

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	12MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	14
Program Memory Size	2KB (2K x 8)
Program Memory Type	ROM
EEPROM Size	-
RAM Size	125 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-DIP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86c0812pscr3472

PIN DESCRIPTIONS

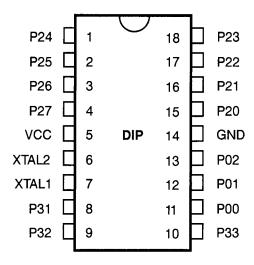


Figure 2. 18-Pin DIP

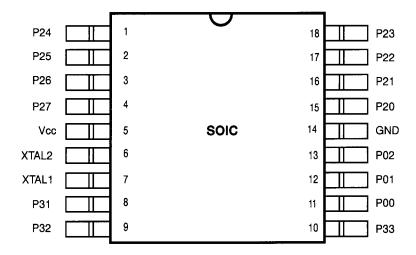


Figure 3. 18-Pin SOIC

Table 1: 18-Pin DIP and SOIC Pin Identification

Pin #	Symbol	Function	Direction
1-4	P24-P27	Port 2, Pins 4, 5, 6, 7	In/Output
5	V _{cc}	Power Supply	
6	XTAL2	Crystal Oscillator Clock	Output
7	XTAL1	Crystal Oscillator Clock	Input
8	P31	Port 3, Pin 1, AN1	Input
9	P32	Port 3, Pin 2, AN2	Input
10	P33	Port 3, Pin 3, REF	Input
11-13	P00-P02	Port 0, Pins 0, 1, 2	In/Output
14	GND	Ground	·
15-18	P20-P23	Port 2, Pins 0, 1, 2, 3	In/Output

ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Max	Units	Notes
Ambient Temperature under Bias	– 40	+105	С	
Storage Temperature	- 65	+150	С	
Voltage on any Pin with Respect to V _{ss}	-0.7	+12	V	1
Voltage on V _{DD} Pin with Respect to V _{ss}	-0.3	+7	V	
Voltage on Pin 7 with Respect to Vss	-0.7	V _{DD} +1	V	2
Total Power Dissipation		462	mW	
Maximum Current out of V _{ss}		84	mA	
Maximum Current into V _{DD}		84	mA	
Maximum Current into an Input Pin	-600	+600	μА	3
Maximum Current into an Open-Drain Pin	-600	+600	μА	4
Maximum Output Current Sinked by Any I/O Pin		12	mA	
Maximum Output Current Sourced by Any I/O Pin		12	mA	
Total Maximum Output Current Sinked by Port 2		70	mA	
Total Maximum Output Current Sourced by Port 2		70	mA	

Notes:

- 1. This applies to all pins except where otherwise noted. Maximum current into pin must be ±600µA.
- 2. There is no input protection diode from pin to V_{no} .
- 3. This excludes Pin 6 and Pin 7.
- 4. Device pin is not at an output Low state.

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an ex-

tended period may affect device reliability. Total power dissipation should not exceed 462 mW for the package. Power dissipation is calculated as follows:

Total Power dissipation = $V_{\text{DD}} \times [I_{\text{DD}} - (\text{sum of } I_{\text{OH}})] + \text{sum of } [(V_{\text{DD}} - V_{\text{OH}}) \times I_{\text{OH}}] + \text{sum of } (V_{\text{DL}} \times I_{\text{OL}}).$

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 4).

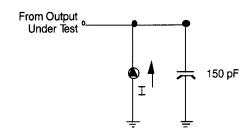


Figure 4. Test Load Diagram

CAPACITANCE

 $T_A = 25$ °C, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	15 pF
Output capacitance	0	20 pF
I/O capacitance	0	25 pF

				0°C to	• • •	0°C to	Typical			
Symbol	Parameter	v_{cc}	Min	Max	Min	Max	@ 25°C	Units	Conditions	Notes
V _{CH}	Clock Input High Voltage	3.0V	0.8 V _{CC}	V _{CC} +0.3	0.8 V _{CC}	V _{CC} +0.3	1.7	V	Driven by External Clock Generator	
		5.5V	0.8 V _{CC}	V _{CC} +0.3	0.8 V _{CC}	V _{CC} +0.3	2.8	V	Driven by External Clock Generator	
V _{CL}	Clock Input Low Voltage	3.0V	V _{SS} 0.3	0.2 V _{CC}	V _{SS} -0.3	0.2 V _{CC}	0.8	V	Driven by External Clock Generator	
		5.5V	V _{SS} -0.3	0.2 V _{CC}	V _{SS} -0.3	0.2 V _{CC}	1.7	V	Driven by External Clock Generator	
V_{IH}	Input High Voltage	3.0V	0.7 V _{CC}	V _{CC} +0.3	0.7 V _{CC}	V _{CC} +0.3	1.8	V		1
		5.5V	0.7 V _{CC}	V _{CC} +0.3	0.7 V _{CC}	V _{CC} +0.3	2.8	V	,	1
$\overline{V_{_{IL}}}$	Input Low Voltage	3.0V	V _{SS} -0.3	0.2 V _{CC}	V _{SS} -0.3	0.2 V _{CC}	0.8	٧		1
		5.5V	V _{SS} -0.3	0.2 V _{CC}	V _{SS} -0.3	0.2 V _{CC}	1.5	V		1
\overline{V}_{OH}	Output High Voltage	3.0V	V _{CC} -0.4		V _{CC} -0.4		3.0	V	I _{OH} = -2.0 mA	5
		5.5V	V _{CC} -0.4		V _{CC} -0.4		4.8	V	I _{OH} = -2.0 mA	5
		3.0V	V _{CC} -0.4		V _{CC} -0.4		3.0	V	Low Noise @ I _{OH} = -0.5 mA	6
		5.5V	V _{CC} -0.4		V _{CC} -0.4		4.8	V	Low Noise @ I _{OH} = -0.5 mA	6
V _{OL1}	Output Low Voltage	3.0V		0.8		0.8	0.2	V	I _{OL} = +4.0 mA	5
		5.5V		0.4		0.4	0.1	V	I _{OL} = +4.0 mA	5
		3.0V		0.4		0.4	0.2	V	Low Noise @ I _{OL} = 1.0 mA	6
		5.5V		0.4		0.4	0.1	V	Low Noise @ I _{OL} = 1.0 mA	6
V _{OL2}	Output Low Voltage	3.0V		1.0		1.0	0.8	V	I _{OL} = +12 mA	5
		5.5V		0.8		0.8	0.3	٧	I _{OL} = +12 mA	5
VOFFSET	Comparator Input	3.0V		25		25	10	mV		
	Offset Voltage	5.5V		25		25	10	mV		
V _{LV}	V _{CC} Low Voltage Auto Reset		2.0	2.8			2.6	V	Int. CLK Freq @ 6 MHz Max.	
					1.8	3.0	2.6	V	Int. CLK Freq @ 4 MHz Max.	
I _{IL}	Input Leakage	3.0V	-1.0	1.0	-1.0	1.0		μА	$V_{IN} = 0V, V_{CC}$	
	(Input Bias Current of Comparator)	5.5V	-1.0	1.0	-1.0	1.0		μΑ	$V_{IN} = 0V, V_{CC}$	
OL	Output Leakage	3.0V	-1.0	1.0	-1.0	1.0		μΑ	$V_{IN} = 0V, V_{CC}$	
		5.5V	-1.0	1.0	-1.0	1.0		μА	$V_{IN} = 0V, V_{CC}$	
V _{VICR}	Comparator Input Common Mode Voltage Range		0	V _{CC} -1.0	0	V _{CC} -1.5		V		
CC	Supply Current	3.0V		3.5		3.5	1.5	mA	All Output and I/O Pins Floating @ 2 MHz	5,7
		5.5V		7.0		7.0	3.8	mA	All Output and I/O Pins Floating @ 2 MHz	5,7

DS97Z8X1003 PRELIMINARY 7

8

DC ELECTRICAL CHARACTERISTICS (Continued)

				0°C to	T _A = -4 +10		Typical			
Symbol	Parameter	V _{CC}	Min	Max	Min	Max	@ 25°C	Units	Conditions	Notes
CC	Supply Current	3.0V		8.0		8.0	3.0	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		5.5V		11.0		11.0	4.4	mA	All Output and I/O Pins Floating @ 8 MHz	5,7
		3.0V		10		10	3.6	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
		5.5V		15		15	9.0	mA	All Output and I/O Pins Floating @ 12 MHz	5,7
I _{CC1}	Standby Current	3.0V		2.5		2.5	0.7	mA	HALT Mode V _{IN} = 0V, V _{CC} @ 2 MHz	5,7
		5.5V		4.0		4.0	2.5		HALT Mode $V_{IN} = 0V$, V_{CC} @ 2 MHz	
		3.0V		4.0		4.0	1.0	mA	HALT Mode $V_{IN} = 0V$, $V_{CC} @ 8 MHz$	5,7
		5.5V		5.0		5.0	3.0	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 8 MHz	5,7
		3.0V		4.5		4.5	1.5	mΑ	HALT Mode $V_{IN} = 0V$, V_{CC} @ 12 MHz	5,7
		5.5V		7.0		7.0	4.0	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 12 MHz	5,7
I _{cc}	Supply Current (Low Noise)	3.0V		3.5		3.5	1.5	mA	All Output and I/O Pins Floating @ 1 MHz	7
		5.5V		7.0		7.0	3.8	mA	All Output and I/O Pins Floating @ 1 MHz	7
		3.0V		5.8		5.8	2.5	mA	All Output and I/O Pins Floating @ 2 MHz	7
		5.5V		9.0		9.0	4.0	mA	All Output and I/O Pins Floating @ 2 MHz	7
		3.0V		8.0		8.0	3.0	mA	All Output and I/O Pins Floating @ 4 MHz	7
		5.5V		11.0		11.0	4.4	mA	All Output and I/O Pins Floating @ 4 MHz	7

			T _A = 0° +70		T _A = -4 +10		Typical			
Symbol	Parameter	v_{cc}	Min	Max	Min	Max	@ 25°C	Units	Conditions	Notes
I _{CC1}	Standby Current (Low Noise Mode)	3.0V		2.5		2.5	0.7	mA	HALT Mode V _{IN} = 0V, V _{cc} @ 2 MHz	5,7
		5.5V		4.0		4.0	2.5	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 2 MHz	5,7
		3.0V		3.5		5.0	0.9	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 4 MHz	5,7
		5.5V		5.0		5.0	2.8	mA	HALT Mode $V_{IN} = 0V$, V_{CC} @ 4MHz	5,7
I _{CC2}	Standby Current	3.0V		10		20	1.0	μА	STOP Mode V _{IN} = 0V,Vcc WDT is not Running	7
		5.5V		10		20	1.0	μА	STOP Mode V _{IN} = 0V,Vcc WDT is not Running	7
I _{ALL}	Auto Latch Low	3.0V		12		8.0	3.0	μΑ	OV < V _{IN} < V _{CC}	
	Current	5.5V		30		32	16		0V < V _{IN} < V _{cc}	
I _{ALH}	Auto Latch High	3.0V		-8		- 5.0	-1.5	μΑ	0V < V _{IN} < V _{CC}	
	Current	5.5V		- 16		-20	-8.0	μΑ	0V < V _{IN} < V _{CC}	

Notes:

- 1. Port 0, 2, and 3 only
- 2. $V_{SS} = 0V = GND$
- 3. The device operates down to V_{LV} . The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient temperature. The V_{LV} increases as the temperature decreases.
- 4. V_{CC} = 3.0V to 5.5V, typical values measured at V_{CC} = 3.3V and V_{CC} = 5.0V.
- 5. Standard Mode (not Low EMI Mode).
- 6. Z86C08 only
- 7. Inputs at power rail and outputs are unloaded.

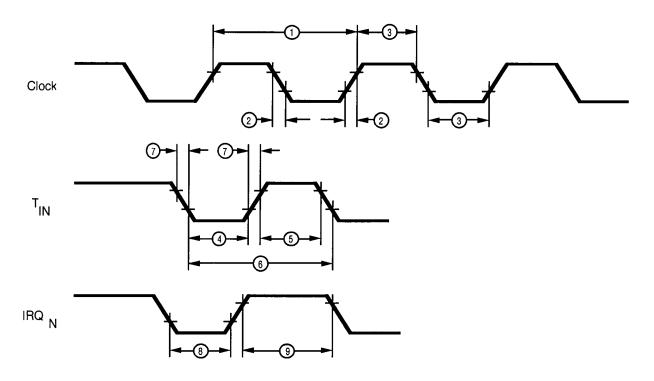


Figure 5. AC Electrical Timing Diagram

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)

`					T _A = -400	to +125C	101		
				8 N	1Hz	12 N	ИHz		
No	No Symbol	Parameter	v_{cc}	Min	Max	Min	Max	Units	Notes
1	TpC	Input Clock Period	3.0V	125	DC	83	DC	ns	1
			5.5V	125	DC	83	DC	ns	1
2	TrC,TfC	Clock Input Rise	3.0V	· · · · · · · · · · · · · · · · · · ·	25		15	ns	1
		and Fall Times	5.5V		25		15	ns	1
3	TwC	Input Clock Width	3.0V		62		41	ns	1
	·		5.5V		62		41	ns	1
4	TwTinL	Timer Input Low Width	3.0V	100		100		ns	1
			5.5V	70		70		ns	1
5	5 TwTinH Timer Input High Width	3.0V	5TpC		5TpC			1	
			5.5V	5TpC		5TpC			1
6	TpTin Timer Input Period	Timer Input Period	3.0V	8ТрС		8TpC	,		1
			5.5V	8TpC		8TpC			1
7	TrTin,	Timer Input Rise	3.0V		100		100	ns	1
	TtTin	and Fall Time	5.5V		100		100	ns	1
8	TwiL	Int. Request Input	3.0V	100		100		ns	1,2
		Low Time	5.5V	70		70		ns	1,2
9	TwlH	Int. Request Input	3.0V	5TpC		5TpC			1
		High Time	5.5V	5TpC		5TpC			1,2
10	Twdt	Watch-Dog Timer	3.0V	25		25		ms	
		Delay Time Before Timeout	5.5V	8		8		ms	
11	Tpor	Power-On Reset Time	3.0V	50	180	50	180	ms	3
			5.5V	18	100	18	100	ms	3
			3.0V	4	30	4	30	ms	4
			5.5V	2	15	2	15	ms	4

Notes:

- 1. Timing Reference uses 0.7 V_{cc} for a logic 1 and 0.2 V_{cc} for a logic 0. 2. Interrupt request through Port 3 (P33-P31).
- 3. Z86C08
- 4. Z86C04

LOW NOISE VERSION

Low EMI Emission

The Z8® MCU can be programmed to operate in a Low EMI emission mode by means of a mask ROM bit option. Use of this feature results in:

- All pre-driver slew rates reduced to 10 ns typical.
- Internal SCLK/TCLK operation limited to a maximum of 4 MHz 250 ns cycle time.
- Output drivers have resistances of 200 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI mode is mask-programmable to be selected by the customer at the time the ROM code is submitted

APPLICATION PRECAUTIONS:

- 1. Emulator does not support the 32 kHz operation.
- For the Z86C04, the WDT only runs in STOP Mode if the permanent WDT option is selected and if the onboard RC oscillator is selected as the clock source for the WDT.
- 3. For the Z86C08, the WDT only runs in Stop Mode if the permanent WDT option is selected.
- 4. The registers %FE (GPR) and %FF (SPL) are reset to 00Hex after Stop Mode recovery or any reset.
- 5. Emulator does not support the system clock driving the WDT mask option.
- 6. Must wait two NOPS before analog comparitor outputs are valid after enabling analog mode.
- 7. Must disable interrupts, enable the analog comparitor, and then clear IRQ3 to IRQ0 when switching from digital to analog mode.

FUNCTIONAL DESCRIPTION

RESET. Upon power-up, the Power-On Reset circuit waits for T_{POR} ms, plus 18 clock cycles, and then starts program

execution at address %000C (Hex) (Figure 9). The device control registers' reset value is shown in Table 1.

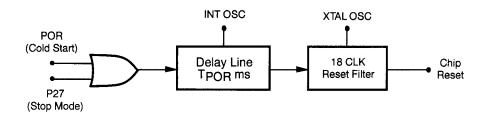


Figure 9. Internal Reset Configuration

Table 1. Z86C04/C08 & C05/C07 Control Registers

				Reset C	onditio	n				
Addr.	Reg.	D7	D6	D5	D4	D3	D2	D1	D0	Comments
03H (3)*	Port 3	U	U	U	U	U	U	U	U	
02H (2)*	Port 2	U	U	U	U	U	U	U	U	
00H (0)*	Port 0	U	U	U	U	U	U	U	U	
FFH(255)	SPL	0	0	0	0	0	0	0	0	
FEH (254)	GPR	0	0	0	0	0	0	0	0	
FDH (253)	RP	0	0	0	0	0	0	0	0	
FCH (252)	FLAGS	U	U	U	U	U	U	U	U	
FBH (251)	IMR	0	U	U	U	U	U	U	U	
FAH (250)	IRQ	U	U	0	0	0	0	0	0	IRQ3 is used for positive edge detection
F9H (249)	IPR	U	U	U	U	U	U	U	U	
F8H (248)*	P01M	U	U	U	0	U	U	0	1	
F7H (247)*	P3M	U	U	U	U	U	U	0	0	
F6H (246)*	P2M	1	1	1	1	1	1	1	1	Inputs after reset
F5H (245)	PRE0	U	U	U	U	U	U	U	0	
F4H (244)	T0	U	U	U	U	U	U	Ū	U	
F3H (243)	PRE1	U	U	U	U	U	U	0	0	
F2H (242)	T1	U	U	Ų	U	U	U	U	U	
F1H (241)	TMR	0	0	0	0	0	0	0	0	

Note: *Registers are not reset after a Stop-Mode Recovery using P27 pin. A subsequent reset will cause these control registers to be re-configured as shown in Table 1 and the user must avoid bus contention on the port pins or it may affect device reliability.

FUNCTIONAL DESCRIPTION (Continued)

Program Memory. The Z86C04/C08 can address up to 1K/2K bytes of internal program memory (Figure 10). The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16-bit vectors that correspond to the six available interrupts. Bytes 0-1023/2047 are on-chip mask-programmed ROM.

Register File. The Register File consists of three I/O port registers, 125 general-purpose registers, and 14 control and status registers (R0, R2-R3, R4-R127, and R241-R255, respectively; see Figure 11). Note that R254 is available for general purpose use.

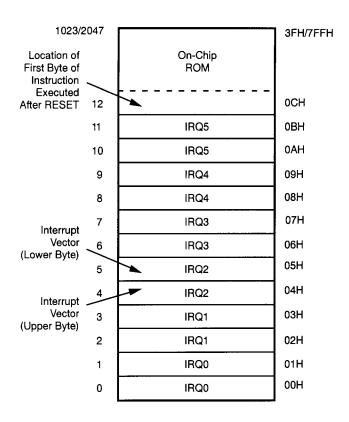


Figure 10. Program Memory Map

Location		Indentifiers
255	Stack Pointer (Bits 7-0)	SPL
254	Reserved	
253	Register Pointer	RP
252	Program Control Flags	Flags
251	Interrupt Mask Register	IMR
250	Interrupt Request Register	IRQ
249	Interrupt Priority Register	IPR
248	Ports 0-1 Mode	P01M
247	Port 3 Mode	РЗМ
246	Port 2 Mode	P2M
245	To Prescaler	PRE0
244	Timer/Counter0	Т0
243	T1 Prescaler	PRE1
242	Timer/Counter1	T1
241	Timer Mode	TMR
240	Not Implemented	
128 127	'	
127	General Purpose	
4	Registers	
3	Port 3	P3
2	Port 2	P2
1	Reserved	P1
0	Port 0	P0

Figure 11. Register File

Interrupts. The Z8 has six interrupts from six different sources. These interrupts are maskable and prioritized (Figure 14). The six sources are divided as follows: the falling edge of P31 (AN1), P32 (AN2), P33 (REF), the rising edge of P32 (AN2), and the two counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests (Table 2).

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z8 interrupts are vectored through locations in program memory. When an Interrupt machine cycle is activated, an interrupt request is granted. This disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit starting address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the interrupt request register is polled to determine which of the interrupt requests needs service.

Note: User must select any Z86C08 mode in Zilog's C12 ICEBOX™ emulator. The rising edge interrupt is not supported on the Z86CCP00ZEM emulator.

Table 2. Interrupt Types, Sources, and Vectors

Name	Source	Vector Location	Comments
IRQ0	AN2(P32)	0,1	External (F) Edge
IRQ1	REF(P33)	2,3	External (F) Edge
IRQ2	AN1(P31)	4,5	External (F) Edge
IRQ3	AN2(P32)	6,7	External (R) Edge
IRQ4	T0	8,9	Internal
IRQ5	T1	10,11	Internal

Notes:

F = Falling edge triggered

R = Rising edge triggered

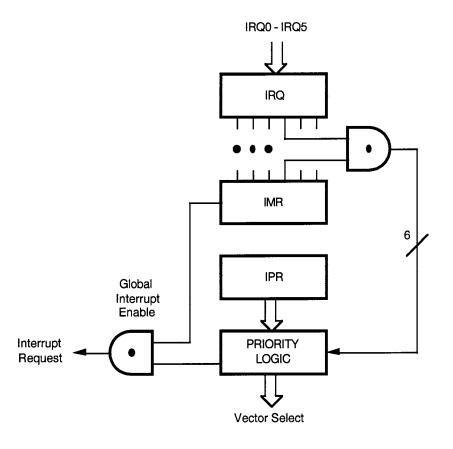


Figure 14. Interrupt Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Clock. The on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a RC, crystal, ceramic resonator, LC, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 12 MHz max, with a series resistance (RS) less than or equal to 100 ohms.

The crystal should be connected across XTAL1 and XTAL2 using the vendor's crystal recommended capacitors (which depends on the crystal manufacturer, ceramic resonator and PCB layout) from each pin directly to device Ground pin 14 (Figure 15).

Note that the crystal capacitor loads should be connected to $V_{\rm ss}$ pin 14 to reduce ground noise injection.

To use 32 kHz crystal, the 32 kHz operational mask option must be selected, and an external resistor R must be connected across XTAL1 and XTAL2.To use RC oscillator, the RC oscillator option must be selected.

HALT Mode. This instruction turns off the internal CPU clock but not the crystal oscillation. The counter/timers and external interrupts IRQ0, IRQ1, IRQ2, and IRQ3 remain active. The device can be recovered by interrupts, either externally or internally generated. An interrupt request must be executed (enabled) to exit HALT Mode. After the interrupt service routine, the program continues from the instruction after the HALT.

STOP Mode. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current. The STOP Mode can be released by two methods. The first method is a RESET of the device by removing V_{CC} or dropping the V_{CC} below V_{LV} . The second method is if P27 is at a low level when the device executes the STOP instruction. A low condition on P27 releases the STOP Mode regardless if configured for input or output.

Program execution under both conditions begins at location 000C (Hex). However, when P27 is used to release the STOP Mode, the I/O port mode registers are not reconfigured to their default power-on conditions. This prevents any I/O, configured as output when the STOP instruction was executed, from glitching to an unknown state. To use the P27 release approach with STOP Mode, use the following instruction:

LD	P2M, #1XXX XXXXB
NOP	
STOP	

Note: (X = dependent upon user's application.) In order to enter STOP or HALT Mode, it is necessary to first flush the instruction pipeline to avoid suspending exe-

first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user must execute a NOP (opcode = FFH) immediately before the appropriate sleep instruction, that is, as follows:

Watch-Dog Timer (WDT). The Watch-Dog Timer is enabled by instruction WDT. When the WDT is enabled, it cannot be stopped by the instruction. With the WDT instruction, the WDT should be refreshed once the WDT is enabled within every Twdt period; otherwise, the Z8 resets itself. The WDT instruction affects the Flags accordingly: Z = 1, S = 0, V = 0.

$$WDT = 5F (Hex)$$



Figure 15. Oscillator Configuration

Opcode WDT (5FH). The first time Opcode 5FH is executed, the WDT is enabled, and subsequent execution clears the WDT counter. This has to be done within the maximum T_{WDT} period; otherwise, the WDT times out and generates a Reset. The generated Reset is the same as a Power-On Reset of T_{POR} plus 18 XTAL clock cycles. The WDT does not work (run) in STOP Mode. The WDT is disabled during and after a Reset, until the WDT is enabled again.

Opcode WDH (4FH). When this instruction is executed it will enable the WDT during HALT. If not, the WDT will stop when entering HALT. This instruction does not clear the counters, it facilitates running the WDT function during HALT Mode. A WDH instruction executed without executing WDT (5FH) has no effect.

Permanent WDT Mask Option. Only when the Permanent WDT Mask Option is selected, then the WDT is hardwired to be enabled after reset. The WDT will operate in Run Mode, HALT Mode, and STOP Mode. The Opcode 5FH is used to refresh or clear the WDT counter. The WDT instruction (4FH) has no effect The WDT will not run in STOP Mode if the system clock driving the WDT is selected (Z86C04 only).

System Clock Driving WDT Mask Option (Z86C04 only) When this option is selected, the Z8's system clock drives the WDT instead of the on-board RC oscillator driving the

WDT. The WDT time-out will be SCLK x 32,512. The WDT will not run in STOP Mode.

Low-Voltage Protection (V_{LV}) . Maximum (V_{LV}) Conditions:

Case 1: $T_A = -40$ °C, +85°C, Internal Clock

Frequency equal or less than 6 MHz

Case 2: $T_A = -40$ °C, +105°C, Internal Clock

Frequency equal or less than 4 MHz

Note: The internal clock frequency is one-half the external clock frequency in standard mode.

The device will function normally at or above 3.0V under all conditions. Below 3.0V, the device functions normally until the Low-Voltage Protection trip point (V_{LV}) is reached. The device is guaranteed to function normally at supply voltages above the low voltage trip point for the temperatures and operating frequencies in Cases 1 and 2. The actual low voltage trip point is a function of temperature and process parameters (Figure 16).

1 MHz (Typical)							
Temp	-40C°	0°C	+25°C	+70°C	+105°C	+125°C	
V_{LV}	3.0	2.75	2.6	2.3	2.1	1.9	

ROM Protect. ROM Protect fully protects the Z86C04/C08 ROM code from being read internally. When ROM Protect is selected, ROM look-up tables can be used in this mode.

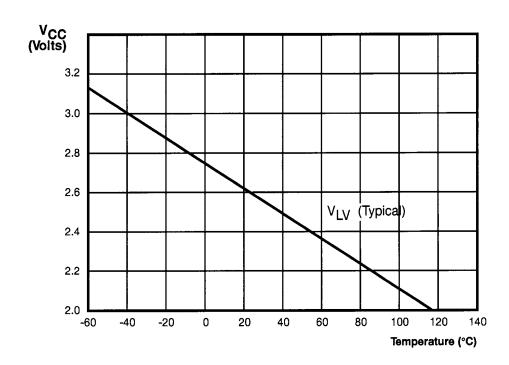


Figure 16. Typical Z86C04/C08 $V_{\scriptscriptstyle LV}$ vs. Temperature

Z8 CONTROL REGISTER DIAGRAMS

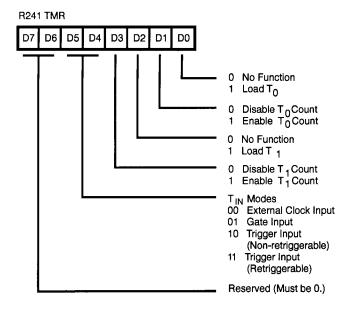


Figure 17. Timer Mode Register (F1_H: Read/Write)

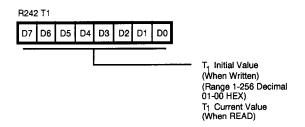


Figure 18. Counter Time 1 Register (F2,: Read/Write)

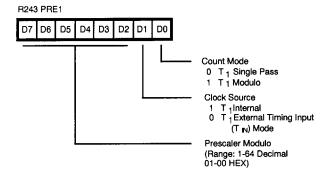


Figure 19. Prescaler 1 Register (F3,: Write Only)

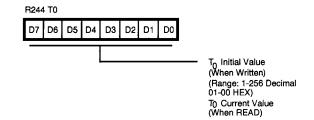


Figure 20. Counter/Timer 0 Register (F4,: Read/Write)

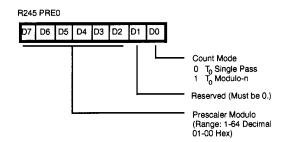


Figure 21. Prescaler 0 Register (F5_u: Write Only)

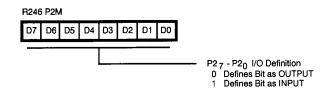


Figure 22. Port 2 Mode Register (F6,: Write Only)

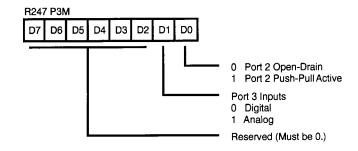


Figure 23. Port 3 Mode Register (F7₁₁: Write Only)

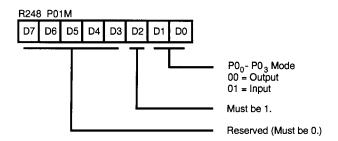


Figure 24. Port 0 and 1 Mode Register (F8,: Write Only)

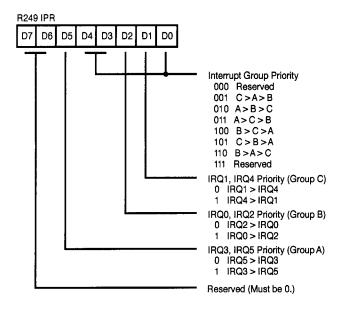


Figure 25. Interrupt Priority Register (F9_H: Write Only)

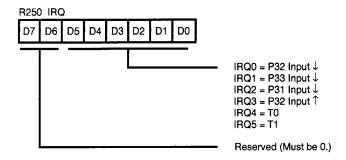


Figure 26. Interrupt Request Register (FA_H: Read/Write)

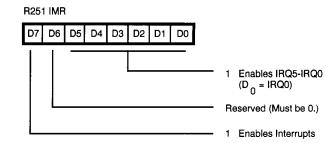


Figure 27. Interrupt Mask Register (FB_H: Read/Write)

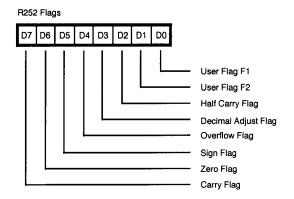


Figure 28. Flag Register (FC_H: Read/Write)

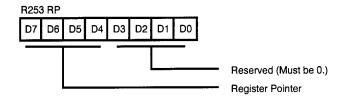


Figure 29. Register Pointer (FD_H: Read/Write)

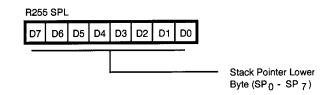


Figure 30. Stack Pointer (FF,: Read/Write)

27

DEVICE CHARACTERISTICS

Standard Mode

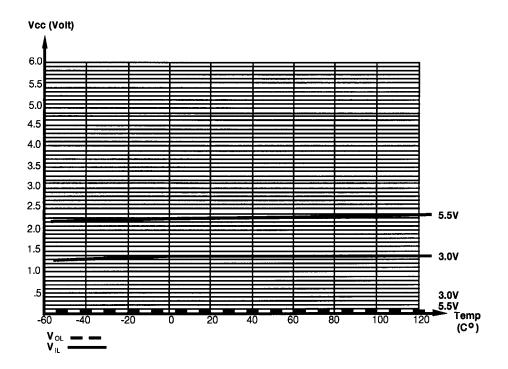


Figure 31. V_{IL} , V_{OL} vs. Temperature

Standard Mode

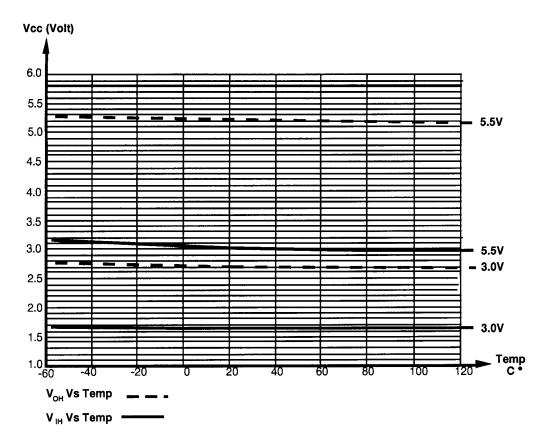


Figure 32. $V_{\rm iri}$, $V_{\rm OH}$ vs. Temperature

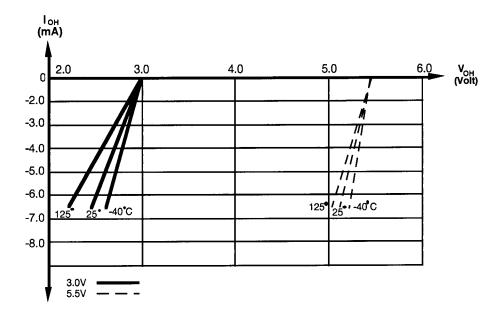
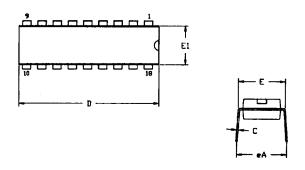
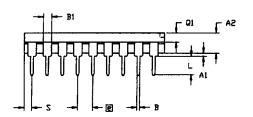
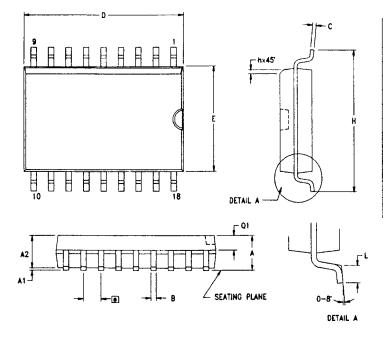




Figure 33. Typical $I_{\rm OH}$ vs. $V_{\rm OH}$

PACKAGE INFORMATION



SYMBOL	MILLI	METER	INCH	
JIIIDEL	NIM	MAX	MIN	MAX
Al	0.51	0.81	.020	.032
_ A2	3.25	3.43	128	.135
В	0.38	0.53	.015	.021
Bi	1.14	1.65	.045	.065
С	0.23	0.38	.009	.015
D	22.35	23.37	.880	.920
E	7.62	8.13	.300	.320
E1	6.22	6.48	.245	.255
22	2.54 TYP		.100 TYP	
eA	7.87	8.89	.310	.350
L	3.18	3.81	.125	.150
Ql	1.52	1.65	.060	.065
2	0.89	1.65	.035	.065

CONTROLLING DIMENSIONS : INCH

Figure 35. 18-Pin DIP Package Diagram

	MILL	METER	INCH		
SYMBOL	MIN	MAX	MIN	MAX	
A	2.40	2.65	0.094	0.104	
A1	0.10	0.30	0.004	0.012	
A2	2.24	2.44	0.088	0.096	
В	0.36	0.46	0.014	0.018	
С	0.23	0.30	0.009	0.012	
D	11.40	11.75	0.449	0.463	
Ε	7.40	7.60	0.291	0.299	
(1.27 TYP		0.050 TYP		
Н	10.00	10.65	0.394	0.419	
h	0.30	0.50	0.012	0.020	
L	0.60	1.00	0.024	0.039	
Q1	0.97	1.07	0.038	0.042	

CONTROLLING DIMENSIONS : MM LEADS ARE COPLANAR WITHIN .004 INCH.

Figure 36. 18-Pin SOIC Package Diagram

ORDERING INFORMATION

Z86C04 (12 MHz) Standard Temperature Z86C08 (12 MHz)

Standard Temperature

18-Pin DIP

18-Pin SOIC Z86C0412SSC 18-Pin DIP Z86C0812PSC 18-Pin SOIC Z86C0812SSC

Z86C0412PSC Extended Temperature

Extended Temperature

18-Pin DIP

18-Pin SOIC

18-Pin DIP

18-Pin SOIC

Z86C0412PEC Z86C0412PAC Z86C0412SEC Z86C0412SAC Z86C0812PEC Z86C0812PAC Z86C0812SEC Z86C0812SAC

For fast results, contact your local Zilog sale offices for assistance in ordering the part(s) desired.

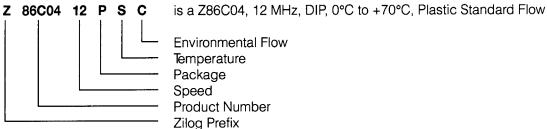
CODES

Preferred Package

P = DIP S = SOIC Longer Lead Time E = -40°C to +105°C A = -40°C to +125°C

Preferred Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$


Speeds

12 = 12 MHz

Environmental

C = Plastic Standard

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or nonconformance with some aspects of the CPS may be found, either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up vield issues.

© 1997 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056

Internet: http://www.zilog.com