

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	73
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-LBGA
Supplier Device Package	121-MAPBGA (12x12)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf52233cvm60

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	MCF5	52235 Family Configurations	.3
	1.1	Block Diagram.	
	1.2	Features	.4
	1.3	Reset Signals	22
	1.4	PLL and Clock Signals	2
	1.5	Mode Selection	2
	1.6	External Interrupt Signals	22
	1.7	Queued Serial Peripheral Interface (QSPI)	23
	1.8	Fast Ethernet Controller EPHY Signals	23
	1.9	I ² C I/O Signals	
	1.10	UART Module Signals	24
	1.11	DMA Timer Signals	24
	1.12	ADC Signals	25
	1.13	General Purpose Timer Signals	25
	1.14	Pulse Width Modulator Signals	25
	1.15	Debug Support Signals	
	1.16	EzPort Signal Descriptions	
	1.17	Power and Ground Pins	
2	Electr	rical Characteristics	28
	2.1	Maximum Ratings	29
	2.2	ESD Protection	
	2.3	DC Electrical Specifications	32
	2.4	Phase Lock Loop Electrical Specifications	
	2.5	General Purpose I/O Timing	
	2.6	Reset Timing	
	2.7	I ² C Input/Output Timing Specifications	6
	2.8	EPHY Parameters	
	2.9	Analog-to-Digital Converter (ADC) Parameters4	
	2.10	DMA Timers Timing Specifications	
	2.11	EzPort Electrical Specifications4	
	2.12	QSPI Electrical Specifications	3
	2.13	JTAG and Boundary Scan Timing	
	2.14	Debug AC Timing Specifications	
3	Mech	anical Outline Drawings	
	3.1	80-pin LQFP Package4	
	3.2	112-pin LQFP Package4	
	3.3	121 MAPBGA Package	
4	Revis	ion History	53
		Figures	
		.MCF52235 Block Diagram	
			4
	-	.112-pin LQFP Pin Assignments 1	
			6
		Suggested Connection Scheme for Power and Ground 2	28
			35
Fi	gure 7.		86
			37
Fig	gure 9.	.EPHY Timing 3	
		0.10BASE-T SQE (Heartbeat) Timing	
		1.10BASE-T Jab and Unjab Timing 3	
Fig	gure 12	2.Equivalent Circuit for A/D Loading 4	2

Figure 14.Test Clock Input Timing Figure 15.Boundary Scan (JTAG) Timing	
Figure 16.Test Access Port Timing	
Figure 17.TRST Timing	
Figure 18.Real-Time Trace AC Timing	
Figure 19.BDM Serial Port AC Timing	
	40
List of Tables	
Table 1. MCF52235 Family Configurations	
Table 2. Orderable Part Number Summary	
Table 3. Pin Functions by Primary and Alternate Purpose	
Table 4. Reset Signals	
Table 5. PLL and Clock Signals	
Table 6. Mode Selection Signals	
Table 7. External Interrupt Signals	
Table 8. Queued Serial Peripheral Interface (QSPI) Signals	
Table 9. Fast Ethernet Controller (FEC) Signals	
Table 10.I ² C I/O Signals	
Table 11.UART Module Signals	
Table 12.DMA Timer Signals	
Table 13.ADC Signals	
Table 14.GPT Signals	
Table 15.PWM Signals	25
Table 16.Debug Support Signals	
Table 17.EzPort Signal Descriptions	27
Table 18. Power and Ground Pins.	
Table 19. Absolute Maximum Ratings,	29
Table 20. Thermal Characteristics.	
Table 21.ESD Protection Characteristics	
Table 22.DC Electrical Specifications	32
Table 23.Active Current Consumption Specifications.	33
Table 24. Current Consumption Specifications in	
Low-Power Modes	
Table 25.PLL Electrical Specifications	
Table 26.GPIO Timing	
Table 27.Reset and Configuration Override Timing	35
Table 28.1 ² C Input Timing Specifications between	
I2C_SCL and I2C_SDA	36
Table 29. I ² C Output Timing Specifications between	~-
I2C_SCL and I2C_SDA	
Table 30.EPHY Timing Parameters	
Table 31.10BASE-T SQE (Heartbeat) Timing Parameters	
Table 32.10BASE-T Jab and Unjab Timing Parameters	
Table 33.10BASE-T Transceiver Characteristics	
Table 34.100BASE-TX Transceiver Characteristics	
Table 35.ADC Parameters	
Table 36.Timer Module AC Timing Specifications	
Table 37.EzPort Electrical Specifications	
Table 38.QSPI Modules AC Timing Specifications.	
Table 39.JTAG and Boundary Scan Timing	
Table 40.Debug AC Timing Specification	
Table 41.Revision History	53

NX

1 MCF52235 Family Configurations

Module	52230	52231	52232	52233	52234	52235	52236
Version 2 ColdFire Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•	•	•	•
System Clock (MHz)	60	60	50	60	60	60	50
Performance (Dhrystone 2.1 MIPS)	56	56	46	56	56	56	46
Flash / Static RAM (SRAM)	128/32 Kbytes	128/32 Kbytes	128/32 Kbytes	256/32 Kbytes	256/32 Kbytes	256/32 Kbytes	256/32 Kbytes
Interrupt Controllers (INTC0/INTC1)	•	•	•	•	•	•	•
Fast Analog-to-Digital Converter (ADC)	•	•	•	•	•	•	•
Random Number Generator and Crypto Acceleration Unit (CAU)	_	_	_		_	•	—
FlexCAN 2.0B Module	—	•	-	—	•	•	—
Fast Ethernet Controller (FEC) with on-chip interface (EPHY)	•	•	•	•	•	•	•
Four-channel Direct-Memory Access (DMA)	•	•	•	•	•	•	•
Software Watchdog Timer (WDT)	•	•	•	•	•	•	•
Programmable Interrupt Timer	2	2	2	2	2	2	2
Four-Channel General Purpose Timer	•	•	•	•	•	•	•
32-bit DMA Timers	4	4	4	4	4	4	4
QSPI	•	•	•	•	•	•	•
UART(s)	3	3	3	3	3	3	3
I ² C	•	•	•	•	•	•	•
Eight/Four-channel 8/16-bit PWM Timer	•	•	•	•	•	•	٠
General Purpose I/O Module (GPIO)	•	•	•	•	•	•	•
Chip Configuration and Reset Controller Module	•	•	٠	•	•	•	•
Background Debug Mode (BDM)	•	•	•	•	•	•	٠
JTAG - IEEE 1149.1 Test Access Port ¹	•	•	•	•	•	•	٠
Package	80 LQFP 112 LQFP	80 LQFP 112 LQFP	80 LQFP	80 LQFP 112 LQFP	112 LQFP 121 MAPBGA	112 LQFP 121 MAPBGA	80 LQFP

Table 1. MCF52235 Family Configurations

The full debug/trace interface is available only on the 112- and 121-pin packages. A reduced debug interface is bonded on the 80-pin package.

1

1.2.1 Feature Overview

The MCF52235 family includes the following features:

- Version 2 ColdFire variable-length RISC processor core
 - Static operation
 - 32-bit address and data paths on-chip
 - Up to 60 MHz processor core frequency
 - Sixteen general-purpose, 32-bit data and address registers
 - Implements ColdFire ISA_A with extensions to support the user stack pointer register and four new instructions for improved bit processing (ISA_A+)
 - Enhanced Multiply-Accumulate (EMAC) unit with 32-bit accumulator to support $16 \times 16 \rightarrow 32$ or $32 \times 32 \rightarrow 32$ operations
 - Cryptography Acceleration Unit (CAU)
 - Tightly-coupled coprocessor to accelerate software-based encryption and message digest functions
 - FIPS-140 compliant random number generator
 - Support for DES, 3DES, AES, MD5, and SHA-1 algorithms
 - Illegal instruction decode that allows for 68K emulation support
- System debug support
 - Real time trace for determining dynamic execution path
 - Background debug mode (BDM) for in-circuit debugging (DEBUG_B+)
 - Real time debug support, with six hardware breakpoints (4 PC, 1 address and 1 data) that can be configured into a 1- or 2-level trigger
- On-chip memories
 - Up to 32 Kbytes of dual-ported SRAM on CPU internal bus, supporting core and DMA access with standby power supply support
 - Up to 256 Kbytes of interleaved Flash memory supporting 2-1-1-1 accesses
- Power management
 - Fully static operation with processor sleep and whole chip stop modes
 - Rapid response to interrupts from the low-power sleep mode (wake-up feature)
 - Clock enable/disable for each peripheral when not used
- Fast Ethernet Controller (FEC)
 - 10/100 BaseT/TX capability, half duplex or full duplex
 - On-chip transmit and receive FIFOs
 - Built-in dedicated DMA controller
 - Memory-based flexible descriptor rings
- On-chip Ethernet Transceiver (EPHY)
 - Digital adaptive equalization
 - Supports auto-negotiation
 - Baseline wander correction
 - Full-/Half-duplex support in all modes
 - Loopback modes
 - Supports MDIO preamble suppression
 - Jumbo packet
- FlexCAN 2.0B module

MCF52235 Family Configurations

- Unique vector number for each interrupt source
- Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
- Support for hardware and software interrupt acknowledge (IACK) cycles
- Combinatorial path to provide wake-up from low power modes
- DMA controller
 - Four fully programmable channels
 - Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (4 x 32-bit) burst transfers
 - Source/destination address pointers that can increment or remain constant
 - 24-bit byte transfer counter per channel
 - Auto-alignment transfers supported for efficient block movement
 - Bursting and cycle steal support
 - Software-programmable DMA requesters for the UARTs (3) and 32-bit timers (4)
- Reset
 - Separate reset in and reset out signals
 - Seven sources of reset:
 - Power-on reset (POR)
 - External
 - Software
 - Watchdog
 - Loss of clock
 - Loss of lock
 - Low-voltage detection (LVD)
 - Status flag indication of source of last reset
- Chip integration module (CIM)
 - System configuration during reset
 - Selects one of three clock modes
 - Configures output pad drive strength
 - Unique part identification number and part revision number
- General purpose I/O interface
 - Up to 56 bits of general purpose I/O
 - Bit manipulation supported via set/clear functions
 - Programmable drive strengths
 - Unused peripheral pins may be used as extra GPIO
- JTAG support for system level board testing

1.2.2 V2 Core Overview

The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and calculates operand effective addresses, if needed.

The V2 core implements the ColdFire instruction set architecture revision A+ with added support for a separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the MCF52235 core includes the enhanced multiply-accumulate (EMAC) unit for improved signal processing capabilities. The EMAC implements a three-stage arithmetic

С
D
E
F
G
Н
J
к
L

-	1	2	3	4	5	6	7	8	9	10	11
A	TCLK	SDA	SCL	IRQ15	IRQ14	IRQ13	VSSA	VDDA	AN1	AN7	AN5
В	TMS	RCON	GPT0	GPT3	PWM5	PWM1	VRL	VRH	AN2	AN6	AN4
С	TRST	TDO	TDI	GPT2	PWM7	PWM3	IRQ12	ANO	AN3	LNKLED	ACTLED
D	DTIN1	DTIN0	ALLPST	GPT1	VDDX	VDDX	VDD	VDDR	PST2	PST3	SPDLED
Е	DDATA3	IRQ9	IRQ8	VSS	VSS	VDDX	VSS	VDD	PST0	PST1	PHY_RXN
F	DDATA0	DDATA1	DDATA2	VSS	VSS	VSS	VSS	VSS	PHY_VSSRX	PHY_VDDRX	PHY_RXP
G	DTIN2	IRQ5	IRQ6	JTAG_EN	VDDX	VDDX	VDDX	PHY_VSSA	PHY_VSSTX	PHY_VDDTX	PHY_TXP
Н	DTIN3	URTS0	URTS1	QSPI_DIN	QSPI_CS1	VDDX	TEST	TXLED	RXLED	PHY_VDDA	PHY_TXN
J	SYNCB	UCTS0	UCTS1	QSPI_DOUT	QSPI_CS2	RSTI	XTAL	IRQ1	COLLED	DUPLED	PHY_RBIAS
к	SYNCA	URXD0	URXD1	QSPI_CLK	QSPI_CS3	VDDPLL	VSSPLL	IRQ2	IRQ11	URTS2	URXD2
L	IRQ10	UTXD0	UTXD1	QSPI_CS0	IRQ4	RSTO	EXTAL	IRQ3	IRQ7	UCTS2	UTXD2

Figure 4. 121 MAPBGA Pin Assignments

16

Pin Group	Primary Function	SecondaryF unction	Tertiary Function	Quaternary Function	Drive Strength/ Control ¹	Wired OR Control	Pull-up/ Pull-down ²	Pin on 121 MAPBGA	Pin on 112 LQFP	Pin on 80 LQFP
Continued	IRQ11			PGP[3]	PSDR[43]	_	Pull-Up ⁶	K9	57	41
Interrupts ³	IRQ10	—	—	PGP[2]	PSDR[42]	_	Pull-Up ⁶	L1	29	—
	IRQ9	—	_	PGP[1]	PSDR[41]	—	Pull-Up ⁶	E2	11	—
	IRQ8	—	_	PGP[0]	PSDR[40]		Pull-Up	E3	10	—
	IRQ7	—	_	PNQ[7]	Low	—	Pull-Up ⁶	L9	56	40
	IRQ6	—	FEC_RXER	PNQ[6]	Low	—	Pull-Up ⁶	G3	19	—
	IRQ5	—	FEC_RXD[1]	PNQ[5]	Low	—	Pull-Up ⁶	G2	20	—
	IRQ4	—	—	PNQ[4]	Low	_	Pull-Up ⁶	L5	41	29
	IRQ3	—	FEC_RXD[2]	PNQ[3]	Low	—	Pull-Up ⁶	L8	53	—
	IRQ2	—	FEC_RXD[3]	PNQ[2]	Low	—	Pull-Up ⁶	K8	54	—
	IRQ1	SYNCA	PWM1	PNQ[1]	High	_	Pull-Up ⁶	J8	55	39
JTAG/BDM	JTAG_EN	—	_	—	N/A	N/A	Pull-Down	G4	18	12
	TCLK/ PSTCLK	CLKOUT	_	_	High	—	Pull-Up ⁷	A1	1	1
	TDI/DSI	—	_	_	N/A	N/A	Pull-Up ⁷	C3	4	4
	TDO/DSO	—	_	—	High	N/A	—	C2	5	5
	TMS/BKPT	—	_	—	N/A	N/A	Pull-Up ⁷	B1	2	2
	TRST/DSCLK	—	_	—	N/A	N/A	Pull-Up	C1	6	6
Mode Selection	RCON/EZPCS	_	_	_	N/A	N/A	Pull-Up	B2	3	3
PWM	PWM7	—	_	PTD[3]	PDSR[31]	_	—	C5	104	—
	PWM5	—	_	PTD[2]	PDSR[30]	_	—	B5	103	—
	PWM3	—	_	PTD[1]	PDSR[29]	_	—	C6	100	—
	PWM1	_	_	PTD[0]	PDSR[28]	_	—	B6	99	—

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

19

MCF52235 Family Configurations

1.3 Reset Signals

Table 4 describes signals that are used to either reset the chip or as a reset indication.

Table 4. Reset Signals

Signal Name	Abbreviation	Function	I/O
Reset In		Primary reset input to the device. Asserting $\overline{\text{RSTI}}$ immediately resets the CPU and peripherals.	I
Reset Out	RSTO	Driven low for 512 CPU clocks after the reset source has deasserted.	0

1.4 PLL and Clock Signals

Table 5 describes signals that are used to support the on-chip clock generation circuitry.

Table 5. PLL and Clock Signals

Signal Name	Abbreviation	Function	I/O
External Clock In	EXTAL	Crystal oscillator or external clock input.	Ι
Crystal	XTAL	Crystal oscillator output.	0
Clock Out	CLKOUT	This output signal reflects the internal system clock.	0

1.5 Mode Selection

Table 6 describes signals used in mode selection, Table 6 describes particular clocking modes.

Table 6. Mode Selection Signals

Signal Name	Abbreviation	Function	I/O
Reset Configuration		The Serial Flash Programming mode is entered by asserting the $\overline{\text{RCON}}$ pin (with the TEST pin negated) as the chip comes out of reset. During this mode, the EzPort has access to the Flash memory which can be programmed from an external device.	_
Test	TEST	Reserved for factory testing only and in normal modes of operation should be connected to VSS to prevent unintentional activation of test functions.	I

1.6 External Interrupt Signals

Table 7 describes the external interrupt signals.

Table 7. External Interrupt Signals

Signal Name	Abbreviation	Function	I/O
External Interrupts	IRQ[15:1]	External interrupt sources.	Ι

1.7 Queued Serial Peripheral Interface (QSPI)

Table 8 describes QSPI signals.


Signal Name	Abbreviation	Function	
QSPI Synchronous Serial Output	QSPI_DOUT	Provides the serial data from the QSPI and can be programmed to be driven on the rising or falling edge of QSPI_CLK.	
QSPI Synchronous Serial Data Input	QSPI_DIN	Provides the serial data to the QSPI and can be programmed to be sampled on the rising or falling edge of QSPI_CLK.	
QSPI Serial Clock	QSPI_CLK	Provides the serial clock from the QSPI. The polarity and phase of QSPI_CLK are programmable.	
Synchronous Peripheral Chip Selects	QSPI_CS[3:0]	QSPI peripheral chip selects that can be programmed to be active high or low.	0

1.8 Fast Ethernet Controller EPHY Signals

Table 9 describes the Fast Ethernet Controller (FEC) signals.

Signal Name	Abbreviation	Function	I/O
Twisted Pair Input +	RXP	Differential Ethernet twisted-pair input pin. This pin is high-impedance out of reset.	Ι
Twisted Pair Input -	RXN	Differential Ethernet twisted-pair input pin. This pin is high-impedance out of reset.	I
Twisted Pair Output +	TXN	fferential Ethernet twisted-pair output pin. This pin is gh-impedance out of reset.	
Twisted Pair Output -	TXP	ifferential Ethernet twisted-pair output pin. This pin is igh-impedance out of reset.	
Bias Control Resistor	RBIAS	Connect a 12.4 k Ω (1.0%) external resistor, RBIAS, between the PHY_RBIAS pin and analog ground. Place this resistor as near to the chip pin as possible. Stray capacitance must be kept to less than 10 pF (>50 pF causes instability). No high-speed signals can be permitted in the region of RBIAS.	
Activity LED	ACT_LED	Indicates when the EPHY is transmitting or receiving	0
Link LED	LINK_LED	Indicates when the EPHY has a valid link	0
Speed LED	SPD_LED	Indicates the speed of the EPHY connection	0
Duplex LED	DUPLED	Indicates the duplex (full or half) of the EPHY connection	
Collision LED	COLLED	Indicates if the EPHY detects a collision	
Transmit LED	TXLED	ndicates if the EPHY is transmitting	
Receive LED	RXLED	Indicates if the EPHY is receiving	0

Table 9. Fast Ethernet Controller (FEC) Signals

1.12 ADC Signals

Table 13 describes the signals of the Analog-to-Digital Converter.

Table 13. ADC Signals

Signal Name	Abbreviation	Function	
Analog Inputs	AN[7:0]	Inputs to the A-to-D converter.	I
Analog Reference	V _{RH}	Reference voltage high and low inputs.	I
	V _{RL}		I
Analog Supply	V _{DDA}	Isolate the ADC circuitry from power supply noise	—
	V _{SSA}		

1.13 General Purpose Timer Signals

Table 14 describes the General Purpose Timer Signals.

Table 14. GPT Signals

Signal Name	Abbreviation	Function	
General Purpose Timer Input/Output	GPT[3:0]	Inputs to or outputs from the general purppose timer module	I/O

1.14 Pulse Width Modulator Signals

Table 15 describes the PWM signals.

Table 15. PWM Signals

Signal Name	Abbreviation	Function	I/O
PWM Output Chan	nels PWM[7:0]	Pulse width modulated output for PWM channels	0

1.15 Debug Support Signals

These signals are used as the interface to the on-chip JTAG controller and also to interface to the BDM logic.

Table 16. Debug Support Signals

Signal Name	Abbreviation	Function	
JTAG Enable	JTAG_EN	Select between debug module and JTAG signals at reset	Ι
Test Reset	TRST	his active-low signal is used to initialize the JTAG logic synchronously.	
Test Clock	TCLK	Used to synchronize the JTAG logic.	
Test Mode Select	TMS	Used to sequence the JTAG state machine. TMS is sampled on the rising edge of TCLK.	
Test Data Input	TDI	Serial input for test instructions and data. TDI is sampled on the rising edge of TCLK.	I

2.1 Maximum Ratings

		•	
Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to +4.0	V
Clock synthesizer supply voltage	V _{DDPLL}	-0.3 to +4.0	V
Digital input voltage ³	V _{IN}	-0.3 to + 4.0	V
EXTAL pin voltage	V _{EXTAL}	0 to 3.3	V
XTAL pin voltage	V _{XTAL}	0 to 3.3	V
Instantaneous maximum current Single pin limit (applies to all pins) ^{4, 5}	IDD	25	mA
Operating temperature range (packaged)	Т _А (Т _L - Т _Н)	-40 to 85	°C
Storage temperature range	T _{stg}	-65 to 150	°C

Table 19. Absolute Maximum Ratings^{1, 2}

¹ Functional operating conditions are given in DC Electrical Specifications. Absolute Maximum Ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device.

² This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}).

³ Input must be current limited to the I_{DD} value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

 4 All functional non-supply pins are internally clamped to $\rm V_{SS}$ and $\rm V_{DD}.$

⁵ The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{in} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power (ex; no clock). The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions.

Table 20 lists thermal resistance values.

NOTE

The use of this device in one- or two-layer board designs is not recommended due to the limited thermal conductance provided by those boards.

Electrical Characteristics

Characteristic	Symbol	Package ¹	Value	Unit	
Junction to ambient, natural convection	θ_{JA}	80-pin LQFP, four-layer board	36.0 ^{2,3}	°C/W	
		112-pin LQFP, four-layer board	35.0	-	
		121 MAPBGA, four-layer board	32		
		80-pin LQFP, one-layer board ¹	49.0 ¹		
		121 MAPBGA, one-layer board ¹	56 ¹		
		112-pin LQFP, one-layer board ¹	44.0 ¹		
Junction to ambient (@200 ft/min)	θ_{JMA}	80-pin LQFP, four-layer board	30.0	°C/W	
		112-pin LQFP, four-layer board	29.0		
		121 MAPBGA, four-layer board	28		
		80-pin LQFP, one-layer board ¹	39.0 ¹		
		112-pin LQFP, one-layer board ¹	35.0 ¹		
		121 MAPBGA, one-layer board ¹	46 ¹		
Junction to board	θ_{JB}	80-pin LQFP	22.0 ⁴	°C/W	
		112-pin LQFP	23.0		
		121 MAPBGA, four-layer board	18		
Junction to case	θ^{JC}	80-pin LQFP	6.0 ⁵	°C/W	
		112-pin LQFP	6.0		
		121 MAPBGA	10		
Junction to top of package, natural convection	Ψ _{jt}	80-pin LQFP	2.0 ⁶	°C/W	
		112-pin LQFP	2.0 ⁶		
		121 MAPBGA	2.0 ⁶		
Maximum operating junction temperature	Тj	All	130	°C	

Table 20. Thermal Characteristics

¹ The use of this device in one- or two-layer board designs is not recommended due to the limited thermal conductance provided by those boards.

- $^2 \quad \theta_{JMA}$ and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JMA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ³ Per JEDEC JESD51-6 with the board horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

Characteristic	Symbol	Running from SRAM, EPHY Off	Running from Flash, EPHY Off	Running from Flash, EPHY 10BaseT	Running from Flash, EPHY 100BaseT	Peak	Unit
Active current, core and I/O PLL @25 MHz PLL @60 MHz	I _{DDR} +I _{DDX} +I _{DDA}	75 130	82 138	150 220	260 310	290 340	mA
Analog supply current Normal operation Low-power STOP	I _{DDA}	20 15	20 15	20 15	20 15	30 50	mA μA

Table 23. Active Current Consumption Specifications

Table 24. Current Consumption Specifications in Low-Power Modes¹

Mode ²	PLL @25 MHz (typical) ³	PLL @60 MHz (typical) ³	PLL @60 MHz (peak) ⁴	Unit
STOP mode 3 (STPMD[1:0]=11)	0	.2	1.0	mA
STOP mode 2 (STPMD[1:0]=10)	7	7	—	
STOP mode 1 (STPMD[1:0]=01)	10	12	—	
STOP mode 0 (STPMD[1:0]=00)	10	12	—	
WAIT	16	27	—	
DOZE	16	27	—	
RUN	25	45	_	

¹ All values are measured with a 3.30 V power supply.

² Refer to the "Power Management" chapter in the *MCF52235 ColdFire[®] Integrated Microcontroller Reference Manual* for more information on low-power modes.

⁴ These values were obtained with CLKOUT and all peripheral clocks enabled. All code was executed from flash memory.

³ These values were obtained with CLKOUT and all peripheral clocks except for the CFM clock disabled prior to entering low-power mode. The tests were performed at room temperature. All code was executed from flash memory; running code from SRAM further reduces power consumption.

Electrical Characteristics

2.4 Phase Lock Loop Electrical Specifications

Table 25. Oscillator and PLL Electrical Specifications

 $(V_{DD} \text{ and } V_{DDPLL} = 2.7 \text{ to } 3.6 \text{ V}, V_{SS} = V_{SSPLL} = 0 \text{ V})$

Characteristic	Symbol	Min	Max	Unit
Clock Source Frequency Range of EXTAL Frequency Range • Crystal • External ¹	f _{crystal} f _{ext}	0.5 0	25.0 60.0	MHz
PLL reference frequency range	f _{ref_pll}	2	10.0	MHz
System frequency ² External clock mode On-Chip PLL Frequency	f _{sys}	0 f _{ref} / 32	60 60	MHz
Loss of reference frequency ^{3, 5}	f _{LOR}	100	1000	kHz
Self clocked mode frequency ^{4, 5}	f _{SCM}	1	5	MHz
Crystal start-up time ^{5, 6}	t _{cst}	_	10	ms
EXTAL input high voltage Crystal reference External reference	V _{IHEXT}	V _{DD} - 1.0 2.0	V _{DD} 3.0 ⁷	V
EXTAL input low voltage Crystal reference External reference	V _{ILEXT}	V _{SS} V _{SS}	1.0 0.8	V
XTAL output high voltage I _{OH} = 1.0 mA	V _{OL}	V _{DD} -1.0	_	V
XTAL output low voltage I _{OL} = 1.0 mA	V _{OL}	_	0.5	V
XTAL load capacitance ⁸		—	—	pF
PLL lock time ^{5,9}	t _{lpll}	—	500	μs
Power-up to lock time ^{5, 7,9} With crystal reference Without crystal reference	t _{lplk}		10.5 500	ms μs
Duty cycle of reference ⁵	t _{dc}	40	60	% f _{sys}
Frequency un-LOCK range	f _{UL}	-1.5	1.5	% f _{sys}
Frequency LOCK range	fLCK	-0.75	0.75	% f _{sys}
CLKOUT period Jitter ^{5, 6, 8, 10,11} , measured at f _{SYS} Max Peak-to-peak jitter (clock edge to clock edge) Long term jitter (averaged over 2 ms interval)	C _{jitter}	—	10 0.01	% f _{sys}

¹ In external clock mode, it is possible to run the chip directly from an external clock source without enabling the PLL.

² All internal registers retain data at 0 Hz.

³ Loss of reference frequency is the reference frequency detected internally that transitions the PLL into self-clocked mode.

⁴ Self-clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f_{LOR} with default MFD/RFD settings.

⁵ This parameter is characterized before qualification rather than 100% tested.

⁶ Proper PC board layout procedures must be followed to achieve specifications.

Num	Characteristic	Min	Max	Units
11 ¹	Start condition hold time	$6 imes t_{CYC}$	_	ns
l2 ¹	Clock low period	$10 imes t_{CYC}$	_	ns
13 ²	I2C_SCL/I2C_SDA rise time $(V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V})$	—	_	μs
I4 ¹	Data hold time	$7 \times t_{CYC}$	_	ns
15 ³	I2C_SCL/I2C_SDA fall time $(V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V})$	_	3	ns
16 ¹	Clock high time	$10 \times t_{CYC}$	_	ns
I7 ¹	Data setup time	$2 \times t_{CYC}$	_	ns
18 ¹	Start condition setup time (for repeated start condition only)	20 x t _{CYC}	—	ns
19 ¹	Stop condition setup time	10 x t _{CYC}	_	ns

Table 29. I²C Output Timing Specifications between I2C_SCL and I2C_SDA

¹ Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 29. The I²C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 29 are minimum values.

- ² Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.
- ³ Specified at a nominal 50-pF load.

Figure 8 shows timing for the values in Table 28 and Table 29.

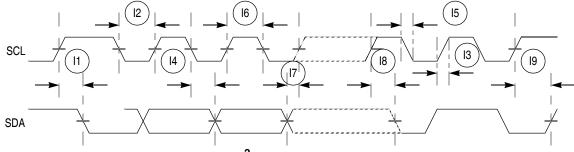


Figure 8. I²C Input/Output Timings

Name	Characteristic	Min	Typical	Max	Unit
f _{ADIC}	ADC internal clock	0.1	-	5.0	MHz
R _{AD}	Conversion range	V _{REFL}	—	V _{REFH}	V
t _{ADPU}	ADC power-up time ⁵	—	6	13	t _{AIC} cycles ⁶
t _{REC}	Recovery from auto standby	—	0	1	t _{AIC} cycles
t _{ADC}	Conversion time	—	6		t _{AIC} cycles
t _{ADS}	Sample time	—	1	_	t _{AIC} cycles
C _{ADI}	Input capacitance	—	See Figure 12	_	pF
X _{IN}	Input impedance	—	See Figure 12		W
I _{ADI}	Input injection current ⁷ , per pin	—	—	3	mA
I _{VREFH}	V _{REFH} current	—	0	_	mA
V _{OFFSET}	Offset voltage internal reference	—	±11	±15	mV
E _{GAIN}	Gain error (transfer path)	.99	1	1.01	—
V _{OFFSET}	Offset voltage external reference	—	±3	_	mV
SNR	Signal-to-noise ratio	—	62 to 66	_	dB
THD	Total harmonic distortion	—	-75	_	dB
SFDR	Spurious free dynamic range	—	75	_	dB
SINAD	Signal-to-noise plus distortion	—	65		dB
ENOB	Effective number OF bits	9.1	10.6	—	Bits

Table 35. ADC Parameters¹ (continued)

¹ All measurements were made at V_{DD} = 3.3V, V_{REFH} = 3.3V, and V_{REFL} = ground

 $^2~$ INL measured from V_{IN} = V_{REFL} to V_{IN} = V_{REFH}

³ LSB = Least Significant Bit

 $^4~$ INL measured from V_{IN} = 0.1V $_{REFH}$ to V_{IN} = 0.9V $_{REFH}$

 $^5\,$ Includes power-up of ADC and $V_{REF}\,$

⁶ ADC clock cycles

2.9.1 Equivalent Circuit for ADC Inputs

Figure 10-17 shows the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3 is closed/open. When S1/S2 are closed and S3 is open, one input of the sample and hold circuit moves to $(V_{REFH}-V_{REFL})/2$, while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended analog input is switched to a differential voltage centered about $(V_{REFH}-V_{REFL})/2$. The switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). There are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides isolation during the charge-sharing phase. One aspect of this circuit is that there is an ongoing input current, which is a function of the analog input voltage, V_{REF} , and the ADC clock frequency.

⁷ The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC

Electrical Characteristics

2.13 JTAG and Boundary Scan Timing

Table 39. JTAG and Boundary Scan Timing

Num	Characteristics ¹	Symbol	Min	Max	Unit
J1	TCLK frequency of operation	f _{JCYC}	DC	1/4	f _{sys/2}
J2	TCLK cycle period	t _{JCYC}	$4 \times t_{CYC}$	—	ns
J3	TCLK clock pulse width	t _{JCW}	26	—	ns
J4	TCLK rise and fall times	t _{JCRF}	0	3	ns
J5	Boundary scan input data setup time to TCLK rise	t _{BSDST}	4	—	ns
J6	Boundary scan input data hold time after TCLK rise	t _{BSDHT}	26	—	ns
J7	TCLK low to boundary scan output data valid	t _{BSDV}	0	33	ns
J8	TCLK low to boundary scan output high Z	t _{BSDZ}	0	33	ns
J9	TMS, TDI input data setup time to TCLK rise	t _{TAPBST}	4	—	ns
J10	TMS, TDI input data hold time after TCLK rise	t _{тарвнт}	10	—	ns
J11	TCLK low to TDO data valid	t _{TDODV}	0	26	ns
J12	TCLK low to TDO high Z	t _{TDODZ}	0	8	ns
J13	TRST assert time	t _{TRSTAT}	100	—	ns
J14	TRST setup time (negation) to TCLK high	t _{TRSTST}	10	—	ns

¹ JTAG_EN is expected to be a static signal. Hence, it is not associated with any timing.

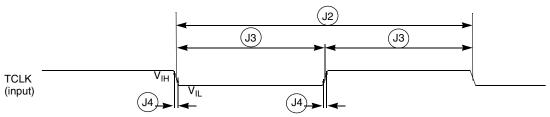


Figure 14. Test Clock Input Timing

Electrical Characteristics

2.14 Debug AC Timing Specifications

Table 40 lists specifications for the debug AC timing parameters shown in Figure 19.

Num	Characteristic	60 M	Units	
		Min	Мах	Units
D1	PST, DDATA to CLKOUT setup	4		ns
D2	CLKOUT to PST, DDATA hold	1.5		ns
D3	DSI-to-DSCLK setup	$1 \times t_{CYC}$	_	ns
D4 ¹	DSCLK-to-DSO hold	$4 \times t_{CYC}$	_	ns
D5	DSCLK cycle time	$5 imes t_{CYC}$	_	ns
D6	BKPT input data setup time to CLKOUT Rise	4	_	ns
D7	BKPT input data hold time to CLKOUT Rise	1.5	_	ns
D8	CLKOUT high to BKPT high Z	0.0	10.0	ns

Table 40. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 18 shows real-time trace timing for the values in Table 40.

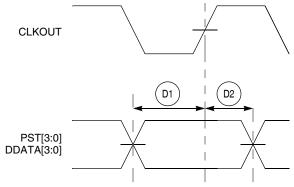
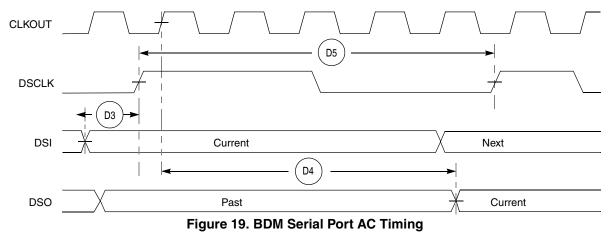
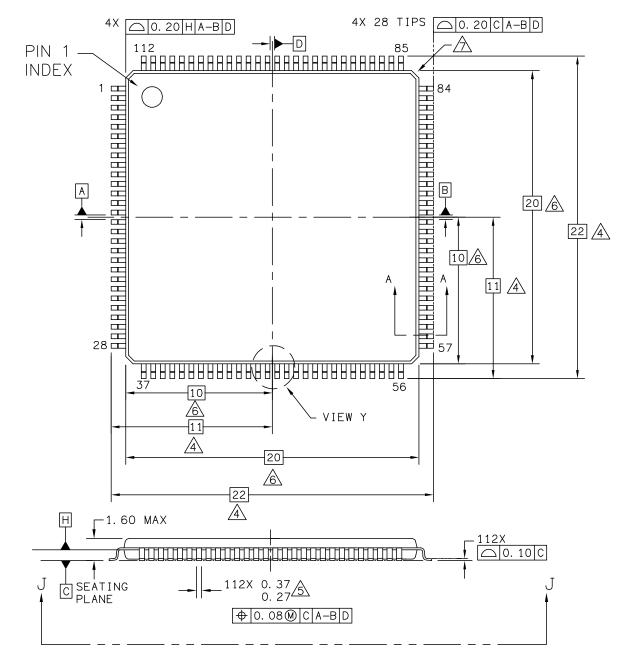
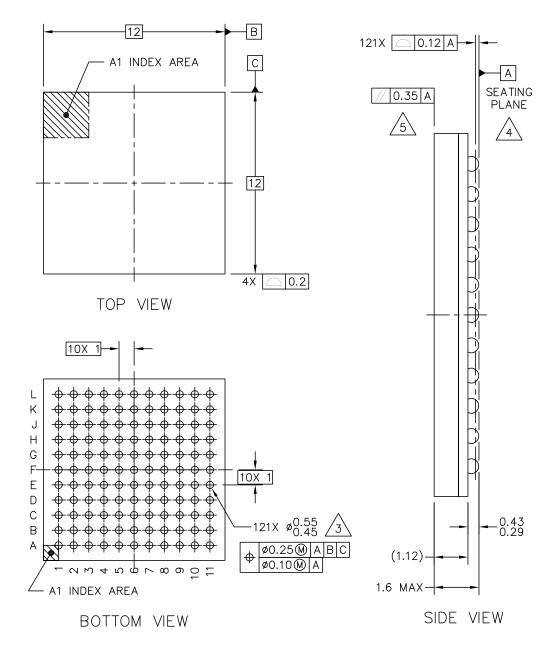



Figure 18. Real-Time Trace AC Timing


Figure 19 shows BDM serial port AC timing for the values in Table 40.

Mechanical Outline Drawings


3.2 112-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		L OUTLINE	PRINT VERSION NOT TO SCAL		
TITLE: 112LD LQFP		DOCUMENT NO	: 98ASS23330W	REV: E	
20 X 20 X 1.4		CASE NUMBER	CASE NUMBER: 987-02		
0.65 PITCH		STANDARD: JE	DEC MS-026 BFA		

3.3 121 MAPBGA Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	CAL OUTLINE PRINT VERSION NOT TO		
TITLE: PBGA, LOW PROFIL	E, DOCUMENT N	DOCUMENT NO: 98ARE10645D		
121 I/O, 12 X 12 P		CASE NUMBER: 1817-01		
1 MM PITCH (MAF) STANDARD: N	STANDARD: NON-JEDEC		

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF52235 Rev. 10 3/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2011. All rights reserved.

