time	5.5V	5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	3.0V	25		25		ms	
		Delay Time Before Timeout	5.5V	8		8		ms	
11	Tpor	Power-On Reset Time	3.0V	50	180	50	180	ms	3
			5.5V	18	100	18	100	ms	3
			3.0V	4	30	4	30	ms	4
			5.5V	2	15	2	15	ms	4

- 1. Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0. 2. Interrupt request through Port 3 (P33-P31).
- 3. Z86C08
- 4. Z86C04

AC ELECTRICAL CHARACTERISTICS (Continued)

					T _A = 0°C	to +70°C	;	T	= -40°C	to +105°	°C		
				8 N	ЛHz	12 [ИНz	8 N	IHz	12 N	ИHz		
No	Symbol	l Parameter	v_{cc}	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	3.0V	125	DC	83	DC	125	DC	83	DC	ns	1
		-	5.5V	125	DC	83	DC	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	3.0V		25		15		25		15	ns	1
		and Fall Times	5.5V		25		15		25		15	ns	1
3	TwC	Input Clock Width	3.0V	62		41			62		41	ns	1
		•	5.5V	62		41			62		41	ns	1
4	TwTinL	Timer Input Low	3.0V	100		100		100		100		ns	1
		Width	5.5V	70		70		70		70		ns	1
5	TwTinH	Timer Input High	3.0V	5TpC		5TpC		5TpC		5TpC			1
		Width	5.5V	5TpC		5TpC		5TpC		5TpC			1
6	TpTin	Timer Input Period	3.0V	8TpC		8TpC		8TpC		8TpC	-		1
		- -	5.5V	8TpC		8TpC		8TpC		8TpC			1
7	TrTin,	Timer Input Rise	3.0V		100		100		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100		100		100	ns	1
8	TwlL	Int. Request Input	3.0V	100		100		100		100		ns	1,2
		Low Time	5.5V	70		70		70		70		ns	1,2
9	TwlH	Int. Request Input	3.0V	5TpC		5TpC		5TpC		5TpC			1
		High Time	5.5V	5TpC		5TpC		5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	3.0V	25		25		25		25		ms	
		Delay Time	5.5V	10		10		8		8		ms	3
		Before Timeout	5.5V	12		12		12		12		ms	4
11	Tpor	Power-On Reset	3.0V	50	160	50	160	50	160	50	160	ms	3
		Time	5.5V	24	80	24	80	18	80	18	80	ms	3
		-	3.0V	6	30	6	30	4	30	4	30	ms	4
		-	5.5V	3	15	3	15	2	15	2	15	ms	4

- 1. Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0. 2. Interrupt request through Port 3 (P33-P31)
- 3. Z86C08
- 4. Z86C04

AC ELECTRICAL CHARACTERISTICS

Low Noise Mode (SCLK/TCLK = XTAL)

		-		T _A :	= -4 0°C	to +125°(<u> </u>		
				1 MI	Hz	2 MI	Hz		
No	Symbol	Parameter	v_{cc}	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	3.0V	1000	DC	500	DC	ns	1
			5.5V	1000	DC	500	DC	ns	1
2	TrC,TfC	Clock Input Rise	3.0V		25		25	ns	1
		and Fall Times	5.5V		25		25	ns	1
3	TwC	Input Clock Width	3.0V	500		250		ns	1
			5.5V	500		250		ns	1
4	TwTinL	Timer Input Low Width	3.0V	100		100		ns	1
			5.5V	70		70		ns	1
5	TwTinH	Timer Input High Width	3.0V	2.5TpC		2.5TpC		,	1
			5.5V	2.5TpC		2.5TpC			1
6	TpTin	Timer Input Period	3.0V	4TpC		4TpC			1
			5.5V	4TpC		4TpC			1
7	TrTin,	Timer Input Rise	3.0V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwlL	Int. Request Input	3.0V	100		100		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwiH	Int. Request Input	3.0V	2.5TpC		2.5TpC			1
		High Time	5.5V	2.5TpC		2.5TpC			1,2
10	Twdt	Watch-Dog Timer	3.0V	25		25	-	ms	3
		Delay Time Before Timeout	5.5V	8		8		ms	3

- Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0.
 Interrupt request through Port 3 (P33-P31).
 Internal RC Oscillator driving WDT.

AC ELECTRICAL CHARACTERISTICS (Continued)

				T,	/= 0°C	to 70°C		T _A = -	-40°C	to +10	5°C		
				1 MI	Ηz	4 Mi	Ηz	1 M	Hz	4 M	Hz		
No	Symbol	Parameter	Vcc	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	3.0V	1000	DC	250	DC	1000	DC	250	DC	ns	1
			5.5V	1000	DC	250	DC	1000	DC	250	DC	ns	1
2	TrC,TfC	Clock Input Rise	3.0V		25		25		25		25	ns	1
		and Fall Times			25		25		25		25	ns	1
3	TwC	Input Clock Width	3.0V	500		125		500		125		ns	1
			5.5V	500		125		500		125		ns	1
4	TwTinL	Timer Input Low Width	3.0V	100		100		100		100		ns	1
			5.5V	70		70		70		70		ns	1
5	TwTinH	Timer Input High Width	3.0V	2.5TpC		2.5TpC		2.5TpC		2.5TpC			1
		•	5.5V	2.5TpC		2.5TpC		2.5TpC		2.5TpC			1
6	TpTin	Timer Input Period	3.0V	4TpC		4TpC		4TpC		4TpC			1
		·	5.5V	4TpC		4TpC		4TpC		4TpC			1
7	TrTin,	Timer Input Rise	3.0V		100		100		100		100	ns	1
	TtTin	and Fall Timer	5.5V		100		100		100		100	ns	1
8	TwlL	Int. Request Input	3.0V	100		100		100		100		ns	1,2
		Low Time	5.5V	70		70		70		70		ns	1,2
9	TwlH	Int. Request Input	3.0V	2.5TpC		2.5TpC		2.5TpC		2.5TpC			1
		High Time	5.5V	2.5TpC		2.5TpC		2.5TpC		2.5TpC			1,2
10	Twdt	Watch-Dog Timer	3.0V	25		25		25		25		ms	3
		Delay Time Before	5.5V	10		10		8		8	-	ms	3,5
		Timeout	5.5V	12		12		12		12		ms	3,4

- Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0.
 Interrupt request through Port 3 (P33-P31).
 Internal RC Oscillator driving WDT.

- 4. Z86C04
- 5. Z86C08

LOW NOISE VERSION

Low EMI Emission

The Z8® MCU can be programmed to operate in a Low EMI emission mode by means of a mask ROM bit option. Use of this feature results in:

- All pre-driver slew rates reduced to 10 ns typical.
- Internal SCLK/TCLK operation limited to a maximum of 4 MHz 250 ns cycle time.
- Output drivers have resistances of 200 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI mode is mask-programmable to be selected by the customer at the time the ROM code is submitted

APPLICATION PRECAUTIONS:

- 1. Emulator does not support the 32 kHz operation.
- For the Z86C04, the WDT only runs in STOP Mode if the permanent WDT option is selected and if the onboard RC oscillator is selected as the clock source for the WDT.
- 3. For the Z86C08, the WDT only runs in Stop Mode if the permanent WDT option is selected.
- 4. The registers %FE (GPR) and %FF (SPL) are reset to 00Hex after Stop Mode recovery or any reset.
- 5. Emulator does not support the system clock driving the WDT mask option.
- 6. Must wait two NOPS before analog comparitor outputs are valid after enabling analog mode.
- 7. Must disable interrupts, enable the analog comparitor, and then clear IRQ3 to IRQ0 when switching from digital to analog mode.

PIN DESCRIPTION

XTAL1, XTAL2 *Crystal In, Crystal Out* (time-based input and output, respectively). These pins connect a RC, parallel-resonant crystal, LC, or an external single-phase clock to the on-chip clock oscillator and buffer.

Auto Latch. The Auto Latch puts valid CMOS levels on all CMOS inputs (except P33, P32, P31) that are not externally driven. After Power-On Reset, this level is 0 or 1 cannot be determined. A valid CMOS level, rather than a floating

node, reduces excessive supply current flow in the input buffer. To change the Auto Latch state, the auto latches must be over driven with current greater than I_{ALH} (high to low) or I_{ALH} (low to high).

Port 0 (P02-P00). Port 0 is a 3-bit I/O, bidirectional, Schmitt-triggered CMOS-compatible I/O port. These three I/O lines can be configured under software control to be all inputs or all outputs (Figure 6).

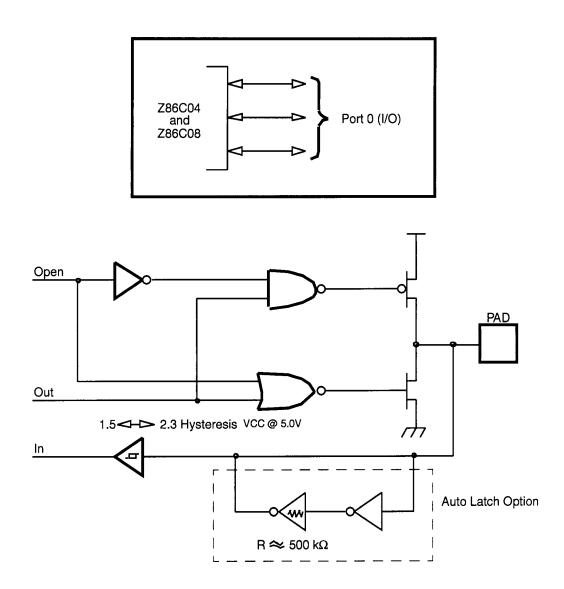
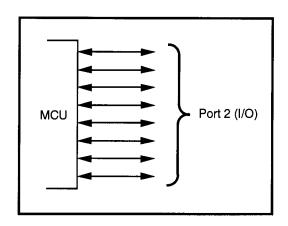



Figure 6. Port 0 Configuration

Port 2 (P27-P20). Port 2 is an 8-bit I/O, bit-programmable, bidirectional, Schmitt-triggered CMOS-compatible I/O port. These eight I/O lines can be configured under soft-

ware control to be an input or output, independently. Bits programmed as outputs may be globally programmed as either push-pull or open-drain (Figure 7).

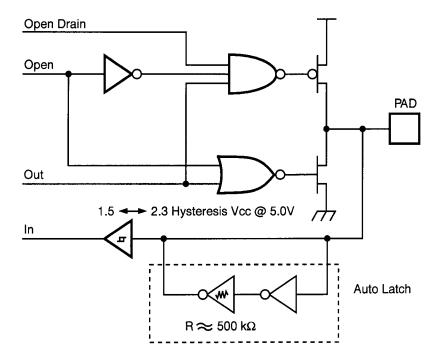
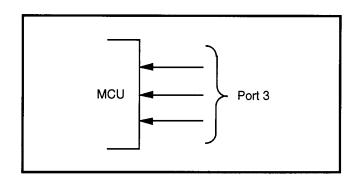



Figure 7. Port 2 Configuration

PIN DESCRIPTION (Continued)

Port 3 (P33-P31). Port 3 is a 3-bit, Schmitt-triggered CMOS-compatible port with three fixed input (P33-P31) lines. These three input lines can be configured under soft-

ware control as digital inputs or analog inputs. These three input lines can also be used as the interrupt sources IRQ0-IRQ3 and as the timer input signal (T_{IN}) (Figure 8).

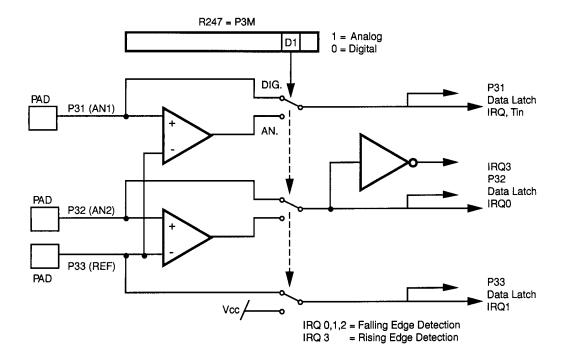


Figure 8. Port 3 Configuration

Comparator Inputs. Two analog comparators are added to Port 3 inputs for interface flexibility. Typical applications for these on-board comparators are: Zero crossing detection, A/D conversion, voltage scaling, and threshold detection.

The dual comparator (common inverting terminal) features a single power supply that discontinues power in STOP Mode. The common voltage range is 0-4V when the $V_{\rm cc}$ is 5.0V. Before the comparitor outputs are valid, two NOP delays are required after enabling the analog comparitors.

Interrupts are generated on either edge of Comparator 2's output, or on the falling edge of Comparator 1's output. The comparator output may be used for interrupt generation, Port 3 data inputs, or $T_{\rm IN}$ through P31. Alternately, the comparators may be disabled, freeing the reference input (P33) for use as IRQ1 and/or P33 input.

FUNCTIONAL DESCRIPTION

RESET. Upon power-up, the Power-On Reset circuit waits for T_{POR} ms, plus 18 clock cycles, and then starts program

execution at address %000C (Hex) (Figure 9). The device control registers' reset value is shown in Table 1.

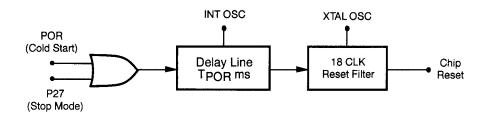


Figure 9. Internal Reset Configuration

Table 1. Z86C04/C08 & C05/C07 Control Registers

				Reset C	Conditio	n				
Addr.	Reg.	D7	D6	D5	D4	D3	D2	D1	D0	Comments
03H (3)*	Port 3	U	U	U	U	U	U	U	U	
02H (2)*	Port 2	U	U	U	U	U	U	U	U	
00H (0)*	Port 0	U	U	U	U	U	U	U	U	
FFH(255)	SPL	0	0	0	0	0	0	0	0	
FEH (254)	GPR	0	0	0	0	0	0	0	0	
FDH (253)	RP	0	0	0	0	0	0	0	0	
FCH (252)	FLAGS	U	U	U	U	U	U	U	U	
FBH (251)	IMR	0	U	U	U	U	U	U	U	
FAH (250)	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection
F9H (249)	IPR	U	U	U	U	U	U	U	U	
F8H (248)*	P01M	U	U	U	0	U	U	0	1	
F7H (247)*	P3M	U	U	U	U	U	U	0	0	
F6H (246)*	P2M	1	1	1	1	1	1	1	1	Inputs after reset
F5H (245)	PRE0	U	U	U	U	U	U	U	0	
F4H (244)	T0	U	U	U	U	U	U	U	U	
F3H (243)	PRE1	U	U	U	U	U	U	0	0	
F2H (242)	T1	U	U	U	U	U	U	U	U	
F1H (241)	TMR	0	0	0	0	0	0	0	0	

Note: *Registers are not reset after a Stop-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to be re-configured as shown in Table 1 and the user must avoid bus contention on the port pins or it may affect device reliability.

FUNCTIONAL DESCRIPTION (Continued)

Counter/Timer. There are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler can be driven by internal or external clock sources, however the T0 can be driven by the internal clock source only (Figure 13).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When both counter and prescaler reach the end of count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counter can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and can be either the internal microprocessor clock divided by four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or as a gate input for the internal clock.

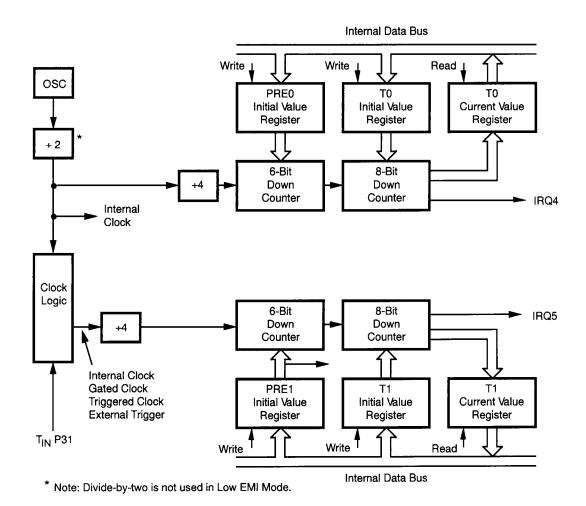


Figure 13. Counter/Timers Block Diagram

Opcode WDT (5FH). The first time Opcode 5FH is executed, the WDT is enabled, and subsequent execution clears the WDT counter. This has to be done within the maximum T_{WDT} period; otherwise, the WDT times out and generates a Reset. The generated Reset is the same as a Power-On Reset of T_{POR} plus 18 XTAL clock cycles. The WDT does not work (run) in STOP Mode. The WDT is disabled during and after a Reset, until the WDT is enabled again.

Opcode WDH (4FH). When this instruction is executed it will enable the WDT during HALT. If not, the WDT will stop when entering HALT. This instruction does not clear the counters, it facilitates running the WDT function during HALT Mode. A WDH instruction executed without executing WDT (5FH) has no effect.

Permanent WDT Mask Option. Only when the Permanent WDT Mask Option is selected, then the WDT is hardwired to be enabled after reset. The WDT will operate in Run Mode, HALT Mode, and STOP Mode. The Opcode 5FH is used to refresh or clear the WDT counter. The WDT instruction (4FH) has no effect The WDT will not run in STOP Mode if the system clock driving the WDT is selected (Z86C04 only).

System Clock Driving WDT Mask Option (Z86C04 only) When this option is selected, the Z8's system clock drives the WDT instead of the on-board RC oscillator driving the

WDT. The WDT time-out will be SCLK x 32,512. The WDT will not run in STOP Mode.

Low-Voltage Protection (V_{LV}) . Maximum (V_{LV}) Conditions:

Case 1: $T_A = -40$ °C, +85°C, Internal Clock

Frequency equal or less than 6 MHz

Case 2: $T_A = -40$ °C, +105°C, Internal Clock

Frequency equal or less than 4 MHz

Note: The internal clock frequency is one-half the external clock frequency in standard mode.

The device will function normally at or above 3.0V under all conditions. Below 3.0V, the device functions normally until the Low-Voltage Protection trip point (V_{LV}) is reached. The device is guaranteed to function normally at supply voltages above the low voltage trip point for the temperatures and operating frequencies in Cases 1 and 2. The actual low voltage trip point is a function of temperature and process parameters (Figure 16).

1 MHz	1 MHz (Typical)													
Temp	-40C°	0°C	+25°C	+70°C	+105°C	+125°C								
V_{LV}	3.0	2.75	2.6	2.3	2.1	1.9								

ROM Protect. ROM Protect fully protects the Z86C04/C08 ROM code from being read internally. When ROM Protect is selected, ROM look-up tables can be used in this mode.

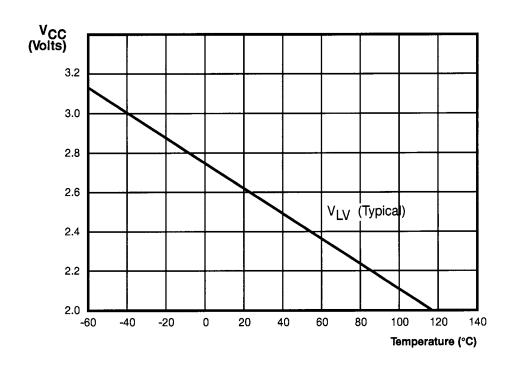


Figure 16. Typical Z86C04/C08 $V_{\scriptscriptstyle LV}$ vs. Temperature

Z8 CONTROL REGISTER DIAGRAMS

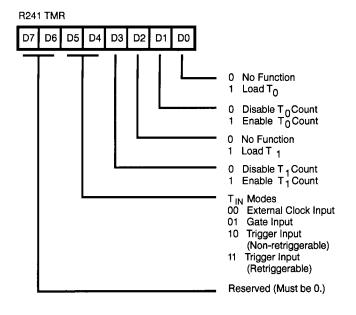


Figure 17. Timer Mode Register (F1_H: Read/Write)

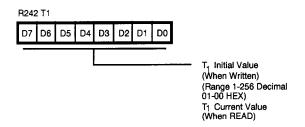


Figure 18. Counter Time 1 Register (F2,: Read/Write)

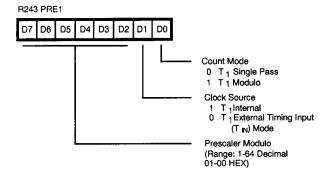


Figure 19. Prescaler 1 Register (F3,: Write Only)

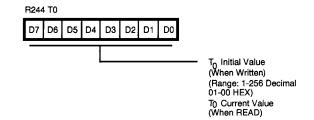


Figure 20. Counter/Timer 0 Register (F4,: Read/Write)

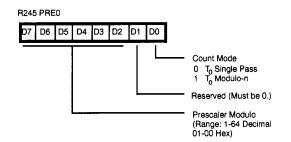


Figure 21. Prescaler 0 Register (F5_u: Write Only)

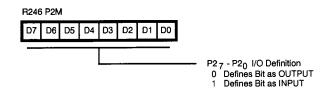


Figure 22. Port 2 Mode Register (F6,: Write Only)

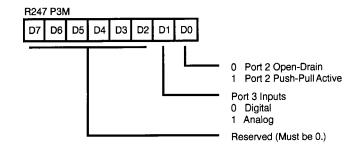


Figure 23. Port 3 Mode Register (F7₁₁: Write Only)

Standard Mode

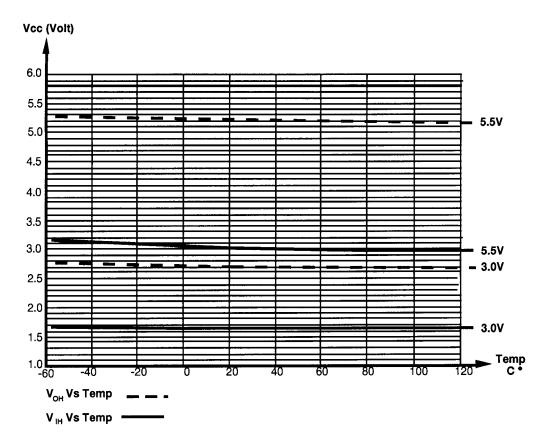


Figure 32. $V_{\rm iri}$, $V_{\rm ori}$ vs. Temperature

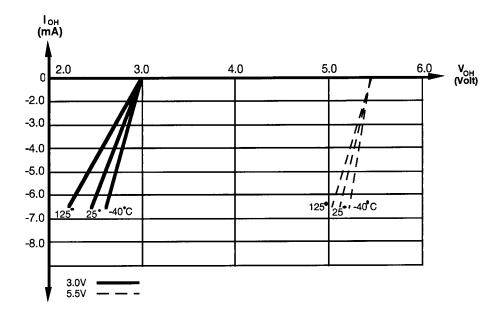


Figure 33. Typical $I_{\rm OH}$ vs. $V_{\rm OH}$

Z8 CONTROL REGISTER DIAGRAMS (Continued)

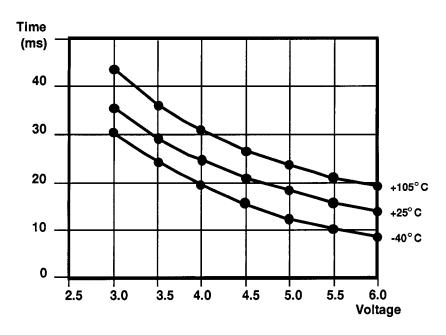


Figure 34. Typical WDT Time Out Period vs. $V_{\rm cc}$ Over Temperature

ORDERING INFORMATION

Z86C04 (12 MHz) Standard Temperature Z86C08 (12 MHz)

Standard Temperature

18-Pin DIP

18-Pin SOIC Z86C0412SSC 18-Pin DIP Z86C0812PSC 18-Pin SOIC Z86C0812SSC

Z86C0412PSC Extended Temperature

Extended Temperature

18-Pin DIP

18-Pin SOIC

18-Pin DIP

18-Pin SOIC

Z86C0412PEC Z86C0412PAC Z86C0412SEC Z86C0412SAC Z86C0812PEC Z86C0812PAC Z86C0812SEC Z86C0812SAC

For fast results, contact your local Zilog sale offices for assistance in ordering the part(s) desired.

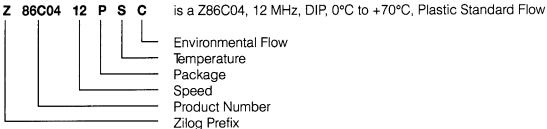
CODES

Preferred Package

P = DIP S = SOIC Longer Lead Time E = -40°C to +105°C A = -40°C to +125°C

Preferred Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$


Speeds

12 = 12 MHz

Environmental

C = Plastic Standard

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up vield issues.

© 1997 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056

Internet: http://www.zilog.com