

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	75
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 20x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2138cmnfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/38M Group.

Table 1.1	Specifications for R8C/38M Group (1	I)
-----------	-------------------------------------	----

Item	Function	Specification		
CPU	Central processing	R8C CPU core		
	unit	 Number of fundamental instructions: 89 		
		Minimum instruction execution time:		
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)		
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)		
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits		
		• Multiply-accumulate instruction: 16 bits x 16 bits + 32 bits \rightarrow 32 bits		
		 Operation mode: Single-chip mode (address space: 1 Mbyte) 		
Memory	ROM, RAM, Data flash	Refer to Table 1.3 Product List for R8C/38M Group		
Power Supply	Voltage detection	Power-on reset		
Voltage	circuit	 Voltage detection 3 (detection level of voltage detection 0 and voltage 		
Detection		detection 1 selectable)		
I/O Ports	Programmable I/O	Input-only: 1 pin		
	ports	CMOS I/O ports: 75. selectable pull-up resistor		
	F - · · -	• High current drive ports: 75		
Clock	Clock generation	• 4 circuits: XIN clock oscillation circuit		
CIOCIC	circuits	XCIN clock oscillation circuit (32 kHz)		
	onodito	High-speed on-chip oscillator (with frequency adjustment function)		
		l ow-speed on-chip oscillator		
		Oscillation stop detection: XIN clock oscillation stop detection function		
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16		
		• Low power consumption modes:		
		Standard operating mode (high-speed clock, low-speed clock, high-speed		
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode		
		Real-time clock (timer RF)		
Interrunte				
interrupts		• Interrupt vectors. 69 • External: 0 courses (INT \times 5, key input \times 4)		
		• External. 9 sources (INT × 5, key input × 4)		
Matchelle et Time				
watchdog Tim	er	• 14 bits x 1 (with prescaler)		
		Reset start selectable Jow speed on chip oscillator for watchdog timer selectable		
		• Low-speed on-chip oscillator for watchdog timer selectable		
DTC (Data Tra	insfer Controller)	• 1 channel		
		Activation sources: 39		
		Transfer modes: 2 (normal mode, repeat mode)		
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)		
		Timer mode (period timer), pulse output mode (output level inverted every		
		period), event counter mode, pulse width measurement mode, pulse period		
		measurement mode		
	Timer RB	8 bits x 1 (with 8-bit prescaler)		
		Timer mode (period timer), programmable waveform generation mode (PWM		
		output), programmable one-shot generation mode, programmable wait one-		
		shot generation mode		
	Timer RC	16 bits x 1 (with 4 capture/compare registers)		
		Timer mode (input capture function, output compare function), PWM mode		
		(output 3 pins), PWM2 mode (PWM output pin)		
	Timer RD	16 bits x 2 (with 4 capture/compare registers)		
		Timer mode (input capture function, output compare function) PWM mode		
		(output 6 pins), reset synchronous PWM mode (output three-phase		
		waveforms (6 pins), sawtooth wave modulation), complementary PWM mode		
		(output three-phase waveforms (6 pins), triangular wave modulation), PWM3		
		mode (PWM output 2 pins with fixed period)		

Item	Function	Specification			
Timer	Timer RE	8 bits x 1 Real-time clock mode (count seconds, minutes, hours, days of week), output compare mode			
	Timer RF	16 bits × 1 Input capture mode (input capture circuit), output compare mode (output compare circuit)			
	Timer RG	16 bits × 1 (with 2 capture/compare registers) Timer mode (input capture function, output compare function), PWM mode (output 1 pin), phase counting mode (available automatic measurement for the counts of 2-phase encoder)			
Serial	UART0, UART1	Clock synchronous serial I/O/UART x 2 channel			
Interface	UART2	Clock synchronous serial I/O, UART, I ² C mode (I ² C bus), multiprocessor communication function			
Synchronous Communicatio	Serial on Unit (SSU)	1 (shared with I ² C bus)			
I ² C bus		1 (shared with SSU)			
LIN Module		Hardware LIN: 1 (timer RA, UART0)			
A/D Converte	r	10-bit resolution \times 20 channels, includes sample and hold function, with sweep mode			
D/A Converter	r	8-bit resolution × 2 circuits			
Comparator A		 2 circuits (shared with voltage monitor 1 and voltage monitor 2) External reference voltage input available 			
Comparator B		2 circuits			
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V Programming and erasure endurance: 10,000 times (data flash) 1,000 times (program ROM) Program security: ROM code protect, ID code check Debug functions: On-chip debug, on-board flash rewrite function Background operation (BCO) function (data flash) 			
Operating Frequency/Supply		f(XIN) = 20 MHz (VCC = 2.7 to 5.5 V) f(XIN) = 5 MHz (VCC = 1.8 to 5.5 V)			
Current consumption		Typ. 6.5 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 3.5 mA (VCC = 3.0 V, f(XIN) = 10 MHz) Typ. 3.5 μ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz)) Typ. 2.0 μ A (VCC = 3.0 V, stop mode)			
Operating Am	bient Temperature	-20 to 85°C (N version) -40 to 85°C (D version) ⁽¹⁾			
Package		80-pin LQFP Package code: PLQP0080KB-A (previous code: 80P6Q-A)			

Table 1.2	Specifications	for R8C/38M	Group	(2)
-----------	----------------	-------------	-------	-----

Note:

1. Specify the D version if D version functions are to be used.

1.5 Pin Functions

Tables 1.6 and 1.7 list Pin Functions.

Table 1.6Pin Functions (1)

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	_	Apply 1.8 to 5.5 V to the VCC pin.
			Apply 0 V to the VSS pin.
Analog power	AVCC, AVSS	—	Power supply for the A/D converter.
supply input			Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O.
XIN clock output	XOUT	I/O	Connect a ceramic resonator or a crystal oscillator between
			To use an external clock input it to the XOUT pin and leave
			the XIN pin open.
XCIN clock input	XCIN	I	These pins are provided for XCIN clock generation circuit I/O.
XCIN clock output	XCOUT	0	Connect a crystal oscillator between the XCIN and XCOUT
			pins. ⁽¹⁾
			To use an external clock, input it to the XCIN pin and leave
INT interrupt input	INT0 to INT4	- I	INT interrupt input pins.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins.
Timer RA	TRAIO	I/O	Timer RA I/O pin.
	TRAO	0	Timer RA output pin.
Timer RB	TRBO	0	Timer RB output pin.
Timer RC	TRCCLK		External clock input pin.
	TRCTRG	I	External trigger input pin.
	TRCIOA, TRCIOB,	I/O	Timer RC I/O pins.
Time or DD		1/0	
Timer RD		1/0	Timer RD I/O pins.
	TRDIOC0, TRDIOC1,		
	TRDIOD0, TRDIOD1		
	TRDCLK	I	External clock input pin.
Timer RE	TREO	0	Divided clock output pin.
Timer RF	TRFO00, TRFO10,	0	Timer RF output pins.
	TRFO01,TRFO11,		
	TRFO02,TRFO12		
			Timer RF input pin.
Timer RG	TRGIOA, TRGIOB	1/0	Timer RG I/O ports.
0.1114	TRGCLKA, TRGCLKB	I I	External clock input pins.
Serial interface	CLK0, CLK1, CLK2	1/0	Transfer clock I/O pins.
	RXD0, RXD1, RXD2		Serial data input pins.
	TXD0, TXD1, TXD2	0	Serial data output pins.
	CTS2		
	RTS2	0	Reception control output pin.
	SCL2	I/O	I ² C mode clock I/O pin.
	SDA2	I/O	I ² C mode data I/O pin.

I: Input O: Output I/O: Input and output

Note:

1. Refer to the oscillator manufacturer for oscillation characteristics.

3. Memory

Figure 3.1 is a Memory Map of R8C/38M Group. The R8C/38M Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. For example, a 64-Kbyte internal ROM area is allocated addresses 04000h to 13FFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 6-Kbyte internal RAM area is allocated addresses 00400h to 01BFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh (the SFR areas for the DTC and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Figure 3.1 Memory Map of R8C/38M Group

Address	Register	Symbol	After Reset
003Ah	Voltage Monitor 2 Circuit Control Register	VW2C	10000010b
003Bh			
003Ch			
003Dh			
003Eh		1	
003Fh		<u> </u>	
0040h			
0041h	Elash Memory Ready Interrupt Control Register	EMRDYIC	XXXXX000b
004111	They were the the the the the the the the the th		
004211			
00430			
0044h		+	
0045h			<u> </u>
0046h	IN 14 Interrupt Control Register	INTAIC	XXUUXUUUb
0047h	Limer RC Interrupt Control Register	TRCIC	XXXXX000b
0048h	Timer RD0 Interrupt Control Register	TRD0IC	XXXXX000b
0049h	Timer RD1 Interrupt Control Register	TRD1IC	XXXXX000b
004Ah	Timer RE Interrupt Control Register	TREIC	XXXXX000b
004Bh	UART2 Transmit Interrupt Control Register	S2TIC	XXXXX000b
004Ch	UART2 Receive Interrupt Control Register	S2RIC	XXXXX000b
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	SSU Interrupt Control Register/IIC hus Interrupt Control Register (2)	SSUIC/IICIC	XXXXX000b
0050b	Timer RF Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
00501	TIARTO Transmit Interrupt Control Register	SOTIC	XXXXXX0000
005111	UANTO Transmit milerrupt Control Register	SORIC	
00520	UAR TO Receive Interrupt Control Register	SURIC	
0053h		3110	
0054h	UAK 11 Receive Interrupt Control Register	STRIC	XXXXXUUUb
0055h	IN 12 Interrupt Control Register	INT2IC	XXUUXUU0b
0056h	Timer RA Interrupt Control Register	TRAIC	XXXXX000b
0057h			
0058h	Timer RB Interrupt Control Register	TRBIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XX00X000b
005Ah	INT3 Interrupt Control Register	INT3IC	XX00X000b
005Bh	Timer RF Interrupt Control Register	TRFIC	XXXXX000b
005Ch	Timer RF Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
005Eh	UART2 Bus Collision Detection Interrupt Control Register	U2BCNIC	XXXXX000b
005Fb	Timer RE Capture Interrunt Control Register	CAPIC	XXXXX000b
00605	The the capture metrup: control hegicite	5,1110	
00615			
00605			
00620			
00630			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh	Timer RG Interrupt Control Register	TRGIC	XXXXX000b
006Ch			
006Dh			
006Eh			
006Fh		1	
0070h			
0071h			
00726	Voltage Monitor 1/Comparator A1 Interrupt Control Register	VCMP1IC	XXXXX000b
00721	Voltage Monitor 2/Comparator A2 Interrupt Control Register		XXXXX000b
00731	vonaye mornior z/oomparator Az mientupi Control Register		
00740			
00750		ļ	
0076h			
0077h			
0078h			
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh		1	
007Fh			
001111		1	1

Table 4.2SFR Information (2) (1)

X: Undefined

Notes:

1. The blank areas are reserved and cannot be accessed by users.

2. Selectable by the IICSEL bit in the SSUIICSR register.

Address	Register	Symbol	After Reset
00C0h	A/D Register 0	AD0	XXh
00C1h			000000XXb
00C2h	A/D Register 1	AD1	XXh
00C3h			000000XXb
00C4h	A/D Register 2	AD2	XXh
00C5h			00000XXb
00C6h	A/D Register 3	AD3	XXh
00C7h			000000XXb
00C8h	A/D Register /		XXh
0000h		7.04	000000226
00CAb	A/D Pagistor 5		XXP
00CRh	AD Register 5	AD3	200000XXF
00001		400	
00CCh	A/D Register 6	AD6	XXN
UUCDh		107	UUUUUXXb
00CEh	A/D Register 7	AD7	XXh
00CFh			000000XXb
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Mode Register	ADMOD	00h
00D5h	A/D Input Select Register	ADINSEL	1100000b
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h	D/A0 Register	DA0	00h
00D9h	D/A1 Register	DA1	00h
00DAh			
00DBh			
00DCh	D/A Control Register	DACON	00h
00DDh			
00DEh			
00DFh			
00E0h	Port P0 Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h	Port P5 Register	P5	XXh
00EAh	Port P4 Direction Register	PD4	00h
00EBh	Port P5 Direction Register	PD5	00h
00FCh	Port P6 Register	P6	XXh
00FDh	Port P7 Register	P7	XXh
00EEh	Port P6 Direction Register	PD6	00h
00EFh	Port P7 Direction Register	PD7	00h
00E0h	Port P8 Register	P8	XXh
00F1b	Port P0 Register	Pg	XXh
00F2h	Port P8 Direction Register	PD8	00b
00F3h	Port P0 Direction Register	PDQ	00b
00F4h	For F9 Direction Register	FD9	0011
00556			
00565			
00576			
005%			
00505			
00-90			
OUFCh			
UUF Dh			
UUFEh			
OOFED		1	

SFR Information (4)⁽¹⁾ Table 4.4

X: Undefined

Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2CB0h	DTC Control Data 14	DTCD14	XXh
20046			YYb
ZCBIN			AA0
2CB2h			XXh
2CB3h			XXh
2CB4h			XXh
200411			
2CB5h			XXN
2CB6h			XXh
2CB7h			XXh
200711	DTO Operated Date 45	DTOD45	
20B8n	DIC Control Data 15	DICD15	XXn
2CB9h			XXh
2CBAh			XXh
2CBBh	4		YYh
ZOBBII			
2CBCh			XXh
2CBDh			XXh
2CBFh			XXh
DODEL			XXL
ZUBFII			77U
2CC0h	DTC Control Data 16	DTCD16	XXh
2CC1h			XXh
20026	4		XXb
200211			
2CC3h			XXh
2CC4h			XXh
2CC5h	1		XXh
2000	4		VVh
20060			
2CC7h			XXh
2CC8h	DTC Control Data 17	DTCD17	XXh
2000h			YYh
200911			
200Ah			XXN
2CCBh			XXh
2CCCh			XXh
2000h			VVh
200011			
2CCEh			XXh
2CCFh			XXh
2CD0h	DTC Control Data 18	DTCD18	XXh
20001		DIODIO	XXII
ZCDIN			XXn
2CD2h			XXh
2CD3h			XXh
2000h			VVh
200411			
2CD5h			XXh
2CD6h			XXh
2CD7h			XXh
200711	DTO Operated Date 40	DTOD40	XXII
2008h	DIC Control Data 19	DICD19	XXn
2CD9h			XXh
2CDAh			XXh
2CDBh			XXh
20001			
ZUDUN			77U
2CDDh			XXh
2CDFh			XXh
20DEh	4		YYh
20051		DTODOO	
2CE0h	DTC Control Data 20	DTCD20	XXh
2CE1h			XXh
2CE2h	1		XXh
20021			YVh
20E3N			^^[]
2CE4h			XXh
2CF5h			XXh
20566	4		XXb
202011			
2CE7h			XXh
2CE8h	DTC Control Data 21	DTCD21	XXh
20.Eab			XXh
201311			
2CEAh			XXh
2CEBh			XXh
2CECh	1		XXh
20101			
2CEDh			XXN
2CEEh			XXh
2CFFh	1		XXh
200111			////

Table 4.11SFR Information (11) (1)

X: Undefined Note:

1. The blank areas are reserved and cannot be accessed by users.

Symbol	Deremeter		Conditions	Standard			Linit		
Symbol		P	arameter		Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage				1.8		5.5	V	
Vss/AVss	Supply voltage					—	0	_	V
Viн	Input "H" voltage	Other th	an CMOS ii	nput		0.8 Vcc		Vcc	V
		CMOS	Input level	Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.5 Vcc	_	Vcc	V
		input	switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	_	Vcc	V
			function		$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.65 Vcc	_	Vcc	V
			(I/O port)	Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.65 Vcc	_	Vcc	V
				0.5 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.7 Vcc	_	Vcc	V
					$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	0.8 Vcc	_	Vcc	V
				Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0.85 Vcc	_	Vcc	V
				0.7 Vcc	$2.7 \text{ V} \leq \text{Vcc} < 4.0 \text{ V}$	0.85 Vcc	_	Vcc	V
					1.8 V ≤ Vcc < 2.7 V	0.85 Vcc	_	Vcc	V
		Externa	l clock input	(XOUT)		1.2	_	Vcc	V
VIL	Input "L" voltage	Other th	an CMOS i	nput		0	_	0.2 Vcc	V
		CMOS	Inputlevel	Input level selection:	4.0 V ≤ Vcc ≤ 5.5 V	0	_	0.2 Vcc	V
		input	switching	0.35 Vcc	2.7 V < Vcc < 4.0 V	0	_	0.2 Vcc	V
		-	function		$1.8 V \le Vcc \le 2.7 V$	0		0.2 Vcc	V
			(I/O port)	Input level selection:	$4.0 V \le Vcc \le 5.5 V$	0	_	0.4 Vcc	V
				0.5 Vcc	$2.7 V \le Vcc \le 4.0 V$	0		0.3 Vcc	V
					$1.8 V \le Vcc \le 2.7 V$	0		0.2 Vcc	V
				Input level selection:	$40V \le Vcc \le 55V$	0		0.55 Vcc	v
				0.7 Vcc	$27 V \le V \le 40 V$	0		0.45 Vcc	V
					$1.8 V \le V \le 2.7 V$	0		0.40 V00	V
		Externa	l Lolock input		1.0 V 2 V00 < 2.1 V	0		0.00 100	V
IOH(sum)	Peak sum output	"H"	Sum of all	pins IOH(peak)		_	_	-160	mA
IOH(sum)	Average sum out	out "H"	Sum of all	pins IOH(avg)		_	_	-80	mA
IOH(peak)	current Peak output "H" c	urrent	Drive capa	city Low		_		-10	mA
. ,	•		Drive capa	city High		_	_	-40	mA
IOH(avg)	Average output "	- 1"	Drive capa	city Low		_	_	-5	mA
(***3)	current		Drive capa	city High		_	_	-20	mA
OL(sum)	Peak sum output	"L"	Sum of all	pins IOL(peak)		_	_	160	mA
1	current		Quere of all					00	
IOL(sum)	Average sum out current	out "L"	Sum of all	pins IOL(avg)		_		80	ΜA
IOL(peak)	Peak output "L" c	urrent	Drive capacity Low			—	—	10	mA
			Drive capa	city High		—	_	40	mA
IOL(avg)	Average output "L	"	Drive capa	city Low		—		5	mA
	current		Drive capa	city High		—		20	mA
f(XIN)	XIN clock input of	scillation	frequency		$2.7~V \leq Vcc \leq 5.5~V$	—		20	MHz
					$1.8~V \leq Vcc < 2.7~V$	—		5	MHz
f(XCIN)	XCIN clock input oscillation frequency		$1.8~V \leq Vcc \leq 5.5~V$	—	32.768	50	kHz		
fOCO40M	When used as the count source for timer RC, timer RD or timer RG ⁽³⁾		$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	32		40	MHz		
fOCO-F	fOCO-F frequenc	у			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_		20	MHz
	• • •	-			1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz
_	System clock free	uencv			2.7 V ≤ Vcc ≤ 5.5 V	_	_	20	MHz
	, , , , , , , , , , , , , , , , , , , ,	,			$1.8 V \le Vcc < 2.7 V$	_		5	MHz
f(BCLK)	CPU clock freque	ncy			2.7 V ≤ Vcc ≤ 5.5 V	_		20	MHz
· · /					1.8 V ≤ Vcc < 2.7 V	_		5	MHz

Table 5.2 Recommended Operating Conditions (1)

Notes:

1. Vcc = 1.8 to 5.5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC, timer RD, or timer RG in the range of Vcc = 2.7 to 5.5 V.

Symbol	Parameter		Conc	litions	Standard			Unit
Symbol	T didificiei		Conditions		Min.	Тур.	Max.	Onit
—	Resolution		Vref = AVCC	Vref = AVCC		—	10	Bit
—	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	-	±3	LSB
			Vref = AVcc = 3.3 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±5	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input		—	±5	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±5	LSB
		8-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input		-	±2	LSB
			Vref = AVcc = 3.3 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input	_	_	±2	LSB
			Vref = AVcc = 2.2 V	AN0 to AN7 input, AN8 to AN11 input, AN12 to AN19 input		—	±2	LSB
φAD	A/D conversion clock	•	$4.0 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	≤ 5.5 V ⁽²⁾	2	—	20	MHz
			$3.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	≤ 5.5 V ⁽²⁾	2	—	16	MHz
			$2.7 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	≤ 5.5 V ⁽²⁾	2	—	10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq$	≤ 5.5 V (2)	2	—	5	MHz
—	Tolerance level impedance	e			—	3	—	kΩ
tCONV	Conversion time	10-bit mode	Vref = AVCC = 5.0 V,	φAD = 20 MHz	2.2		—	μs
		8-bit mode	Vref = AVCC = 5.0 V, c	φAD = 20 MHz	2.2		—	μS
t SAMP	Sampling time		φAD = 20 MHz		0.8		—	μS
IVref	Vref current		Vcc = 5.0 V, XIN = f1	1 = φAD = 20 MHz		45	—	μΑ
Vref	Reference voltage				2.2	<u> </u>	AVcc	V
VIA	Analog input voltage ⁽³⁾				0	<u> </u>	Vref	V
OCVREF	On-chip reference voltage		$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	lz	1.19	1.34	1.49	V

Table 5.3 A/D Converter Characteristics	Table 5.3	A/D Converter	Characteristics
---	-----------	---------------	-----------------

Notes:

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V, and Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-current-

consumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	Boromotor	Conditions		Lloit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Offic
—	Program/erase endurance (2)		1,000 ⁽³⁾	—	—	times
—	Byte program time		_	80	500	μS
—	Block erase time		_	0.3	—	s
td(SR-SUS)	Time delay from suspend request until suspend		—		5 + CPU clock × 3 cycles	ms
—	Interval from erase start/restart until following suspend request		0	_	—	μS
_	Time from suspend until erase restart		—	_	30 + CPU clock × 1 cycle	μS
td(CMDRST -READY)	Time from when command is forcibly stopped until reading is enabled		-	-	30 + CPU clock × 1 cycle	μS
—	Program, erase voltage		2.7	—	5.5	V
—	Read voltage		1.8	_	5.5	V
—	Program, erase temperature		0	_	60	°C
—	Data hold time (7)	Ambient temperature = 55 °C	20	_	_	year

Table 5.7 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and T_{opr} = 0 to 60 °C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed.)

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Cumhal	Deremeter	Canalitian		Linit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
tSCL	SCL input cycle time		12tcyc + 600 (2)	—	—	ns
t SCLH	SCL input "H" width		3tcyc + 300 (2)	_	_	ns
tSCLL	SCL input "L" width		5tcyc + 500 (2)	_	_	ns
tsf	SCL, SDA input fall time		—	_	300	ns
tSP	SCL, SDA input spike pulse rejection time		—	-	1tcyc (2)	ns
tBUF	SDA input bus-free time		5tcyc (2)	-	-	ns
t STAH	Start condition input hold time		3tcyc (2)	_	_	ns
t STAS	Retransmit start condition input setup time		3tcyc (2)	_	_	ns
t STOP	Stop condition input setup time		3tcyc (2)	_	_	ns
tSDAS	Data input setup time		1tcyc + 40 ⁽²⁾	—	—	ns
t SDAH	Data input hold time		10	—	—	ns

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V, and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

2. 1tCYC = 1/f1(s)

Figure 5.7 I/O Timing of I²C bus Interface

Symbol Parameter		Paramotor	Condition		Standard			Llnit
Symbol		l'arameter condition		Min.	Тур.	Max.	Offic	
Voн	Output "H"	Other than XOUT	Drive capacity High Vcc = $5 V$	Іон = -20 mA	Vcc - 2.0	—	Vcc	V
	voltage		Drive capacity Low Vcc = 5 V	Iон = -5 mA	Vcc - 2.0	—	Vcc	V
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	—	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High $Vcc = 5 V$	IoL = 20 mA	—	—	2.0	V
	voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	—	—	2.0	V
		XOUT	Vcc = 5 V	IoL = 200 μA	—		0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, INT4, KI0, KI1, KI2, KI3, TRAIO, TRCIOA, TRCIOB, TRCIOA, TRCIOB, TRDIOA0, TRDIOB0, TRDIOA0, TRDIOB0, TRDIOA1, TRDIOB1, TRDIOC1, TRDIOD1, TRCTRG, TRCCLK, TRFI, TRGIOA, TRGIOB, ADTRG, RXD0, RXD1, RXD2, CLK0, CLK1, CLK2, SSI, SCL, SDA, SSO	Vcc = 5.0 V		0.1	1.2	_	V
		RESET	Vcc = 5.0 V		0.1	1.2	—	V
Ін	Input "H" cu	irrent	VI = 5 V, VCC = 5.0 V		—		5.0	μΑ
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 5.0 V		—	_	-5.0	μA
RPULLUP	Pull-up resi	stance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ
Rfxin	Feedback resistance	XIN			—	0.3	—	MΩ
Rfxcin	Feedback resistance	XCIN			—	8	—	MΩ
Vram	RAM hold v	voltage	During stop mode		1.8	—	—	V

Table 5.18	Electrical Characteristics	(1) [4.	2 V	$l \leq V$		≤ 5 .∜	5 V]
------------	----------------------------	----	-------	-----	------------	--	---------------	------

Note:

1. 4.2 V \leq Vcc \leq 5.5 V, T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), and f(XIN) = 20 MHz, unless otherwise specified.

Table 5.23Serial Interface

Symbol		Parameter	Star	dard	Linit
Symbol		Faranielei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	When external clock is selected	200	-	ns
tw(ckh)	CLKi input "H" width		100	-	ns
tW(CKL)	CLKi input "L" width		100	-	ns
td(C-Q)	TXDi output delay time		=	90	ns
th(C-Q)	TXDi hold time		0	-	ns
tsu(D-C)	RXDi input setup time		10	-	ns
th(C-D)	RXDi input hold time		90	-	ns
td(C-Q)	TXDi output delay time	When internal clock is selected	-	10	ns
tsu(D-C)	RXDi input setup time		90	-	ns
th(C-D)	RXDi input hold time		90	-	ns

i = 0 to 2

Note:

1. Vcc = 5 V and T_{opr} = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.

Figure 5.11 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.24 External Interrupt INTi (i = 0 to 4) Input, Key Input Interrupt Kli (i = 0 to 3)

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	250 (1)	—	ns	
tw(INL)	INTi input "L" width, Kli input "L" width	250 (2)		ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.12 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Table 5.26Electrical Characteristics (4) $[2.7 V \le Vcc \le 3.3 V]$
(Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter		Condition	:	Standard	b	Unit
Cymbol	i didineter		Condition	Min.	Тур.	Max.	Onit
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	10	mA
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	—	1.5	7.5	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	4.0	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	390	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	80	400	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40		μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = $25 \degree C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		2.0	5.0	μA
			XIN clock off, Topr = 85 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	—	15	_	μA

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V, Topr = 25 °C)

Table 5.27 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	_	ns	
twh(xout)	XOUT input "H" width	24	_	ns	
twl(xout)	XOUT input "L" width	24	_	ns	
tc(XCIN)	XCIN input cycle time	14	_	μs	
twh(xcin)	XCIN input "H" width	7	_	μs	
twl(xcin)	XCIN input "L" width	7	_	μS	

Figure 5.13 External Clock Input Timing Diagram when Vcc = 3 V

Table 5.28 TRAIO Input

Symbol	Parameter	Stan	Lloit	
		Min.	Max.	Onit
tc(TRAIO)	TRAIO input cycle time	300	_	ns
twh(traio)	TRAIO input "H" width	120	_	ns
twl(traio)	TRAIO input "L" width	120	_	ns

Figure 5.14 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.29 TRFI Input

Symbol	Perometer		Standard		
	Falanielei	Min.	Max.	Unit	
tc(TRFI)	TRFI input cycle time	1200 (1)	—	ns	
twh(trfi)	TRFI input "H" width	600 (2)	—	ns	
twl(trfi)	TRFI input "L" width	600 (2)	_	ns	

Notes:

1. When using timer RF input capture mode, adjust the cycle time to (1/timer RF count source frequency × 3) or above.

2. When using timer RF input capture mode, adjust the pulse width to (1/timer RF count source frequency × 1.5) or above.

	tc(TRFI) ►	Vcc = 3 V
TRFI input		

Figure 5.15 TRFI Input Timing Diagram when Vcc = 3 V

Table 5.33Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20 to 85 °C (N version)/-40 to 85 °C (D version), unless otherwise specified.)

Symbol	Parameter	Condition		Standard			Linit
				Min.	Тур.	Max.	Onit
	Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open, other pins are Vss	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	2.2	_	mA
			XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8		mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	2.5	10	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.7	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	_	90	300	μΑ
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division FMR27 = 1, VCA20 = 0	_	80	350	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0		40		μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1		15	90	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1		4	80	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μΑ
		Stop mode	XIN clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		2.0	5	μA
			XIN clock off, Topr = $85 ^{\circ}$ C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	—	15	—	μΑ


```
REVISION HISTORY R8C/38M Group Datasheet
```

Rev.	Date	Description		
		Page	Summary	
0.10	Mar 04, 2011		First Edition issued	
1.00	Jun 15, 2011	All pages	"Preliminary", "Under development", and "D version" deleted	
		3	Table 1.2 revised	
		4	Table 1.3 "(D): Under development" deleted	
		16	Table 4.1 revised	
		17	Table 4.2 revised	
		29	Table 5.2 revised	
		36	Table 5.11 revised	
		37	Table 5.13 revised	
		43	Table 5.18 revised	
		45	Table 5.20 revised	
		46	Table 5.23 Note 1 added	
		47	Table 5.25 revised	
		49	Table 5.27 revised	
		50	Table 5.30 Note 1 added	
		51	Table 5.32 revised	
		53	Table 5.34 revised	
		54	Table 5.37 Note 1 added	

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.