
Infineon Technologies - CYPD3174-16SXQ Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

Details	
Product Status	Active
Applications	USB Type C
Core Processor	ARM® Cortex®-M0
Program Memory Type	FLASH (64kB)
Controller Series	-
RAM Size	8K x 8
Interface	I²C, SPI, UART
Number of I/O	5
Voltage - Supply	3V ~ 24.5V
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cypd3174-16sxq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

priate voltage on VBUS pin as per the negotiated contract with the peer device over Type-C.

Integrated Digital Blocks

Serial Communication Blocks (SCB)

EZ-PD CCG3PA has two SCBs, which can be configured to implement an I^2 C, SPI, or UART interface. The hardware I^2 C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as master or slave.

In the I^2C mode, the SCB blocks are capable of operating at speeds of up to 1 Mbps (Fast Mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I^2C that creates a mailbox address range in the memory of EZ-PD CCG3PA and effectively reduce I^2C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read data on time.

The I²C peripherals are compatible with the I²C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/Os are implemented with GPIO in open-drain modes.

The I^2C port on the SCB blocks of EZ-PD CCG3PA are not completely compliant with the I^2C spec in the following aspects:

- The GPIO cells for SCB 1's I²C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.
- Fast-mode Plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load.

Timer/Counter/PWM Block (TCPWM)

EZ-PD CCG3PA has four TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an input signal (timer),

find the number of times a particular event occurs (counter), generate PWM signals, or decode quadrature signals.

I/O Subsystem

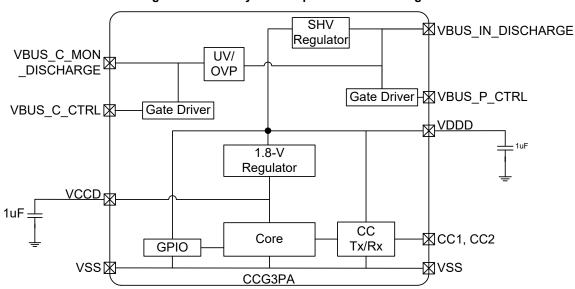
EZ-PD CCG3PA has up to 12 GPIOs of which, some of them can be re-purposed to support functions of SCB (I^2C , UART, SPI). GPIO pins P0.0 and P0.1 are overvoltage-tolerant (OVT) (upto 7V).

The GPIO block implements the following:

- Seven drive strength modes:
 - □ Input only
- □ Weak pull-up with strong pull-down
- □ Strong pull-up with weak pull-down
- Open drain with strong pull-down
- Open drain with strong pull-up
- Strong pull-up with strong pull-down
- Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL)
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode)
- Selectable slew rates for dV/dt related noise control to improve EMI

During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Port pins P1.0 and P1.1 can be configured to indicate Fault for OCP/SCP/OVP/UVP conditions. Any two fault conditions can be mapped to two GPIOs or all the four faults can be OR'ed to indicate over one GPIO.



Power Systems Overview

CCG3PA can operate from two possible external supply sources: VBUS_IN_DISCHARGE (3.0 V–24.5 V) or VDDD (2.7 V–5.5 V). When powered through VBUS_IN_DISCHARGE, the internal regulator generates VDDD of 3.3 V for chip operation. The regulated supply, VDDD, is either used directly inside some analog blocks or further regulated down to VCCD (1.8 V), which powers majority of the core using the regulators. CCG3PA has three different power modes: Active, Sleep, and Deep Sleep. Transitions between these power modes are managed by the power system. When powered through the VBUS_IN_DISCHARGE pin, VDDD cannot be used to power external devices and should be connected to a 1-µF capacitor for the regulator stability only. These pins are not supported as power supplies. Refer to the application diagrams for capacitor connections.

Table 1. CCG3PA Power Modes

Mode	Description
Power-On Reset (POR)	Power is valid and an internal reset source is asserted or SleepController is sequencing the system out of reset.
ACTIVE	Power is valid and CPU is executing instructions.
SLEEP	Power is valid and CPU is not executing instructions. All logic that is not operating is clock gated to save power.
DEEP SLEEP	Main regulator and most blocks are shut off. DeepSleep regulator powers logic, but only low-frequency clock is available.

Figure 1. Power System Requirement Block Diagram

Pinouts

Table 2. CCG3PA Pin Descriptions

Tolerant to temporary short to VBUS pin.	24-Pin QFN	16-Pin SOIC	Pin Name	Description
2 - P1.1 SP01 1 pit 1: GPIOUART 1, RTS/2C_SCL_1 ^{11/} TCPWM_line_1 ^{18/} , Programmable 3 5 VBUS_P_CTRL Provider (PMOS) FET control (30-V Tolerant) 1: Path OFF 4 - VBUS_C_CTRL VBUS Consumer (PMOS) FET control (30-V Tolerant) 2: Path OFF 5 - DP1/P1.2 USB 0+/Port 1 pin 2: GPIO/UART_1_TX1/AFC/QC/BC 1.2/Apple Charging/No IEC 6 - DM1/P1.3 USB D-/Port 1 pin 3: GPIO/UART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC 7 6 SWD_DAT_0/P0.0 Port 0 pin 0: GPIO/OVART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC 7 6 SWD_CLK_0/P0.1 Port 2 pin 0: GPIO/UART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC 7 6 SWD_CLK_0/P0.1 Port 2 pin 0: GPIO/UART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC 10 - DP2.1 Port 2 pin 0: GPIO/VART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC 11 9 VBUS_C_MON_DIS- CHARGE Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 2: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin. 13 - P2.3 Port 2 pin 2: GPIO with Open drain with pu	1	-	P1.0	Port 1 pin 0: GPIO/UART_1_CTS/I2C_SDA_1 ^[1] / TCPWM_line_0 ^[2] , Programmable SCP/OCP/OVP/UVP Fault indication
3 5 VBUS_P_CTRL 0: Path ON I: Path OFF 4 - VBUS_C_CTRL VBUS_CONSUMER (PMOS) FET Control (30-V Tolerant) 0: Path ON Z: Path OFF 5 - DP1/P12 USB D-/Port 1 pin 2: GPIO/UART_1_TX1/AFC/QC/BC 1.2/Apple Charging/No IEC 6 - DM1/P1.3 USB D-/Port 1 pin 3: GPIO/UART_1_TX1/AFC/QC/BC 1.2/Apple Charging/No IEC 7 6 SWD_DAT_0/P0.0 Port 0 pin 0: GPIO/OVT/I2C_SDA_0/TCPWM_line_1/UART_0_CTS 8 7 SWD_CLK_0/P0.1 Port 0 pin 1: GPIO/UART_1_TX1/AFC/QC/BC 1.2/Apple Charging/No IEC 9 8 AXRES/P2.0 Port 2 pin 0: GPIO/OVT/I2C_SCL_0/TCPWM_line_1/UART_0_TX0 10 - P2.1 Port 2 pin 0: GPIO/OVT/I2C_SCL_0/TCPWM_line_1/UART_0_RX0 11 9 VBUS_C_MON_DIS- CHARGE Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 3: GPIO with Open drain with pul-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC Tolerant to temporary short to VBUS pin. 13 - P2.3 Port 2 pin 3: GPIO with Open drain with pul-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC Tolerant to temporary short to VBUS pin. 14 10 CC2 Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin.	2	_	P1.1	Port 1 pin 1: GPIO/UART_1_RTS/I2C_SCL_1 ^[1] / TCPWM_line_1 ^[3] , Programmable SCP/OCP/OVP/UVP Fault indication
4 - VBUS_C_CTRL 0: Path ON Z: Path OFF 5 - DP1/P1.2 USB D+/Port 1 pin 2: GPI0/UART_1_TX1/AFC/QC/BC 1.2/Apple Charging/No IEC 6 - DM1/P1.3 USB D-/Port 1 pin 3: GPI0/UART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC 7 6 SWD_DAT_0/P0.0 Port 0 pin 0: GPI0/OVT/I2C_SDA_0/TCPWM_line_0/UART_0_CTS 8 7 SWD_CLK_0/P0.1 Port 0 pin 1: GPI0/OVT/I2C_SCL_0/TCPWM_line_1/UART_0_RTS 9 8 AXRES/P2.0 Port 2 pin 0: GPI0/Alternate XRES ^[4] /TCPWM_line_0/UART_0_TX0 10 - P2.1 Port 2 pin 1: GPI0/TCPWM_line_1//UART_0_RX0 11 9 VBUS_C_MON_DIS- CHARGE Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 2: GPI0 with Open drain with pull-up assist. Configurable as GPI0_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin. 13 - P2.3 Port 2 pin 3: GPIO with Open drain with pull-up assist. Configurable as GPI0_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin. 14 10 CC2 Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 15 11 CC1 Communication Channel	3	5	VBUS_P_CTRL	0: Path ON
6 - DM1/P1.3 USB D-/Port 1 pin 3: GPIO/UART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC 7 6 SWD_DAT_0/P0.0 Port 0 pin 0: GPIO/OVT/I2C_SDA_0/TCPWM_line_0/UART_0_CTS 8 7 SWD_CLK_0/P0.1 Port 0 pin 1: GPIO/OVT/I2C_SCL_0/TCPWM_line_1/UART_0_RTS 9 8 AXRES/P2.0 Port 2 pin 0: GPIO/Alternate XRES ^[4] /TCPWM_line_0//UART_0_TX0 10 - P2.1 Port 2 pin 1: GPIO/TCPWM_line_1//UART_0_RX0 11 9 VBUS C_MON DIS- CHARGE_IS Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 2: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SDA_1/IEC. Tolerant to temporary short to VBUS pin. 13 - P2.3 Port 2 pin 3: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin. 14 10 CC2 Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 16 12 DM0/P3.1 USB D-/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 17 13 DP0/P3.0 USB D-/Port 3 pin 0: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 18 14 VBUS IN DIS CHARGE VBUS Power IN (3.0 V-24.5 V) with Internal D	4	-	VBUS_C_CTRL	0: Path ON
7 6 SWD_DAT_0/P0.0 Port 0 pin 0: GPI0/OVT/I2C_SDA_0/TCPWM_line_0/UART_0_CTS 8 7 SWD_CLK_0/P0.1 Port 0 pin 1: GPI0/OVT/I2C_SCL_0/TCPWM_line_1/UART_0_RTS 9 8 AXRES/P2.0 Port 2 pin 0: GPI0/Alternate XRES ⁽⁴⁾ /TCPWM_line_0/UART_0_TX0 10 - P2.1 Port 2 pin 0: GPI0/Alternate XRES ⁽⁴⁾ /TCPWM_line_0/UART_0_TX0 11 9 VBUS_C_MON_DIS- CHARGE Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 2: GPI0 with Open drain with pull-up assist. Configurable as GPI0_20VT/I2C_SDA_1/IEC 13 - P2.3 Fort 2 pin 3: GPI0 with Open drain with pull-up assist. Configurable as GPI0_20VT/I2C_SCL_1/IEC. 14 10 CC2 Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 15 11 CC1 Communication Channel 1 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 16 12 DM0/P3.1 USB b-/Port 3 pin 1: GPI0/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 17 13 DP0/P3.0 USB b-/Port 3 pin 0: GPI0/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 18 14 VBUS_IN_DIS CHARGES VBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET	5	-	DP1/P1.2	USB D+/Port 1 pin 2: GPIO/UART_1_TX1/AFC/QC/BC 1.2/Apple Charging/No IEC
8 7 SWD_CLK_0/P0.1 Port 0 pin 1: GPIO/OVT/I2C_SCL_0/TCPWM_line_1/UART_0_RTS 9 8 AXRES/P2.0 Port 2 pin 0: GPIO/Alternate XRES ^[4] /TCPWM_line_0//UART_0_TX0 10 - P2.1 Port 2 pin 1: GPIO/TCPWM_line_1//UART_0_RX0 11 9 VBUS_C_MON_DIS CHARGE Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 3: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SDA_1/IEC Tolerant to temporary short to VBUS pin. 13 - P2.3 Port 2 pin 3: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin. 14 10 CC2 Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 15 11 CC1 Communication Channel 1 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 16 12 DM0/P3.1 USB D-/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 17 13 DP0/P3.0 USB D+/Port 3 pin 0: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 18 14 VBUS IN_DIS CHARGE VBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET 19 16 CSP CS +: Current sense input <td>6</td> <td>-</td> <td>DM1/P1.3</td> <td>USB D-/Port 1 pin 3: GPIO/UART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC</td>	6	-	DM1/P1.3	USB D-/Port 1 pin 3: GPIO/UART_1_RX1/AFC/QC/BC 1.2/Apple Charging/No IEC
9 8 AXRES/P2.0 Port 2 pin 0: GPIO/Alternate XRES ^[4] /TCPWM_line_0//UART_0_TX0 10 - P2.1 Port 2 pin 1: GPIO/TCPWM_line_1//UART_0_RX0 11 9 VBUS_C_MON_DIS- CHARGE Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 2: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SDA_1/IEC. Tolerant to temporary short to VBUS pin. 13 - P2.3 Port 2 pin 3: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin. 14 10 CC2 Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 15 11 CC1 Communication Channel 1 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 16 12 DM0/P3.1 USB D-/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 17 13 DP0/P3.0 USB D+/Port 3 pin 0: GPIO/UART_1_TX0/AFC/QC/BC 1.2/Apple Charging/IEC 18 14 VBUS_NDIS CHARGE VBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET 19 16 CSP CS +: Current sense input 20 1 FB Voltage regulation and compensation for other applications </td <td>7</td> <td>6</td> <td>SWD_DAT_0/P0.0</td> <td>Port 0 pin 0: GPIO/OVT/I2C_SDA_0/TCPWM_line_0/UART_0_CTS</td>	7	6	SWD_DAT_0/P0.0	Port 0 pin 0: GPIO/OVT/I2C_SDA_0/TCPWM_line_0/UART_0_CTS
10 - P2.1 Port 2 pin 1: GPIO/TCPWM_line_1//UART_0_RX0 11 9 VBUS_C_MON_DIS- CHARGE Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 2: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SDA_1/IEC Tolerant to temporary short to VBUS pin. 13 - P2.3 Port 2 pin 3: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin. 14 10 CC2 Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 15 11 CC1 Communication Channel 1 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 16 12 DM0/P3.1 USB D-/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 17 13 DP0/P3.0 USB D+/Port 3 pin 0: GPIO/UART_1_TX0/AFC/QC/BC 1.2/Apple Charging/IEC 18 14 VBUS IN DIS CHARGE VBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET 20 1 FB Voltage regulation feedback pin 21 2 CATH/COMP Cathode of voltage regulation and compensation for other applications 22 15	8	7	SWD_CLK_0/P0.1	Port 0 pin 1: GPIO/OVT/I2C_SCL_0/TCPWM_line_1/UART_0_RTS
11 9 VBUS_C_MON_DIS- CHARGE Type C VBUS Monitor with Internal Discharge FET 12 - P2.2 Port 2 pin 2: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SDA_1/IEC Tolerant to temporary short to VBUS pin. 13 - P2.3 Port 2 pin 3: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin. 14 10 CC2 Communication Channel 2 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 15 11 CC1 Communication Channel 1 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin. 16 12 DM0/P3.1 USB D-/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC 17 13 DP0/P3.0 USB D+/Port 3 pin 0: GPIO/UART_1_TX0/AFC/QC/BC 1.2/Apple Charging/IEC 18 14 VBUS IN_DIS CHARGE VBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET 19 16 CSP CS +: Current sense input 20 1 FB Voltage regulation feedback pin 21 2 CATH/COMP Cathode of voltage regulation and compensation for other applications 22 15 GND Ground 1.8-V Cre Voltage pin (not intended for use as a powe	9	8	AXRES/P2.0	Port 2 pin 0: GPIO/Alternate XRES ^[4] /TCPWM_line_0//UART_0_TX0
11 0 CHARGE Figure 0 block which methate the transmission of the trans	10	_	P2.1	Port 2 pin 1: GPIO/TCPWM_line_1//UART_0_RX0
12 - P2.2 Toleranit to temporary short to VBUS pin. - <td< td=""><td>11</td><td>9</td><td>VBUS_C_MON_DIS- CHARGE</td><td>Type C VBUS Monitor with Internal Discharge FET</td></td<>	11	9	VBUS_C_MON_DIS- CHARGE	Type C VBUS Monitor with Internal Discharge FET
13 - P2.3 Tolerant to temporary short to VBUS pin. -	12	_	P2.2	Port 2 pin 2: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SDA_1/IEC. Tolerant to temporary short to VBUS pin
1410CC2VBUS pin.1511CC1Communication Channel 1 with Dead-battery Rd Bonding Option/IEC. Tolerant to temporary short to VBUS pin.1612DM0/P3.1USB D-/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC1713DP0/P3.0USB D+/Port 3 pin 0: GPIO/UART_1_TX0/AFC/QC/BC 1.2/Apple Charging/IEC1814VBUS IN DIS CHARGEVBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET1916CSPCS +: Current sense input201FBVoltage regulation feedback pin212CATH/COMPCathode of voltage regulation and compensation for other applications2215GNDGround233VDDDPower Input: 2.7 V-5.5 V244VCCD1.8-V Core Voltage pin (not intended for use as a power source)	13	_	P2.3	Port 2 pin 3: GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SCL_1/IEC. Tolerant to temporary short to VBUS pin.
1311VBUS pin.1612DM0/P3.1USB D-/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC1713DP0/P3.0USB D+/Port 3 pin 0: GPIO/UART_1_TX0/AFC/QC/BC 1.2/Apple Charging/IEC1814VBUS IN DIS CHARGEVBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET1916CSPCS +: Current sense input201FBVoltage regulation feedback pin212CATH/COMPCathode of voltage regulation and compensation for other applications2215GNDGround233VDDDPower Input: 2.7 V-5.5 V244VCCD1.8-V Core Voltage pin (not intended for use as a power source)	14	10	CC2	
1713DP0/P3.0USB D+/Port 3 pin 0: GPIO/UART_1_TX0/AFC/QC/BC 1.2/Apple Charging/IEC1814VBUS IN DIS CHARGEVBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET1916CSPCS +: Current sense input201FBVoltage regulation feedback pin212CATH/COMPCathode of voltage regulation and compensation for other applications2215GNDGround233VDDDPower Input: 2.7 V-5.5 V244VCCD1.8-V Core Voltage pin (not intended for use as a power source)	15	11	CC1	
1814VBUS_IN_DIS CHARGEVBUS Power IN (3.0 V-24.5 V) with Internal Discharge FET1916CSPCS +: Current sense input201FBVoltage regulation feedback pin212CATH/COMPCathode of voltage regulation and compensation for other applications2215GNDGround233VDDDPower Input: 2.7 V-5.5 V244VCCD1.8-V Core Voltage pin (not intended for use as a power source)	16	12	DM0/P3.1	USB D-/Port 3 pin 1: GPIO/UART_1_RX0/AFC/QC/BC 1.2/Apple Charging/IEC
10 14 CHARGE VD00 Fower Int (0.0 V=24.0 V) with internal Discharge FE1 19 16 CSP CS +: Current sense input 20 1 FB Voltage regulation feedback pin 21 2 CATH/COMP Cathode of voltage regulation and compensation for other applications 22 15 GND Ground 23 3 VDDD Power Input: 2.7 V=5.5 V 24 4 VCCD 1.8-V Core Voltage pin (not intended for use as a power source)	17	13	DP0/P3.0	USB D+/Port 3 pin 0: GPIO/UART_1_TX0/AFC/QC/BC 1.2/Apple Charging/IEC
201FBVoltage regulation feedback pin212CATH/COMPCathode of voltage regulation and compensation for other applications2215GNDGround233VDDDPower Input: 2.7 V–5.5 V244VCCD1.8-V Core Voltage pin (not intended for use as a power source)	18	14	VBUS_IN_DIS CHARGE	VBUS Power IN (3.0 V–24.5 V) with Internal Discharge FET
21 2 CATH/COMP Cathode of voltage regulation and compensation for other applications 22 15 GND Ground 23 3 VDDD Power Input: 2.7 V–5.5 V 24 4 VCCD 1.8-V Core Voltage pin (not intended for use as a power source)	19	16	CSP	CS +: Current sense input
22 15 GND Ground 23 3 VDDD Power Input: 2.7 V–5.5 V 24 4 VCCD 1.8-V Core Voltage pin (not intended for use as a power source)	20	1	FB	Voltage regulation feedback pin
23 3 VDDD Power Input: 2.7 V–5.5 V 24 4 VCCD 1.8-V Core Voltage pin (not intended for use as a power source)	21	2	CATH/COMP	Cathode of voltage regulation and compensation for other applications
24 4 VCCD 1.8-V Core Voltage pin (not intended for use as a power source)	22	15	GND	Ground
	23	3	VDDD	Power Input: 2.7 V–5.5 V
– – EPAD Ground	24	4	VCCD	1.8-V Core Voltage pin (not intended for use as a power source)
	-	-	EPAD	Ground

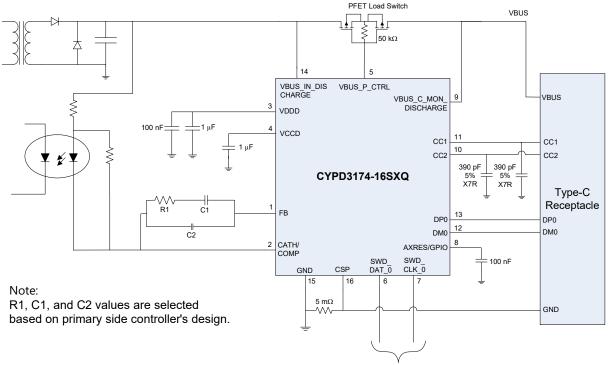
Note

Out of the two SCB blocks (SCB0 and SCB1), while the SCB0's I2C functionality is mapped out to the P0.0/P0.1 GPIO pins, the I2C functionality of SCB1 provides flexibility to have it mapped either on P1.0/P1.1 OR P2.2/P2.3 GPIO pins.
 TCPWM_line_0 can be mapped to port pins P1.0, P0.0, P2.0 or P2.2.
 TCPWM_line_1 can be mapped to port pins P1.1, P0.1, P2.1 or P2.3.

AXRES pin will be internally pulled up during the Power On I/O initialization time (see Table 6 for more details).
 See Table 9 and Table 10 for specifications related to these pins.

Port	24-QFN	16-SOIC	SCI	B Function		ТСРШМ	Fault	Cap	ection ability	USE	B Charg	ging Sig	jnal	IEC4
Pin	Pin#	Pin#	UART	SPI	I2C		Indicator	VBUS Short	οντ	AFC	QC	BC1.2	Apple	
P0.0	7	6	UART_0_CTS	SPI_1_MO SI	I2C_0_ SDA	TCPWM_line _0:0	-	-	Yes	_	-	-	-	-
P0.1	8	7	UART_0_RTS	SPI_1_MIS O	I2C_0_ SCL	TCPWM_line _1:0	-	-	Yes	-	-	-	-	-
P1.0	1		UART_1_CTS	SPI_0_SEL	I2C_1_ SDA:1	TCPWM_line _2:1	Yes	-	-	-	-	-	-	-
P1.1	2		UART_1_RTS	SPI_0_MIS O	I2C_1 SCL:1	TCPWM_line _3:1	Yes	-	-	_	-	-	-	-
P1.2	5		UART_1_TX1	SPI_0_MO SI	_	-	-	-	-	D+	D+	D+	D+	-
P1.3	6		UART_1_RX1	SPI_0_CLK	_	-	-	-	-	D-	D-	D-	D-	-
P2.0	9	8	UART_0_TX0	SPI_1_SEL	-	TCPWM_line _2:0	-	-	-	_	-	-	-	-
P2.1	10		UART_0_RX0	SPI_1_CLK	_	TCPWM_line _3:0	-	-	-	-	-	-	-	-
P2.2	12		UART_0_TX1	-	I2C_1_ SDA:0	TCPWM_line _0:1	-	Yes	-	-	-	-	-	Yes
P2.3	13		UART_0_RX1	-	I2C_1_ SCL:0	TCPWM_line _1:1	-	Yes	_	_	-	-	-	Yes
P3.0	17	13	UART_1_TX0	-	-	-	-	-	_	D+	D+	D+	D+	Yes
P3.1	16	12	UART_1_RX0	_	_	_	_	_	_	D-	D-	D-	D-	Yes

Table 3. GPIO Ports, Pins and Their Functionality



Application Diagrams

Figure 6 and Figure 7 show the application diagrams of CCG3PA-based Power Adapter with Opto-Coupler Feedback control using 16-pin SOIC and 24-pin QFN parts respectively. In an opto-feedback power adapter, CCG3PA implements a shunt regulator and the feedback to the primary controller is through an opto-coupler. The current drawn through the CATH path is proportional to the potential difference between FB pin and the internal bandgap reference voltage. At default 5-V VBUS, the FB pin will be held at the voltage set by the bandgap reference voltage using internal VBUS resistor dividers.

If VBUS needs to be changed from default 5 V, using internal IDACs and an error amplifier, CCG3PA draws a proportional current through the CATH pin. This in turn gets coupled to the primary controller through the opto-coupler.

Figure 6. CCG3PA Based Power Adapter Application Diagram with Opto Coupler Feedback Control (16-pin SOIC Device)

To Programming Header (Not needed for final production)

Figure 7. CCG3PA Based Power Adapter Application Diagram with Opto Coupler Feedback Control (24-pin QFN Device)

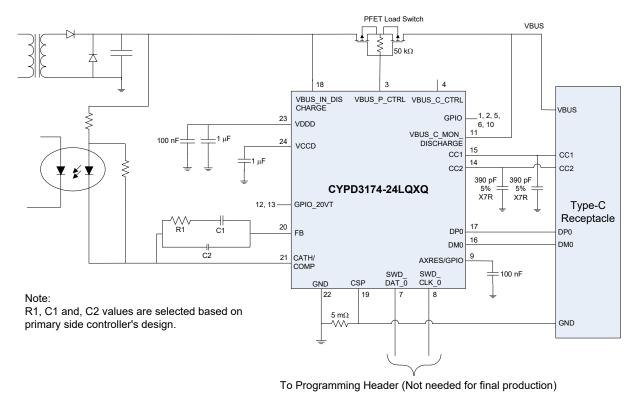
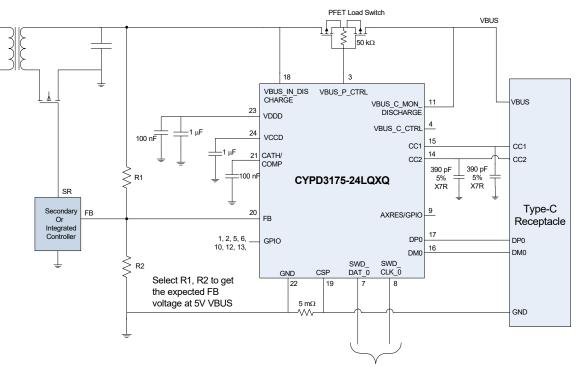



Figure 8 shows the application diagram of CCG3PA based power adapter with Direct Feedback control. In this application, VBUS is maintained at a constant voltage. The default value of VBUS upon power up (which is usually at 5 V) is set up by choosing the appropriate resistor divider that will set the FB node at a voltage expected by the secondary controller.

Feedback node is regulated using internal IDACs. Whenever a change in VBUS voltage is needed, CCG3PA will either source or sink a proportional current at feedback node, based on the amount of voltage change needed.

To Programming Header (Not needed for final production)

Figure 10 shows the application diagram of a CCG3PA based power bank application. It shows dual port power bank implementation using CCG3PA device. The power bank application can charge portable devices connected to the Type-C and Type-A port simultaneously. The Type-C port can be configured to support USBPD 3.0 QC 4.0, Apple Charging 2.4A, and AFC. The Type-A port can be configured to support QC3.0, Apple Charging, and AFC.

The battery can be charged from Type-C and USBPD power adapters or BC1.2 power adapters.

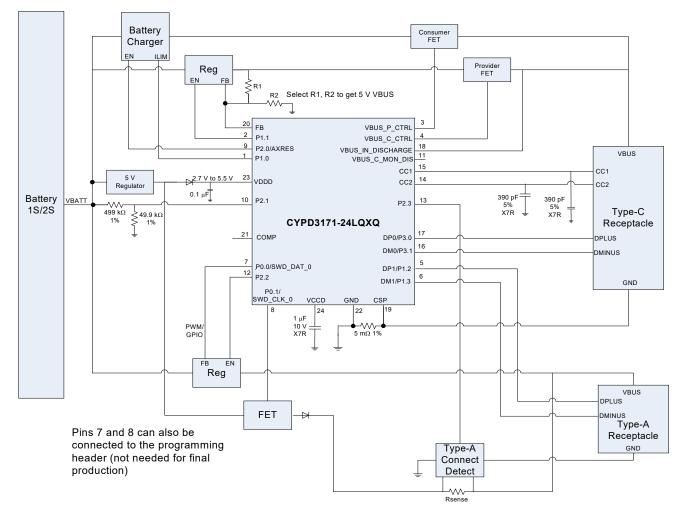


Figure 10. CCG3PA Power Bank Application Diagram

Table 9. GPIO_20VT DC Specifications (Applicable to port pins P2.2 and P2.3 only)

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details / Conditions
SID.GPIO_20VT#4	GPIO_20VT_I_LU	GPIO_20VT Latch up current limits	-140	-	140	mA	Max / min current in to any input or output, pin-to-pin, pin-to-supply
SID.GPIO_20VT#5	GPIO_20VT_RPU	GPIO_20VT Pull-up resistor value	1	_	25	kΩ	+25 °C T _A , 1.4 V to GPIO_20VT_Voh(min)
SID.GPIO_20VT#6	GPIO_20VT_RPD	GPIO_20VT Pull-down resistor value	2.5	-	20	kΩ	+25°C T _A , 1.4-V to V _{DDD}
SID.GPIO_20VT#16	GPIO_20VT_IIL	GPIO_20VT Input leakage current (absolute value)	_	-	2	nA	+25°C T _A , 3-V V _{DDD}
SID.GPIO_20VT#17	GPIO_20VT_CPIN	GPIO_20VT pin capacitance	15	-	25	pF	–40 °C to +85 °C T _A , All V _{DDD} , F = 1 MHz
SID.GPIO_20VT#36	GPIO_20VT_Vol	GPIO_20VT Output Voltage low level.	-	-	0.4	V	I _{OL} = 2 mA
SID.GPIO_20VT#41	GPIO_20VT_Vih_LVTTL	GPIO_20VTLVTTL Input Voltage high level.	2	-	-	V	$V_{DDD} \ge 2.7 V$
SID.GPIO_20VT#42	GPIO_20VT_Vil_LVTTL	GPIO_20VTLVTTL Input Voltage low level.	-	-	0.8	V	$V_{DDD} \ge 2.7 V$
SID.GPIO_20VT#43	GPIO_20VT_Vhysttl	GPIO_20VT Input hysteresis LVTTL	15	40	-	mV	$V_{DDD} \ge 2.7 V$
SID.GPIO_20VT#69	GPIO_20VT_IDIODE	GPIO_20VT Current through protection diode to V_{DDD}/V_{SS}	-	-	100	μA	

Table 10. GPIO_20VT AC Specifications (Applicable to port pins P2.2 and P2.3 only)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID.GPIO_20VT#70		GPIO_20VT Rise time in Fast Strong Mode	1	-	45	ns	All V _{DDD} , C _{load} = 25 pF
SID.GPIO_20VT#71		GPIO_20VT Fall time in Fast Strong Mode	2	-	15	ns	All V _{DDD} , C _{load} = 25 pF

Digital Peripherals

The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode.

Pulse Width Modulation (PWM) for GPIO Pins

Table 11. PWM AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.3	T _{CPWMFREQ}	Operating frequency	-	-	Fc	MHz	Fc max = CLK_SYS. Maximum = 48 MHz.
SID.TCPWM.4	T _{PWMENEXT}	Input trigger pulse width	2/Fc	-	-	ns	For all trigger events
SID.TCPWM.5	T _{PWMEXT}	Output trigger pulse width	2/Fc	Ι	Ι	ns	Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	T _{CRES}	Resolution of counter	1/Fc	-	-	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	-	-	ns	Minimum pulse width of PWM output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_	ns	Minimum pulse width between quadrature-phase inputs

βC

Table 12. Fixed I²C DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	100	μA	-
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	-
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310	μA	-
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	1.4	-	μA	_

Table 13. Fixed I²C AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	1	1	Mbps	_

Table 14. Fixed UART DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 kbps	_	-	20	μΑ	-
SID161	I _{UART2}	Block current consumption at 1000 kbps	_	_	312	μA	-

Table 15. Fixed UART AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	-	-	1	Mbps	-

Table 16. Fixed SPI DC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID163	I _{SPI1}	Block current consumption at 1 Mb/s	-	-	360	μA	-
SID164	I _{SPI2}	Block current consumption at 4 Mb/s	-	-	560	μA	-
SID165	I _{SPI3}	Block current consumption at 8 Mb/s	-	-	600	μA	-

Table 17. Fixed SPI AC Specifications

(Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID166	F _{SPI}	SPI Operating frequency (Master; 6X oversampling)	_	-	8	MHz	-

Table 18. Fixed SPI Master Mode AC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID167	T _{DMO}	MOSI Valid after SClock driving edge	-	-	15	ns	_
SID168	T _{DSI}	MISO Valid before SClock capturing edge	20	-	_	ns	Full clock, late MISO sampling
SID169	Т _{НМО}	Previous MOSI data hold time	0		_	ns	Referred to slave capturing edge

Table 19. Fixed SPI Slave Mode AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID170	T _{DMI}	MOSI Valid before Sclock capturing edge	40	-	_	ns	-
SID171	T _{DSO}	MISO Valid after Sclock driving edge	-	—	42 + 3 × T _{CPU}	ns	$T_{CPU} = 1/F_{CPU}$
SID171A	T _{DSO_EXT}	MISO Valid after Sclock driving edge in Ext Clk mode	_	_	48	ns	-
SID172	T _{HSO}	Previous MISO data hold time	0	-	-	ns	_
SID172A	T _{SSELSCK}	SSEL Valid to first SCK Valid edge	100	-	_	ns	_

Internal Low-Speed Oscillator Power Down

Table 25. ILO DC Specifications

(Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID231	I _{ILO1}	I _{LO} operating current	-	0.3	1.05	μA	_
SID233	I _{ILOLEAK}	I _{LO} leakage current	-	2	15	nA	_

Table 26. ILO AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID234	T _{STARTILO1}	I _{LO} start-up time	-	-	2	ms	Guaranteed by Character- ization
SID238	T _{ILODUTY}	I _{LO} duty cycle	40	50	60	%	Guaranteed by Character- ization
SID.CLK#5	F _{ILO}	I _{LO} frequency	20	40	80	kHz	_

Table 27. PD DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.PD.1	Rp_std	DFP CC termination for default USB Power	64	80	96	μA	_
SID.PD.2	Rp_1.5A	DFP CC termination for 1.5A power	166	180	194.4	μA	-
SID.PD.3	Rp_3.0A	DFP CC termination for 3.0A power	304	330	356.4	μA	-
SID.PD.4	Rd	UFP CC termination	4.59	5.1	5.61	kΩ	-
SID.PD.5	Rd_DB	UFP (Power Bank) Dead Battery CC Termination on CC1 and CC2	4.08	5.1	6.12	kΩ	All supplies forced to 0V and 1.32 V applied at CC1 or CC2
SID.PD.6	Vgndoffset	Ground offset tolerated by BMC receiver	-500	_	500	mV	Relative to the remote BMC transmitter.

Table 28. LS-CSA Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID.LSCSA.1	Cin_inp	CSP Input capacitance	7	-	10	pF	Guaranteed by characterization
SID.LSCSA.2	Csa_Acc1	CSA accuracy 5 mV < Vsense < 10 mV	-15	-	15	%	
SID.LSCSA.3	Csa_Acc2	CSA accuracy 10 mV < Vsense < 15 mV	-10	-	10	%	
SID.LSCSA.4	Csa_Acc3	CSA accuracy 15 mV < Vsense < 20 mV	-6	-	6	%	
SID.LSCSA.5	Csa_Acc4	CSA accuracy 20 mV < Vsense < 30 mV	-5	-	5	%	
SID.LSCSA.6	Csa_Acc5	CSA accuracy 30 mV < Vsense < 50 mV	-4	-	4	%	Active Mode
SID.LSCSA.7	Csa_Acc6	CSA accuracy 50 mV < Vsense	-4	-	4	%	
SID.LSCSA.8	Csa_SCP_Acc1	CSA SCP 80 mV	-16.5	-	30	%	
SID.LSCSA.9	Csa_SCP_Acc2	CSA SCP 100 mV	-13.4	-	24	%	
SID.LSCSA.10	Csa_SCP_Acc3	CSA SCP 150 mV	-9.4	-	16	%	
SID.LSCSA.11	Csa_SCP_Acc4	CSA SCP 200 mV	-7.5	-	12	%	
SID.LSCSA.12	Av	Nominal Gain values supported: 5, 10, 20, 35, 50, 75, 125, 150	5	_	150	V/V	
SID.LSCSA.24	Av1_E_Trim	Gain Error	-3	_	3	%	Guaranteed by characterization
SID.LSCSA.31	Av_E_SCP	Gain Error of SCP stage	-3.5	_	3.5	%	Guaranteed by characterization

Gate Driver Specifications

Table 32. Gate Driver DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions	
SID.GD.1	R _{PD}	Pull-down resistance	_	_	3	kΩ	Applicable on VBUS_P_CTRL and VBUS_C_CTRL to turn ON external PFET.	
SID.GD.2	R _{PU}	Pull-up resistance	-	-	4	kΩ	Applicable on VBUS_P_CTRL to turn OFF external PFET	
SID.GD.3	I _{PD0}	Pull-down current sink at drive strength of 1	25	-	75	μA		
SID.GD.4	I _{PD1}	Pull-down current sink at drive strength of 2	50	-	150	μA		
SID.GD.5	I _{PD2}	Pull-down current sink at drive strength of 4	140	-	300	μA	I-mode (current mode) pull down at 5 V. Applicable on VBUS_P_CTRL	
SID.GD.6	I _{PD3}	Pull-down current sink at drive strength of 8	280	-	580	μA	and VBUS_C_CTRL to turn ON external PFET	
SID.GD.7	I _{PD4}	Pull-down current sink at drive strength of 16	560	-	1200	μA		
SID.GD.8	I _{PD5}	Pull-down current sink at drive strength of 32	1120	-	2300	μA		
SID.GD.9	I_leak_p1	Pin leakage on VBUS_P_CTRL	-	0.003	-	μA	+25 °C T _J , 5-V V _{DDD} , 20-V V _{BUS}	
SID.GD.10	I_leak_c1	Pin leakage on VBUS_C_CTRL	-	0.003	-	μA	+25 °C T _J , 5-V V _{DDD} , 20-V V _{BU}	
SID.GD.11	I_leak_p2	Pin leakage on VBUS_P_CTRL	-	-	2	μA	+85 °C T _J , 5-V V _{DDD} , 20-V V _{BU}	
SID.GD.12	I_leak_c2	Pin leakage on VBUS_C_CTRL	-	-	2	μA	+85 °C T _J , 5-V V _{DDD} , 20-V V _{BU}	
SID.GD.13	I_leak_p3	Pin leakage on VBUS_P_CTRL	-	-	7	μA	+125 °C T _J , 5-V V _{DDD} , 20-V V _{BU}	
SID.GD.14	I_leak_c3	Pin leakage on VBUS_C_CTRL	_	_	7	μA	+125 °C T _J , 5-V V _{DDD} , 20-V V _{BU}	

Table 33. Gate Driver AC Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID.GD.15	T _{PD1}	Pull down delay on VBUS_C_CTRL	_	_	2	μs	Cload = 2 nF, Delay to VBUS -1.5 V from initiation of falling edge, VBUS = 5 V to 20 V, 50 K Ω tied between VBUS_C_CTRL and VBUS
SID.GD.16	T _{r_discharge}	Discharge rate of output node on VBUS_C_CTRL	-	_	5	V/µs	80% to 20%, 50 KΩ tied between VBUS_C_CTRL and VBUS, Cload = 2 nF , Vinitial = 24 V
SID.GD.17	T _{PD2}	Pull down delay on VBUS_P_CTRL	_	_	2	μs	Cload = 2 nF, Delay to VBUS -1.5 V from initiation of falling edge, V _{BUS} = 5 V to 20 V, 50 K Ω tied between VBUS_C_CTRL and VBUS
SID.GD.18	Τ _{ΡU}	Pull up delay on VBUS_P_CTRL	_	_	18	μs	Cload = 2 nF, Delay to VBUS-1.5 V from initiation of falling edge, VBUS = 5 V to 20 V, 50 K Ω tied between VBUS_C_CTRL and VBUS
SID.GD.19	SR _{PU}	Output slew rate on VBUS_P_CTRL	_	_	5	V/µs	Cload = 2 nF, 20% to 80% of VBUS_P_CTRL range
SID.GD.20	SR _{PD}	Output slew rate on VBUS_P_CTRL	_	_	5	V/µs	Cload = 2 nF, 80% to 20% of VBUS_P_CTRL range

Table 34. VBUS Discharge Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details / Conditions
SID.VBUS.DISC.6	11	20-V NMOS ON current for DS = 1	0.15	-	1	mA	
SID.VBUS.DISC.7	12	20-V NMOS ON current for DS = 2	0.4	-	2	mA	
SID.VBUS.DISC.8	14	20-V NMOS ON current for DS = 4	0.9	-	4	mA	Measured at 0.5 V
SID.VBUS.DISC.9	18	20-V NMOS ON current for DS = 8	2	-	8	mA	
SID.VBUS.DISC.10	116	20-V NMOS ON current for DS = 16	4	-	10	mA	
SID.VBUS.DISC.11		Error percentage of final V _{BUS} value from setting	-	_	10	%	When V _{BUS} is discharged to 5 V. Guaranteed by Characteri- zation.

Table 35. Voltage (VBUS) Regulation DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID.DC.VR.1	V_IN_3	V(pad_in) at 3-V target	2.85	3	3.15	V	Active mode shunt regulator at 3 V with bandgap
SID.DC.VR.2	V_IN_5	V(pad_in) at 5-V target	4.75	5	5.25	V	Active mode shunt regulator at 5 V
SID.DC.VR.3	V_IN_9	V(pad_in) at 9-V target	8.55	9	9.45	V	Active mode shunt regulator at 9 V
SID.DC.VR.4	V_IN_15	V(pad_in) at 15-V target	14.25	15	15.75	V	Active mode shunt regulator at 15 V
SID.DC.VR.5	V_IN_20	V(pad_in) at 20-V target	19	20	21	V	Active mode shunt regulator at 20 V
SID.DC.VR.6	V_IN_3_DS	V(pad_in) at 3-V target	2.7	3	3.3	V	Deep Sleep mode shunt regulator at 3 V with bandgap
SID.DC.VR.7	V_IN_5_DS	V(pad_in) at 5-V target	4.5	5	5.5	V	Deep Sleep mode shunt regulator at 5 V
SID.DC.VR.8	V_IN_9_DS	V(pad_in) at 9-V target	8.1	9	9.1	V	Deep Sleep mode shunt regulator at 9 V
SID.DC.VR.9	V_IN_15_DS	V(pad_in) at 15-V target	13.5	15	16.5	V	Deep Sleep mode shunt regulator at 15 V
SID.DC.VR.10	V_IN_20_DS	V(pad_in) at 20-V target	18	20	22	V	Deep Sleep mode shunt regulator at 20 V
SID.DC.VR.11	I _{KA_OFF}	Off-state cathode current	-	-	10	μA	-
SID.DC.VR.12	I _{KA_ON}	Current through cathode pin	-	-	10	mA	-

Table 36. VBUS Short Protection Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID.VSP.1	V_SHORT_ TRIGGER	Short-to-VBUS system-side clamping voltage on the CC/P2.2/P2.3 pins	-	9	-	V	Guaranteed by Characteri- zation.

Table 37. VBUS DC Regulator Specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID.VREG.2	VBUS DETECT	VBUS detect threshold voltage	1.08	_	2.62	V	-

Table 38. VBUS AC Regulator Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.VREG.3	T _{start}	Total startup time for the regulator supply outputs	-	Ι	200	μs	Guaranteed by Charac- terization.

Analog to Digital Converter

Table 39. ADC DC Specifications (Guaranteed by Characterization)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.ADC.1	Resolution	ADC resolution	_	8	_	Bits	-
SID.ADC.2	INL	Integral non-linearity	-2.5	-	2.5	LSB	Reference voltage generated from VDDD
SID.ADC.2A	INL	Integral non-linearity	-1.5	-	1.5	LSB	Reference voltage generated from bandgap
SID.ADC.3	DNL	Differential non-linearity	-2.5	-	2.5	LSB	Reference voltage generated from VDDD
SID.ADC.3A	DNL	Differential non-linearity	-1.5	-	1.5	LSB	Reference voltage generated from bandgap
SID.ADC.4	Gain Error	Gain error	-1.5	-	1.5	LSB	_
SID.ADC.6	V _{REF_ADC2}	ADC reference voltage when generated from band gap.	1.96	2.0	2.04	V	Reference voltage generated from bandgap

Table 40. ADC AC Specifications (Guaranteed by Design)

Spec ID	Parameter	Description	Min	Тур	Мах	Units	Details/Conditions
SID.ADC.7	SLEW_Max	Rate of change of sampled voltage signal	-	_	3	V/ms	-

Memory

Table 41. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.MEM#3	FLASH_ERASE	Row erase time	1	-	15.5	ms	–40 °C \leq T_{A} \leq 85 °C, all V_{DDD}
SID.MEM#4	FLASH_WRITE	Row (Block) write time (erase and program)	Ι	_	20	ms	–40 °C \leq T_{A} \leq 85 °C, all V_{DDD}
SID.MEM#8	FLASH_ROW_PGM	Row program time after erase	_	-	7	ms	25 °C \leq T_A \leq 55 °C, all V_{DDD}
SID178	T _{BULKERASE}	Bulk erase time (32 KB)	_	-	35	ms	_
SID180	T _{DEVPROG}	Total device program time	-	-	7.5	s	_
SID182	F _{RET1}	Flash retention, T _A ≤ 55 °C, 100K P/E cycles	20	_	-	years	-
SID182A	F _{RET2}	Flash retention, T _A ≤ 85 °C, 10K P/E cycles	10	_	-	years	-
SID182B	F _{RET3}	ET3 Flash retention, $T_A \le 105 \text{ °C}$, 10K P/E cycles		_	_	years	_

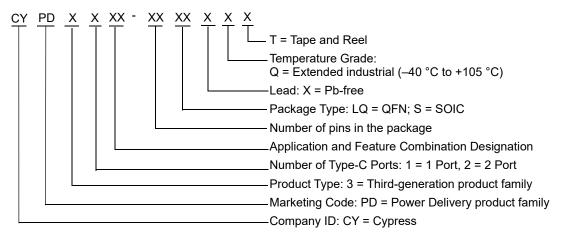

Ordering Information

Table 42 lists the EZ-PD CCG3PA part numbers and features.

Table 42. CCGPA Ordering Information

MPN	Application	Termination Resistor	Role	Bootloader ^[7]	Package Type	Si ID
CYPD3171-24LQXQ	Power Bank	R_P, R_D, R_{D-DB}	DRP	UFP CC Bootloader	24-Pin QFN	2003
CYPD3174-16SXQ	Power Adapter based on Opto Coupler Feedback	R _P	DFP	DFP CC with Opto Coupler Feedback Bootloader	16-Pin SOIC	2001
CYPD3174-24LQXQ	Power Adapter based on Opto Coupler Feedback	R _P	DFP	DFP CC with Opto Coupler Feedback Bootloader	24-Pin QFN	2000
CYPD3175-24LQXQ	Power Adapter based on Direct Feedback	R _P	DFP	DFP CC with Direct Feedback Bootloader	24-Pin QFN	2002

Ordering Code Definitions

Note7. It is assumed that VBUS is at 5V by default. Bootloader execution is not responsible for controlling the generation of 5V VBUS.

Acronyms

Table 46. Acronyms Used in this Document

Acronym	Description
ADC	analog-to-digital converter
AES	advanced encryption standard
API	application programming interface
ARM®	advanced RISC machine, a CPU architecture
CC	configuration channel
CCG3	Cable Controller Generation 3
CPU	central processing unit
CRC	cyclic redundancy check, an error-checking protocol
CS	current sense
DFP	downstream facing port
DIO	digital input/output, GPIO with only digital capabil- ities, no analog. See GPIO.
DRP	dual role port
EEPROM	electrically erasable programmable read-only memory
EMCA	electronically marked cable assembly, a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports
EMI	electromagnetic interference
ESD	electrostatic discharge
FS	full-speed
GPIO	general-purpose input/output
IC	integrated circuit
IDE	integrated development environment
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol
ILO	internal low-speed oscillator, see also IMO
IMO	internal main oscillator, see also ILO
I/O	input/output, see also GPIO
LDO	low-dropout regulator
LVD	low-voltage detect
LVTTL	low-voltage transistor-transistor logic
MCU	microcontroller unit
NC	no connect
NMI	nonmaskable interrupt
NVIC	nested vectored interrupt controller
opamp	operational amplifier

Acronym	Description
OCP	overcurrent protection
OTP	over temperature protection
OVP	overvoltage protection
OVT	overvoltage tolerant
PCB	printed circuit board
PD	power delivery
PGA	programmable gain amplifier
PHY	physical layer
POR	power-on reset
PRES	precise power-on reset
PSoC®	Programmable System-on-Chip™
PWM	pulse-width modulator
RAM	random-access memory
RISC	reduced-instruction-set computing
RMS	root-mean-square
RTC	real-time clock
RX	receive
SAR	successive approximation register
SCL	I ² C serial clock
SCP	short circuit protection
SDA	I ² C serial data
S/H	sample and hold
SHA	secure hash algorithm
SPI	Serial Peripheral Interface, a communications protocol
SRAM	static random access memory
SWD	serial wire debug, a test protocol
ТΧ	transmit
Туре-С	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power
UART	Universal Asynchronous Transmitter Receiver, a communications protocol
USB	Universal Serial Bus
USBIO	USB input/output, CCG2 pins used to connect to a USB port
UVP	undervoltage protection
XRES	external reset I/O pin

Table 46. Acronyms Used in this Document (continued)

Document History Page

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	5473667	VGT	10/13/2016	New datasheet
*A	5544333	VGT	12/13/2016	Changed datasheet status to Preliminary. Updated Features. Updated Logic Block Diagram. Updated Functional Overview Updated Figure 2, Figure 3, Figure 6, Figure 8, Figure 9, and Figure 10. Updated Pinouts. Updated Table 4 with VCC_PIN_ABS and VSBU_PIN_ABS parameters. Added Q-temp parts in Table 42.
*В	5583660	VGT	01/18/2017	Updated General Description, Features, I/O Subsystem, CPU, Charger Detection, and Ordering Information. Updated Table 2 and Table 4. Updated Figure 6 through Figure 10. Updated Sales page.
*C	5665676	VGT	03/22/2017	Updated Figure 2, Figure 6, Figure 8, Figure 10, Table 1, Table 2, Table 4, Table 42, Features Logic Block Diagram, Functional Overview, Power Systems Overview, Ordering Code Definitions, Acronyms. Added Internal Block Diagram. Added Table 5 through Table 41 in Device-Level Specifications. Updated compliance with USB spec in Sales, Solutions, and Legal Information. Updated Cypress logo.
*D	5738854	VGT	05/19/2017	Added Application Diagram description before Figure 6, Figure 8, Figure 9, and Figure 10. Added Figure 1. Added CCG3PA Programming and Bootloading section. Added Document History Page section. Added Table 3. Updated Figure 3, Figure 4, Figure 6, Figure 8, Figure 9, and Figure 10. Updated Table 2, Table 4, Table 5, and Table 42. Updated Figure 11 (spec 002-16934 Rev. ** to *A) in Packaging. Updated Cypress logo, Sales page, and Copyright information.
۴E	5984670	VGT	12/06/2017	Removed Preliminary document status. Updated System-Level Fault Protection, Power, and System-Level ESD Protection. Updated Internal Block Diagram Updated Figure 2. Table 2: Updated Pins 12 and 13. Added Note 5. Updated Figure 6. Added Figure 7. Table 4: Updated max value for V _{CC PIN ABS} Table 5: Removed SID_DS and updated Typ value for SID_PB_DS_UA. Table 7: Added new SID_GIO#17 spec and changed SID.GIO#17 to SID.GIO#17A. Added Table 9 and Table 10. Table 22; Added "Guaranteed by Characterization" Table 22; Added "Guaranteed by Characterization" Table 24: Updated Conditions for SID226 and SID228. Updated typ value and conditions for SID.CLK#1. Table 28: Updated Conditions for SID234 and SID238. Table 28: Updated min, typ, and max values for SID.LSCSA.1,SID.LSCSA.7, and SID.LSCSA.24 Updated Conditions for SID.GIO#17A, SID.GIO#43, SID.GIO#44, SID.GIO#45, and SID69 Table 31: Added "Guaranteed by Characterization" Table 33: Renumbered all spec IDs SID.GD.11, SID.GD.12, SID.GD.13, SID.GD.14. Changed description of spec IDs SID.GD.14 to SID.GD.8. Table 33: Renumbered all spec IDs starting from SID.GD.15 to SID.GD.20. Modified max values of SID.G1.5, SID.GD.17 and SID.GD.18. Modified Details/Conditions of all parameters. Table 34: Removed spec IDs SID.VBUS.DISC.1 to SID.VBUS.DISC5. Renumbered SID.VBUS.DISC6 to SID.VBUS.DISC.11. Added new spec IDs SID.VBUS.DISC6 to SID.VBUS.DISC6.0

	nt Title: EZ- nt Number:			et, USB Type-C Port Controller
*E (contd)	5984670	VGT	12/06/2017	Table 35: Added V_IN_3 and V_IN3_DS parameters and renumbered spec IDs from SID.DC.VR.1 to SID.DC.VR.12. Added Table 36. Table 39: Updated min and max values for SID.ADC.4. Table 42: Added new MPN CYPD3174-24LQXQ. Modified "Application" column of CYPD3174-16SXQ and CYPD3175-24LQXQ MPNs. Removed Errata. Added Table 43, Table 44 and Table 45 to Packaging section.
۴F	6079226	VGT	03/02/2018	Added "The voltage reference for the ADCs is generated either from the VDDD supply or from internal bandgap. When sensing the GPIO pin voltage with an ADC, the pin voltage cannot exceed the VDDIO supply value" to ADC section. Table 2: Updated the Descripion "GPIO with Open drain with pull-up assist. Configurable as GPIO_20VT/I2C_SDA_1/IEC. Tolerant to temporary short to VBUS pin" for Pins P2.2 and P2.3. Table 7: Removed SBU1, SBU2 reference in Details/Conditions for Spec ID SID.GIO#17. Table 32: Moved "0.003" to Typ column for the Spec ID SID.GD.9 and SID.GD.10. Table 12: Updated typical and max values for II2C4 parameter. Table 9: Removed GPIO_20VT_Voh parameter. Table 28: Updated max values of Csa_SCP_Acc parameters. Table 39: Updated the Description of Spec ID SID.ADC.6 as "ADC reference voltage when generated from band gap.". Removed SID.ADC.5 parameter and added SID.ADC.2A and SID.ADC.3A parameters. Updated Details/Conditions of SID.ADC.2 and SID.ADC.3 parameters. Table 35: Added units (V) to SID.DC.VR.3, SID.DC.VR.4 and SID.DC.VR.5 parameters. Updated VBUS Short Protection and I/O Subsystem sections. Updated Table 3 with information on Fault Indicator and VBUS Short Protection Capability. Updated Application Diagrams section.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

Notice regarding compliance with Universal Serial Bus specification. Cypress offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB Type-C[™] Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Cypress or third party software tools, including sample code, to modify the firmware for Cypress USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely responsible ensuring the compliance of any modification syou make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any modifications you make. In addition, if Cypress modifies firmware based on your specifications, then you are responsible for ensuring compliance with any desired standard or specifications as if you had made the modification. CYPRESS IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED CYPRESS PRODUCT AND SUCH MODIFIED PRODUCT NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS.

© Cypress Semiconductor Corporation, 2016-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and other countries thereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software is not accompanied by a license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errate which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, domage, or other liability arising from or related to any Unintended Uses of Cypress product.

.Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.