
STMicroelectronics - STM32F048C6U6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M0

Core Size 32-Bit Single-Core

Speed 48MHz

Connectivity CANbus, HDMI-CEC, I²C, IrDA, LINbus, SPI, UART/USART, USB

Peripherals DMA, I²S, POR, PWM, WDT

Number of I/O 38

Program Memory Size 32KB (32K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 6K x 8

Voltage - Supply (Vcc/Vdd) 1.65V ~ 1.95V

Data Converters A/D 13x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 48-UFQFN Exposed Pad

Supplier Device Package 48-UFQFPN (7x7)

Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f048c6u6tr

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/stm32f048c6u6tr-4404829
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Embedded Flash memory RM0091

70/1004 DocID018940 Rev 9

Bits 31:14 Reserved, must be kept at reset value.

Bit 13 OBL_LAUNCH: Force option byte loading

When set to 1, this bit forces the option byte reloading. This operation generates a system
reset.

0: Inactive
1: Active

Bit 12 EOPIE: End of operation interrupt enable

This bit enables the interrupt generation when the EOP bit in the FLASH_SR register goes to 1.

0: Interrupt generation disabled
1: Interrupt generation enabled

Bit 11 Reserved, must be kept at reset value

Bit 10 ERRIE: Error interrupt enable

This bit enables the interrupt generation on an error when PGERR / WRPRTERR are set in the
FLASH_SR register.

0: Interrupt generation disabled
1: Interrupt generation enabled

Bit 9 OPTWRE: Option byte write enable

When set, the option byte can be programmed. This bit is set on writing the correct key
sequence to the FLASH_OPTKEYR register.

This bit can be reset by software

Bit 8 Reserved, must be kept at reset value.

Bit 7 LOCK: Lock

Write to 1 only. When it is set, it indicates that the Flash is locked. This bit is reset by hardware
after detecting the unlock sequence.

In the event of unsuccessful unlock operation, this bit remains set until the next reset.

Bit 6 STRT: Start

This bit triggers an ERASE operation when set. This bit is set only by software and reset when
the BSY bit is reset.

Bit 5 OPTER: Option byte erase

Option byte erase chosen.

Bit 4 OPTPG: Option byte programming

Option byte programming chosen.

Bit 3 Reserved, must be kept at reset value.

Bit 2 MER: Mass erase

Erase of all user pages chosen.

Bit 1 PER: Page erase

Page Erase chosen.

Bit 0 PG: Programming

Flash programming chosen.

Power control (PWR) RM0091

86/1004 DocID018940 Rev 9

5.3.4 Stop mode

The Stop mode is based on the Cortex®-M0 deep sleep mode combined with peripheral
clock gating. The voltage regulator can be configured either in normal or low-power mode.
In Stop mode, all clocks in the 1.8 V domain are stopped, the PLL, the HSI and the HSE
oscillators are disabled. SRAM and register contents are preserved.

In the Stop mode, all I/O pins keep the same state as in the Run mode.

Entering Stop mode

Refer to Table 16 for details on how to enter the Stop mode.

To further reduce power consumption in Stop mode, the internal voltage regulator can be put
in low-power mode. This is configured by the LPDS bit of the Power control register
(PWR_CR).

If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory
access is finished.

If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB
access is finished.

In Stop mode, the following features can be selected by programming individual control bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a Reset. See
Section 23.3: IWDG functional description in Section 23: Independent watchdog
(IWDG).

Table 14. Sleep-now

Sleep-now mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0

Refer to the Cortex®-M0 System Control register.

Mode exit

If WFI was used for entry:

Interrupt: Refer to Table 36: Vector table

If WFE was used for entry

Wakeup event: Refer to Section 11.2.3: Event management

Wakeup latency None

Table 15. Sleep-on-exit

Sleep-on-exit Description

Mode entry

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1

Refer to the Cortex®-M0 System Control register.

Mode exit Interrupt: Refer to Table 36: Vector table.

Wakeup latency None

DocID018940 Rev 9 103/1004

RM0091 Reset and clock control (RCC)

136

The LSI RC can be switched on and off using the LSION bit in the Control/status register
(RCC_CSR).

The LSIRDY flag in the Control/status register (RCC_CSR) indicates if the LSI oscillator is
stable or not. At startup, the clock is not released until this bit is set by hardware. An
interrupt can be generated if enabled in the Clock interrupt register (RCC_CIR).

6.2.7 System clock (SYSCLK) selection

Various clock sources can be used to drive the system clock (SYSCLK):

• HSI oscillator

• HSE oscillator

• PLL

• HSI48 oscillator (available only on STM32F04x, STM32F07x and STM32F09x devices)

After a system reset, the HSI oscillator is selected as system clock. When a clock source is
used directly or through the PLL as a system clock, it is not possible to stop it.

A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source which is not yet ready is
selected, the switch will occur when the clock source becomes ready. Status bits in the
Clock control register (RCC_CR) indicate which clock(s) is (are) ready and which clock is
currently used as a system clock.

6.2.8 Clock security system (CSS)

Clock Security System can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

If a failure is detected on the HSE clock, the HSE oscillator is automatically disabled, a clock
failure event is sent to the break input of the advanced-control timers (TIM1) and general-
purpose timers (TIM15, TIM16 and TIM17) and an interrupt is generated to inform the
software about the failure (Clock Security System Interrupt CSSI), allowing the MCU to
perform rescue operations. The CSSI is linked to the Cortex®-M0 NMI (Non-Maskable
Interrupt) exception vector.

Note: Once the CSS is enabled and if the HSE clock fails, the CSS interrupt occurs and an NMI is
automatically generated. The NMI will be executed indefinitely unless the CSS interrupt
pending bit is cleared. As a consequence, in the NMI ISR user must clear the CSS interrupt
by setting the CSSC bit in the Clock interrupt register (RCC_CIR).

If the HSE oscillator is used directly or indirectly as the system clock (indirectly means: it is
used as PLL input clock, and the PLL clock is used as system clock), a detected failure
causes a switch of the system clock to the HSI oscillator and the disabling of the HSE
oscillator. If the HSE clock (divided or not) is the clock entry of the PLL used as system clock
when the failure occurs, the PLL is disabled too.

6.2.9 ADC clock

The ADC clock selection is done inside the ADC_CFGR2 (refer to Section 13.12.5: ADC
configuration register 2 (ADC_CFGR2) on page 263). It can be either the dedicated 14 MHz
RC oscillator (HSI14) connected on the ADC asynchronous clock input or PCLK divided by
2 or 4. The 14 MHz RC oscillator can be configured by software either to be turned on/off
(“auto-off mode”) by the ADC interface or to be always enabled. The HSI 14 MHz RC

Reset and clock control (RCC) RM0091

116/1004 DocID018940 Rev 9

6.4.4 APB peripheral reset register 2 (RCC_APB2RSTR)

Address offset: 0x0C

Reset value: 0x00000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res.
DBGMCU

RST
Res. Res. Res.

TIM17
RST

TIM16
RST

TIM15
RST

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
USART1

RST
Res.

SPI1
RST

TIM1
RST

Res.
ADC
RST

Res.
USART8

RST
USART7R

ST
USART6

RST
Res. Res. Res. Res.

SYSCFG
RST

rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22 DBGMCURST: Debug MCU reset

Set and cleared by software.

0: No effect
1: Reset Debug MCU

Bits 21:19 Reserved, must be kept at reset value.

Bit 18 TIM17RST: TIM17 timer reset

Set and cleared by software.

0: No effect
1: Reset TIM17 timer

Bit 17 TIM16RST: TIM16 timer reset

Set and cleared by software.

0: No effect
1: Reset TIM16 timer

Bit 16 TIM15RST: TIM15 timer reset

Set and cleared by software.

0: No effect
1: Reset TIM15 timer

Bit 15 Reserved, must be kept at reset value.

Bit 14 USART1RST: USART1 reset

Set and cleared by software.

0: No effect
1: Reset USART1

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1RST: SPI1 reset

Set and cleared by software.

0: No effect
1: Reset SPI1

Reset and clock control (RCC) RM0091

132/1004 DocID018940 Rev 9

6.4.13 Clock configuration register 3 (RCC_CFGR3)

Address: 0x30

Reset value: 0x0000 0000

Access: no wait states, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. USART3SW[1:0] USART2SW[1:0]

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res.
ADC
SW

USB
SW

CEC
SW

Res.
I2C1
SW

Res. Res. USART1SW[1:0]

rw rw rw rw rw rw

Bits 31:20 Reserved, must be kept at reset value.

Bits 19:18 USART3SW[1:0]: USART3 clock source selection (available only on STM32F09x devices)

This bit is set and cleared by software to select the USART3 clock source.

00: PCLK selected as USART3 clock source (default)
01: System clock (SYSCLK) selected as USART3 clock
10: LSE clock selected as USART3 clock
11: HSI clock selected as USART3 clock

Bits 17:16 USART2SW[1:0]: USART2 clock source selection (available only on STM32F07x and
STM32F09x devices)

This bit is set and cleared by software to select the USART2 clock source.

00: PCLK selected as USART2 clock source (default)
01: System clock (SYSCLK) selected as USART2 clock
10: LSE clock selected as USART2 clock
11: HSI clock selected as USART2 clock

Bits 15:9 Reserved, must be kept at reset value.

Bit 8 ADCSW: ADC clock source selection

Obsolete setting. To be kept at reset value, connecting the HSI14 clock to the ADC
asynchronous clock input. Proper ADC clock selection is done inside the ADC_CFGR2 (refer
to Section 13.12.5: ADC configuration register 2 (ADC_CFGR2) on page 263).

Bit 7 USBSW: USB clock source selection

This bit is set and cleared by software to select the USB clock source.

0: HSI48 clock selected as USB clock source (default)
1: PLL clock (PLLCLK) selected as USB clock

Bit 6 CECSW: HDMI CEC clock source selection

This bit is set and cleared by software to select the CEC clock source.

0: HSI clock, divided by 244, selected as CEC clock (default)
1: LSE clock selected as CEC clock

Bit 5 Reserved, must be kept at reset value.

DocID018940 Rev 9 229/1004

RM0091 Analog-to-digital converter (ADC)

267

13.3 ADC pins and internal signals

Table 41. ADC internal signals

Internal signal
name

Signal type Description

TRGx Input ADC conversion triggers

VSENSE Input Internal temperature sensor output voltage

VREFINT Input Internal voltage reference output voltage

VBAT/2 Input VBAT pin input voltage divided by 2

Table 42. ADC pins

Name Signal type Remarks

VDDA
Input, analog power
supply

Analog power supply and positive reference voltage
for the ADC, VDDA ≥ VDD

VSSA
Input, analog supply
ground

Ground for analog power supply. Must be at VSS
potential

ADC_IN[15:0] Analog input signals 16 analog input channels

DocID018940 Rev 9 267/1004

RM0091 Analog-to-digital converter (ADC)

267

13.12.11 ADC register map

The following table summarizes the ADC registers.

Refer to Section 2.2.2 on page 46 for the register boundary addresses.

Table 50. ADC register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
ADC_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
W

D

R
es

.

R
es

.

O
V

R

E
O

S
E

Q

E
O

C

E
O

S
M

P

A
D

R
D

Y

Reset value 0 0 0 0 0 0

0x04
ADC_IER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
W

D
IE

R
es

.

R
es

.

O
V

R
IE

E
O

S
E

Q
IE

E
O

C
IE

E
O

S
M

P
IE

A
D

R
D

Y
IE

Reset value 0 0 0 0 0 0

0x08
ADC_CR

A
D

C
A

L

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
D

S
T

P

R
es

.

A
D

S
TA

R
T

A
D

D
IS

A
D

E
N

Reset value 0 0 0 0 0

0x0C
ADC_CFGR1

R
es

.

AWDCH[4:0]

R
es

.

R
es

.

A
W

D
E

N

A
W

D
S

G
L

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
IS

C
E

N

A
U

T
O

F
F

W
A

IT

C
O

N
T

O
V

R
M

O
D

E
X

T
E

N
[1

:0
]

R
es

. EXTSEL
[2:0]

A
L

IG
N RES

[1:0]

S
C

A
N

D
IR

D
M

A
C

F
G

D
M

A
E

N

Reset value 0

0x10
ADC_CFGR2

C
K

M
O

D
E

[1
:0

]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0

0x14
ADC_SMPR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. SMP
[2:0]

Reset value 0 0 0
0x18 Reserved Reserved
0x1C Reserved Reserved

0x20
ADC_TR

R
es

.

R
es

.

R
es

.

R
es

.

HT[11:0]

R
es

.

R
es

.

R
es

.

R
es

.

LT[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0x24 Reserved Reserved

0x28
ADC_CHSELR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
H

S
E

L1
8

C
H

S
E

L1
7

C
H

S
E

L1
6

C
H

S
E

L1
5

C
H

S
E

L1
4

C
H

S
E

L1
3

C
H

S
E

L1
2

C
H

S
E

L
11

C
H

S
E

L1
0

C
H

S
E

L
9

C
H

S
E

L
8

C
H

S
E

L
7

C
H

S
E

L
6

C
H

S
E

L
5

C
H

S
E

L
4

C
H

S
E

L
3

C
H

S
E

L
2

C
H

S
E

L
1

C
H

S
E

L
0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x2C
0x30
0x34
0x38
0x3C

Reserved Reserved

0x40
ADC_DR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x44

...
0x304

Reserved Reserved

0x308
ADC_CCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

V
B

A
T

E
N

T
S

E
N

V
R

E
F

E
N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0

DocID018940 Rev 9 331/1004

RM0091 Advanced-control timers (TIM1)

392

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 73. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 17.4: TIM1 registers on page 367).

CK_PSC

02

CNT_EN

 Timer clock = CK_CNT

Counter register

Update interrupt flag (UIF)

Counter underflow

Update event (UEV)

03 04 05 06 05 04 0303 02 01 00 0104

Counter overflow

Advanced-control timers (TIM1) RM0091

376/1004 DocID018940 Rev 9

17.4.7 TIM1 capture/compare mode register 1 (TIM1_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.

0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

Bit 5 COMG: Capture/Compare control update generation

This bit can be set by software, it is automatically cleared by hardware

0: No action
1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits

Note: This bit acts only on channels having a complementary output.

Bit 4 CC4G: Capture/Compare 4 generation

Refer to CC1G description

Bit 3 CC3G: Capture/Compare 3 generation

Refer to CC1G description

Bit 2 CC2G: Capture/Compare 2 generation

Refer to CC1G description

Bit 1 CC1G: Capture/Compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.

0: No action
1: A capture/compare event is generated on channel 1:

If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set, the
corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the CC1IF
flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.

0: No action
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

DocID018940 Rev 9 501/1004

RM0091 General-purpose timers (TIM15/16/17)

546

on page 522 for more details. In particular, the dead-time is activated when switching to the
IDLE state (MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the
break circuit is present. There is one 10-bit dead-time generator for each channel. From a
reference waveform OCxREF, it generates 2 outputs OCx and OCxN. If OCx and OCxN are
active high:

• The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

• The OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the
corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1 in these examples)

Figure 189. Complementary output with dead-time insertion

Figure 190. Dead-time waveforms with delay greater than the negative pulse

DocID018940 Rev 9 511/1004

RM0091 General-purpose timers (TIM15/16/17)

546

20.5.2 TIM15 control register 2 (TIM15_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller

Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock and gated mode can work only if the CEN bit has been previously set by
software. However trigger mode can set the CEN bit automatically by hardware.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. OIS2 OIS1N OIS1 Res. MMS[2:0] CCDS CCUS Res. CCPC

rw rw rw rw rw rw rw rw rw

Bit 15:11 Reserved, always read as 0.

Bit 10 OIS2: Output idle state 2 (OC2 output)

0: OC2=0 when MOE=0
1: OC2=1 when MOE=0

Note: This bit cannot be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in the TIMx_BKR register).

Bit 9 OIS1N: Output Idle state 1 (OC1N output)

0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).

Bit 8 OIS1: Output Idle state 1 (OC1 output)

0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BKR register).

Bit 7 Reserved, always read as 0.

General-purpose timers (TIM15/16/17) RM0091

520/1004 DocID018940 Rev 9

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

Bits 7:4 IC1F[3:0]: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied to
TI1. The digital filter is made of an event counter in which N consecutive events are needed to validate
a transition on the output:

0000: No filter, sampling is done at fDTS
0001: fSAMPLING = fCK_INT, N = 2
0010: fSAMPLING = fCK_INT, N = 4
0011: fSAMPLING = fCK_INT, N = 8
0100: fSAMPLING = fDTS / 2, N = 6
0101: fSAMPLING = fDTS / 2, N = 8
0110: fSAMPLING = fDTS / 4, N = 6
0111: fSAMPLING = fDTS / 4, N = 8
1000: fSAMPLING = fDTS / 8, N = 6
1001: fSAMPLING = fDTS / 8, N = 8
1010: fSAMPLING = fDTS / 16, N = 5
1011: fSAMPLING = fDTS / 16, N = 6
1100: fSAMPLING = fDTS / 16, N = 8
1101: fSAMPLING = fDTS / 32, N = 5
1110: fSAMPLING = fDTS / 32, N = 6
1111: fSAMPLING = fDTS / 32, N = 8

Note: Care must be taken that fDTS is replaced in the formula by CK_INT when ICxF[3:0] = 1, 2 or 3.

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).

00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.

00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

Real-time clock (RTC) RM0091

600/1004 DocID018940 Rev 9

25.7.4 RTC initialization and status register (RTC_ISR)

This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure
is described in RTC register write protection on page 584.

Address offset: 0x0C

RTC domain reset value: 0x0000 0007

System reset: not affected except INIT, INITF, and RSF bits which are cleared to ‘0’

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RECALPF

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAMP3F TAMP2F TAMP1F TSOVF TSF WUTF Res. ALRAF INIT INITF RSF INITS SHPF WUTWF Res. ALRAWF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rw r rc_w0 r r r r

Bits 31:17 Reserved, must be kept at reset value

Bit 16 RECALPF: Recalibration pending Flag

The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR
register, indicating that the RTC_CALR register is blocked. When the new calibration settings
are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly.

Bit 15 TAMP3F: RTC_TAMP3 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP3
input.
It is cleared by software writing 0

Bit 14 TAMP2F: RTC_TAMP2 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP2
input.

It is cleared by software writing 0

Bit 13 TAMP1F: RTC_TAMP1 detection flag

This flag is set by hardware when a tamper detection event is detected on the RTC_TAMP1
input.

It is cleared by software writing 0

Bit 12 TSOVF: Time-stamp overflow flag

This flag is set by hardware when a time-stamp event occurs while TSF is already set.

This flag is cleared by software by writing 0. It is recommended to check and then clear
TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a time-
stamp event occurs immediately before the TSF bit is cleared.

Bit 11 TSF: Time-stamp flag

This flag is set by hardware when a time-stamp event occurs.

This flag is cleared by software by writing 0.

Bit 10 WUTF: Wakeup timer flag

This flag is set by hardware when the wakeup auto-reload counter reaches 0.
This flag is cleared by software by writing 0.
This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1
again.

Bit 9 Reserved, must be kept at reset value.

Inter-integrated circuit (I2C) interface RM0091

642/1004 DocID018940 Rev 9

• If the master addresses a 10-bit address slave, transmits data to this slave and then
reads data from the same slave, a master transmission flow must be done first. Then a
repeated start is set with the 10 bit slave address configured with HEAD10R=1. In this
case the master sends this sequence: ReStart + Slave address 10-bit header Read.

Figure 230. 10-bit address read access with HEAD10R=1

Master transmitter

In the case of a write transfer, the TXIS flag is set after each byte transmission, after the 9th
SCL pulse when an ACK is received.

A TXIS event generates an interrupt if the TXIE bit is set in the I2C_CR1 register. The flag is
cleared when the I2C_TXDR register is written with the next data byte to be transmitted.

The number of TXIS events during the transfer corresponds to the value programmed in
NBYTES[7:0]. If the total number of data bytes to be sent is greater than 255, reload mode
must be selected by setting the RELOAD bit in the I2C_CR2 register. In this case, when
NBYTES data have been transferred, the TCR flag is set and the SCL line is stretched low
until NBYTES[7:0] is written to a non-zero value.

The TXIS flag is not set when a NACK is received.

• When RELOAD=0 and NBYTES data have been transferred:

– In automatic end mode (AUTOEND=1), a STOP is automatically sent.

– In software end mode (AUTOEND=0), the TC flag is set and the SCL line is
stretched low in order to perform software actions:

A RESTART condition can be requested by setting the START bit in the I2C_CR2
register with the proper slave address configuration, and number of bytes to be
transferred. Setting the START bit clears the TC flag and the START condition is
sent on the bus.

A STOP condition can be requested by setting the STOP bit in the I2C_CR2
register. Setting the STOP bit clears the TC flag and the STOP condition is sent on
the bus.

• If a NACK is received: the TXIS flag is not set, and a STOP condition is automatically
sent after the NACK reception. the NACKF flag is set in the I2C_ISR register, and an
interrupt is generated if the NACKIE bit is set.

DocID018940 Rev 9 653/1004

RM0091 Inter-integrated circuit (I2C) interface

686

When configured as a host (SMBHEN=1), the ALERT flag is set in the I2C_ISR register
when a falling edge is detected on the SMBA pin and ALERTEN=1. An interrupt is
generated if the ERRIE bit is set in the I2C_CR1 register. When ALERTEN=0, the ALERT
line is considered high even if the external SMBA pin is low.

If the SMBus ALERT pin is not needed, the SMBA pin can be used as a standard GPIO if
ALERTEN=0.

Packet error checking

A packet error checking mechanism has been introduced in the SMBus specification to
improve reliability and communication robustness. Packet Error Checking is implemented
by appending a Packet Error Code (PEC) at the end of each message transfer. The PEC is
calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial on all the message bytes
(including addresses and read/write bits).

The peripheral embeds a hardware PEC calculator and allows to send a Not Acknowledge
automatically when the received byte does not match with the hardware calculated PEC.

Timeouts

This peripheral embeds hardware timers in order to be compliant with the 3 timeouts defined
in SMBus specification version 2.0.

 .

Table 94. SMBus timeout specifications

Symbol Parameter
Limits

Unit
Min Max

tTIMEOUT Detect clock low timeout 25 35 ms

tLOW:SEXT
(1)

1. tLOW:SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in one message
from the initial START to the STOP. It is possible that, another slave device or the master will also extend
the clock causing the combined clock low extend time to be greater than tLOW:SEXT. Therefore, this
parameter is measured with the slave device as the sole target of a full-speed master.

Cumulative clock low extend time (slave device) - 25 ms

tLOW:MEXT
(2)

2. tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a
message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device
or another master will also extend the clock causing the combined clock low time to be greater than
tLOW:MEXT on a given byte. Therefore, this parameter is measured with a full speed slave device as the sole
target of the master.

Cumulative clock low extend time (master device) - 10 ms

DocID018940 Rev 9 661/1004

RM0091 Inter-integrated circuit (I2C) interface

686

Figure 241. Bus transfer diagrams for SMBus slave receiver (SBC=1)

This section is relevant only when SMBus feature is supported. Please refer to Section 26.3:
I2C implementation.

In addition to I2C master transfer management (refer to Section 26.4.9: I2C master mode)
some additional software flowcharts are provided to support SMBus.

SMBus Master transmitter

When the SMBus master wants to transmit the PEC, the PECBYTE bit must be set and the
number of bytes must be programmed in the NBYTES[7:0] field, before setting the START
bit. In this case the total number of TXIS interrupts will be NBYTES-1. So if the PECBYTE
bit is set when NBYTES=0x1, the content of the I2C_PECR register is automatically
transmitted.

If the SMBus master wants to send a STOP condition after the PEC, automatic end mode
should be selected (AUTOEND=1). In this case, the STOP condition automatically follows
the PEC transmission.

DocID018940 Rev 9 703/1004

RM0091 Universal synchronous asynchronous receiver transmitter (USART)

754

27.5.4 USART baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the USART_BRR register.

Equation 1: Baud rate for standard USART (SPI mode included) (OVER8 = 0 or 1)

In case of oversampling by 16, the equation is:

In case of oversampling by 8, the equation is:

Equation 2: Baud rate in Smartcard, LIN and IrDA modes (OVER8 = 0)

In Smartcard, LIN and IrDA modes, only Oversampling by 16 is supported:

USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register.

• When OVER8 = 0, BRR = USARTDIV.

• When OVER8 = 1

– BRR[2:0] = USARTDIV[3:0] shifted 1 bit to the right.

– BRR[3] must be kept cleared.

– BRR[15:4] = USARTDIV[15:4]

Note: The baud counters are updated to the new value in the baud registers after a write operation
to USART_BRR. Hence the baud rate register value should not be changed during
communication.

In case of oversampling by 16 or 8, USARTDIV must be greater than or equal to 0d16.

How to derive USARTDIV from USART_BRR register values

Example 1

To obtain 9600 baud with fCK = 8 MHz.

• In case of oversampling by 16:

USARTDIV = 8 000 000/9600

BRR = USARTDIV = 833d = 0341h

• In case of oversampling by 8:

USARTDIV = 2 * 8 000 000/9600

USARTDIV = 1666,66 (1667d = 683h)

BRR[3:0] = 3h << 1 = 1h

BRR = 0x681

Tx/Rx baud
fCK

USARTDIV
--------------------------------=

Tx/Rx baud
2 fCK×

USARTDIV
--------------------------------=

Tx/Rx baud
fCK

USARTDIV
--------------------------------=

Universal synchronous asynchronous receiver transmitter (USART) RM0091

754/1004 DocID018940 Rev 9

Refer to Section 2.2 on page 45 for the register boundary addresses.

0x1C
USART_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
E

A
C

K

T
E

A
C

K

W
U

F

R
W

U

S
B

K
F

C
M

F

B
U

S
Y

A
B

R
F

A
B

R
E

R
es

.

E
O

B
F

R
T

O
F

C
T

S

C
T

S
IF

L
B

D
F

T
X

E

T
C

R
X

N
E

ID
L

E

O
R

E

N
F

F
E

P
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0

0x20
USART_ICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

W
U

C
F

R
es

.

R
es

.

C
M

C
F

R
es

.

R
es

.

R
es

.

R
es

.

E
O

B
C

F

R
T

O
C

F

R
es

.

C
T

S
C

F

L
B

D
C

F

R
es

.

T
C

C
F

R
es

.

ID
L

E
C

F

O
R

E
C

F

N
C

F

F
E

C
F

P
E

C
F

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
USART_RDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RDR[8:0]

Reset value X X X X X X X X X

0x28
USART_TDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TDR[8:0]

Reset value X X X X X X X X X

Table 110. USART register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID018940 Rev 9 855/1004

RM0091 Controller area network (bxCAN)

0x184
CAN_TDT0R TIME[15:0]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
G

T

R
es

.

R
es

.

R
es

.

R
es

.

DLC[3:0]

Reset value x x x x x x x x x x x x x x x x - - - - - - - x - - - - x x x x

0x188
CAN_TDL0R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x18C
CAN_TDH0R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x190
CAN_TI1R STID[10:0]/EXID[28:18] EXID[17:0] ID

E

R
T

R

T
X

R
Q

Reset value x 0

0x194
CAN_TDT1R TIME[15:0]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
G

T

R
es

.

R
es

.

R
es

.

R
es

.

DLC[3:0]

Reset value x x x x x x x x x x x x x x x x - - - - - - - x - - - - x x x x

0x198
CAN_TDL1R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x19C
CAN_TDH1R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x1A0
CAN_TI2R STID[10:0]/EXID[28:18] EXID[17:0] ID

E

R
T

R

T
X

R
Q

Reset value x 0

0x1A4
CAN_TDT2R TIME[15:0]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
G

T

R
es

.

R
es

.

R
es

.

R
es

.

DLC[3:0]

Reset value x x x x x x x x x x x x x x x x - - - - - - - x - - - - x x x x

0x1A8
CAN_TDL2R DATA3[7:0] DATA2[7:0] DATA1[7:0] DATA0[7:0]

Reset value x

0x1AC
CAN_TDH2R DATA7[7:0] DATA6[7:0] DATA5[7:0] DATA4[7:0]

Reset value x

0x1B0
CAN_RI0R STID[10:0]/EXID[28:18] EXID[17:0] ID

E

R
T

R

R
es

.

Reset value x -

Table 118. bxCAN register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Code examples RM0091

964/1004 DocID018940 Rev 9

/* (2) Force update generation (UG = 1) */
TIM_CAR->CR1 |= TIM_CR1_CEN; /* (1) */
TIM_CAR->EGR |= TIM_EGR_UG; /* (2) */
/* Configure TIM_ENV interrupt */
/* (1) Enable Interrupt on TIM_ENV */
/* (2) Set priority for TIM_ENV */
NVIC_EnableIRQ(TIM_ENV_IRQn); /* (1) */
NVIC_SetPriority(TIM_ENV_IRQn,0); /* (2) */

A.10.2 IRQHandler for IRTIM code example

/**
 * Description: This function handles TIM_16 interrupt request.
 * This interrupt subroutine computes the laps between 2
 * rising edges on T1IC.
 * This laps is stored in the "Counter" variable.
 */
void TIM16_IRQHandler(void)
{
 uint8_t bit_msg = 0;

 if ((SendOperationReady == 1)
 && (BitsSentCounter < (RC5_GlobalFrameLength * 2)))
 {
 if (BitsSentCounter < 32)
 {
 SendOperationCompleted = 0x00;
 bit_msg = (uint8_t)((ManchesterCodedMsg >> BitsSentCounter)& 1);

 if (bit_msg== 1)
 {
 /* Force active level - OC1REF is forced high */
 TIM_ENV->CCMR1 |= TIM_CCMR1_OC1M_0;
 }
 else
 {
 /* Force inactive level - OC1REF is forced low */
 TIM_ENV->CCMR1 &= (uint16_t)(~TIM_CCMR1_OC1M_0);
 }
 }
 BitsSentCounter++;
 }
 else
 {
 SendOperationCompleted = 0x01;
 SendOperationReady = 0;
 BitsSentCounter = 0;
 }
 /* Clear TIM_ENV update interrupt */
 TIM_ENV->SR &= (uint16_t)(~TIM_SR_UIF);
}

