

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	73
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf52234cal60

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF52235 Family Configurations

Module	52230	52231	52232	52233	52234	52235	52236
Version 2 ColdFire Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•	•	•	•
System Clock (MHz)	60	60	50	60	60	60	50
Performance (Dhrystone 2.1 MIPS)	56	56	46	56	56	56	46
Flash / Static RAM (SRAM)	128/32 Kbytes	128/32 Kbytes	128/32 Kbytes	256/32 Kbytes	256/32 Kbytes	256/32 Kbytes	256/32 Kbytes
Interrupt Controllers (INTC0/INTC1)	•	•	•	•	•	•	٠
Fast Analog-to-Digital Converter (ADC)	•	•	•	•	•	•	٠
Random Number Generator and Crypto Acceleration Unit (CAU)	_	—	—	—	—	•	_
FlexCAN 2.0B Module		•	—	—	•	•	
Fast Ethernet Controller (FEC) with on-chip interface (EPHY)	•	•	•	•	•	•	•
Four-channel Direct-Memory Access (DMA)	•	•	•	•	•	•	•
Software Watchdog Timer (WDT)	•	•	•	•	•	•	•
Programmable Interrupt Timer	2	2	2	2	2	2	2
Four-Channel General Purpose Timer	•	•	•	•	•	•	•
32-bit DMA Timers	4	4	4	4	4	4	4
QSPI	•	•	•	•	•	•	٠
UART(s)	3	3	3	3	3	3	3
l ² C	•	•	•	•	•	•	٠
Eight/Four-channel 8/16-bit PWM Timer	•	•	•	•	•	•	٠
General Purpose I/O Module (GPIO)	•	•	•	•	•	•	•
Chip Configuration and Reset Controller Module	•	•	•	•	•	•	•
Background Debug Mode (BDM)	•	•	•	•	•	•	•
JTAG - IEEE 1149.1 Test Access Port ¹	•	•	•	•	•	•	•
Package	80 LQFP 112 LQFP	80 LQFP 112 LQFP	80 LQFP	80 LQFP 112 LQFP	112 LQFP 121 MAPBGA	112 LQFP 121 MAPBGA	80 LQFP

Table 1. MCF52235 Family Configurations

¹ The full debug/trace interface is available only on the 112- and 121-pin packages. A reduced debug interface is bonded on the 80-pin package.

1.2.1 Feature Overview

The MCF52235 family includes the following features:

- Version 2 ColdFire variable-length RISC processor core
 - Static operation
 - 32-bit address and data paths on-chip
 - Up to 60 MHz processor core frequency
 - Sixteen general-purpose, 32-bit data and address registers
 - Implements ColdFire ISA_A with extensions to support the user stack pointer register and four new instructions for improved bit processing (ISA_A+)
 - Enhanced Multiply-Accumulate (EMAC) unit with 32-bit accumulator to support $16 \times 16 \rightarrow 32$ or $32 \times 32 \rightarrow 32$ operations
 - Cryptography Acceleration Unit (CAU)
 - Tightly-coupled coprocessor to accelerate software-based encryption and message digest functions
 - FIPS-140 compliant random number generator
 - Support for DES, 3DES, AES, MD5, and SHA-1 algorithms
 - Illegal instruction decode that allows for 68K emulation support
- System debug support
 - Real time trace for determining dynamic execution path
 - Background debug mode (BDM) for in-circuit debugging (DEBUG_B+)
 - Real time debug support, with six hardware breakpoints (4 PC, 1 address and 1 data) that can be configured into a 1- or 2-level trigger
- On-chip memories
 - Up to 32 Kbytes of dual-ported SRAM on CPU internal bus, supporting core and DMA access with standby power supply support
 - Up to 256 Kbytes of interleaved Flash memory supporting 2-1-1-1 accesses
- Power management
 - Fully static operation with processor sleep and whole chip stop modes
 - Rapid response to interrupts from the low-power sleep mode (wake-up feature)
 - Clock enable/disable for each peripheral when not used
- Fast Ethernet Controller (FEC)
 - 10/100 BaseT/TX capability, half duplex or full duplex
 - On-chip transmit and receive FIFOs
 - Built-in dedicated DMA controller
 - Memory-based flexible descriptor rings
- On-chip Ethernet Transceiver (EPHY)
 - Digital adaptive equalization
 - Supports auto-negotiation
 - Baseline wander correction
 - Full-/Half-duplex support in all modes
 - Loopback modes
 - Supports MDIO preamble suppression
 - Jumbo packet
- FlexCAN 2.0B module

MCF52235 Family Configurations

1.2.15 Periodic Interrupt Timers (PIT0 and PIT1)

The two periodic interrupt timers (PIT0 and PIT1) are 16-bit timers that provide interrupts at regular intervals with minimal processor intervention. Each timer can count down from the value written in its PIT modulus register or can be a free-running down-counter.

1.2.16 Pulse Width Modulation (PWM) Timers

The MCF52235 has an 8-channel, 8-bit PWM timer. Each channel has a programmable period and duty cycle as well as a dedicated counter. Each of the modulators can create independent continuous waveforms with software-selectable duty rates from 0 to 100%. The PWM outputs have programmable polarity and can be programmed as left-aligned outputs or center-aligned outputs. For higher period and duty cycle resolution, each pair of adjacent channels ([7:6], [5:4], [3:2], and [1:0]) can be concatenated to form a single 16-bit channel. The module can, therefore, be configured to support 8/0, 6/1, 4/2, 2/3, or 0/4 8-/16-bit channels.

1.2.17 Software Watchdog Timer

The watchdog timer is a 32-bit timer that facilitates recovery from runaway code. The watchdog counter is a free-running down-counter that generates a reset on underflow. To prevent a reset, software must periodically restart the countdown.

1.2.18 Phase Locked Loop (PLL)

The clock module contains a crystal oscillator, 8 MHz on-chip relaxation oscillator (OCO), phase-locked loop (PLL), reduced frequency divider (RFD), low-power divider status/control registers, and control logic. To improve noise immunity, the PLL, crystal oscillator, and relaxation oscillator have their own power supply inputs: VDDPLL and VSSPLL. All other circuits are powered by the normal supply pins, VDD and VSS.

1.2.19 Interrupt Controller (INTC0/INTC1)

There are two interrupt controllers on the MCF52235. These interrupt controllers are organized as seven levels with up to nine interrupt sources per level. Each interrupt source has a unique interrupt vector, and provide each peripheral with all necessary interrupts. Each internal interrupt has a programmable level [1-7] and priority within the level. The seven external interrupts have fixed levels/priorities.

1.2.20 DMA Controller

The direct memory access (DMA) controller provides an efficient way to move blocks of data with minimal processor intervention. It has four channels that allow byte, word, longword, or 16-byte burst line transfers. These transfers are triggered by software explicitly setting a DCRn[START] bit or by the occurrence of certain UART or DMA timer events.

1.2.21 Reset

The reset controller determines the source of reset, asserts the appropriate reset signals to the system, and keeps track of what caused the last reset. There are seven sources of reset:

- External reset input
- Power-on reset (POR)
- Watchdog timer
- Phase locked-loop (PLL) loss of lock
- PLL loss of clock
- Software

Pin Group	Primary Function	SecondaryF unction	Tertiary Function	Quaternary Function	Drive Strength/ Control ¹	Wired OR Control	Pull-up/ Pull-down ²	Pin on 121 MAPBGA	Pin on 112 LQFP	Pin on 80 LQFP
ADC ³	AN7			PAN[7]	Low			A10	88	64
-	AN6	-		PAN[6]	Low		—	B10	87	63
F	AN5	—		PAN[5]	Low		—	A11	86	62
-	AN4	—		PAN[4]	Low		—	B11	85	61
F	AN3	—		PAN[3]	Low		—	C9	89	65
F	AN2	—	_	PAN[2]	Low	_	—	B9	90	66
F	AN1	—	—	PAN[1]	Low	—	—	A9	91	67
F	AN0	—	_	PAN[0]	Low	_	—	C8	92	68
F	SYNCA	CANTX ⁴	FEC_MDIO	PAS[3]	PDSR[39]		—	K1	28	20
ľ	SYNCB	CANRX ⁴	FEC_MDC	PAS[2]	PDSR[39]	—	—	J1	27	19
F	VDDA	—	_	_	N/A	N/A	—	A8	93	69
F	VSSA	—	_	_	N/A	N/A	—	A7	96	72
F	VRH	—	_	_	N/A	N/A	—	B8	94	70
F	VRL	—	_	_	N/A	N/A	—	B7	95	71
Clock	EXTAL	—	_	_	N/A	N/A	—	L7	48	36
Generation	XTAL	—	_	—	N/A	N/A	—	J7	49	37
F	VDDPLL ⁵	—	_	_	N/A	N/A	—	K6	45	33
F	VSSPLL	—	_	_	N/A	N/A	—	K7	47	35
Debug	ALLPST	—	—	_	High	_	—	D3	7	7
Data	DDATA[3:0]	—	_	PDD[7:4]	High	_	—	E1, F3,F2, F1	12,13,16,17	—
-	PST[3:0]	—		PDD[3:0]	High		—	D10, D9, E10, E9	80,79,78,77	—

Table 3. Pin Functions by Primary and Alternate Purpose

Pin Group	Primary Function	SecondaryF unction	Tertiary Function	Quaternary Function	Drive Strength/ Control ¹	Wired OR Control	Pull-up/ Pull-down ²	Pin on 121 MAPBGA	Pin on 112 LQFP	Pin on 80 LQFP
UART 1 ³	UCTS1	SYNCA	URXD2	PUB[3]	PDSR[15]	—	—	J3	24	16
	URTS1	SYNCB	UTXD2	PUB[2]	PDSR[14]	—	—	H3	23	15
	URXD1	—	FEC_TXD[0]	PUB[1]	PDSR[13]	PWOR[2]	—	К3	32	23
	UTXD1	-	FEC_COL	PUB[0]	PDSR[12]	PWOR[3]	—	L3	33	24
UART 2	UCTS2	_	—	PUC[3]	PDSR[27]	—	—	L10	61	_
	URTS2	-	—	PUC[2]	PDSR[26]	—	—	K10	60	—
	URXD2	—	—	PUC[1]	PDSR[25]	—	—	K11	62	—
	UTXD2	_	—	PUC[0]	PDSR[24]	—	—	L11	63	_
FlexCAN	SYNCA	CANTX ⁴	FEC_MDIO	PAS[3]	PDSR[39]	—	—	—	28	20
	SYNCB	CANRX ⁴	FEC_MDC	PAS[2]	PDSR[39]	—	—	—	27	19
VDD ^{5,11}	VDD	—	—	—	N/A	N/A	—	D7, E8	65,102	45,74
VDDX	VDDX	—	_	—	N/A	N/A	—	D5, D6, E6, G5, G6, G7, H6	14, 43	10, 31
VSS	VSS	—	_	-	N/A	N/A	—	E4, E5, E7,F4, F5, F6, F7, F8	64,101	44,73
VSSX	VSSX	—	—	—	N/A	N/A	—	—	15, 42	11, 30

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

¹ The PDSR and PSSR registers are described in Chapter 14, "General Purpose I/O Module. All programmable signals default to 2mA drive in normal (single-chip) mode.

² All signals have a pull-up in GPIO mode.

³ The use of an external PHY limits ADC, interrupt, and QSPI functionality. It also disables the UART0/1 and timer pins.

⁴ The multiplexed CANTX and CANRX signals do not have dedicated pins, but are available as muxed replacements for other signals.

⁵ The VDD1, VDD2, VDDPLL, and PHY VDD pins are for decoupling only and should not have power directly applied to them.

⁶ For primary and GPIO functions only.

⁷ Only when JTAG mode is enabled.

⁸ For secondary and GPIO functions only.

⁹ RSTI has an internal pull-up resistor; however, the use of an external resistor is strongly recommended.

¹⁰ For GPIO function. Primary Function has pull-up control within the GPT module.
¹¹ This list for power and ground does not include those dedicated power/ground pins included elsewhere, e.g. in the Ethernet PHY.

MCF52235 Family Configurations

1.9 I²C I/O Signals

Table 10 describes the I^2C serial interface module signals.

Table 10. I²C I/O Signals

Signal Name	Abbreviation	Function	I/O
Serial Clock	SCL	Open-drain clock signal for the for the I^2C interface. Either it is driven by the I^2C module when the bus is in master mode or it becomes the clock input when the I^2C is in slave mode.	I/O
Serial Data	SDA	Open-drain signal that serves as the data input/output for the I ² C interface.	I/O

1.10 UART Module Signals

Table 11 describes the UART module signals.

Table 11	. UART	Module	Signals
----------	--------	--------	---------

Signal Name	Abbreviation	Function	I/O
Transmit Serial Data Output	UTXDn	Transmitter serial data outputs for the UART modules. The output is held high (mark condition) when the transmitter is disabled, idle, or in the local loopback mode. Data is shifted out, LSB first, on this pin at the falling edge of the serial clock source.	0
Receive Serial Data Input	URXDn	Receiver serial data inputs for the UART modules. Data is received on this pin LSB first. When the UART clock is stopped for power-down mode, any transition on this pin restarts it.	Ι
Clear-to-Send	UCTSn	Indicate to the UART modules that they can begin data transmission.	I
Request-to-Send	URTSn	Automatic request-to-send outputs from the UART modules. This signal can also be configured to be asserted and negated as a function of the RxFIFO level.	0

1.11 DMA Timer Signals

Table 12 describes the signals of the four DMA timer modules.

Table 12. DMA Timer Signals

Signal Name	Abbreviation	Function	I/O
DMA Timer Input	DTIN <i>n</i>	Event input to the DMA timer modules.	I
DMA Timer Output	DTOUTn	Programmable output from the DMA timer modules.	0

MCF52235 Family Configurations

Signal Name	Abbreviation	Function	I/O
Test Data Output	TDO	Serial output for test instructions and data. TDO is tri-stateable and is actively driven in the shift-IR and shift-DR controller states. TDO changes on the falling edge of TCLK.	0
Development Serial Clock	DSCLK	Development Serial Clock. Internally synchronized input. (The logic level on DSCLK is validated if it has the same value on two consecutive rising bus clock edges.) Clocks the serial communication port to the debug module during packet transfers. Maximum frequency is PSTCLK/5. At the synchronized rising edge of DSCLK, the data input on DSI is sampled and DSO changes state.	I
Breakpoint	BKPT	Breakpoint. Input used to request a manual breakpoint. Assertion of BKPT puts the processor into a halted state after the current instruction completes. Halt status is reflected on processor status signals (PST[3:0]) as the value 0xF. If CSR[BKD] is set (disabling normal BKPT functionality), asserting BKPT generates a debug interrupt exception in the processor.	I
Development Serial Input	DSI	Development Serial Input. Internally synchronized input that provides data input for the serial communication port to the debug module after the DSCLK has been seen as high (logic 1).	I
Development Serial Output	DSO	Development Serial Output. Provides serial output communication for debug module responses. DSO is registered internally. The output is delayed from the validation of DSCLK high.	0
Debug Data	DDATA[3:0]	Display captured processor data and breakpoint status. The CLKOUT signal can be used by the development system to know when to sample DDATA[3:0].	0
Processor Status Clock	PSTCLK	Processor Status Clock. Delayed version of the processor clock. Its rising edge appears in the center of valid PST and DDATA output. PSTCLK indicates when the development system should sample PST and DDATA values. If real-time trace is not used, setting CSR[PCD] keeps PSTCLK, PST, and DDATA outputs from toggling without disabling triggers. Non-quiescent operation can be re-enabled by clearing CSR[PCD], although the external development systems must resynchronize with the PST and DDATA outputs. PSTCLK starts clocking only when the first non-zero PST value (0xC, 0xD, or 0xF) occurs during system reset exception processing.	0
Processor Status Outputs	PST[3:0]	Indicate core status. Debug mode timing is synchronous with the processor clock; status is unrelated to the current bus transfer. The CLKOUT signal can be used by the development system to know when to sample PST[3:0].	0
All Processor Status Outputs	ALLPST	Logical AND of PST[3:0]	0

Table 16. Debug Support Signals (continued)

1.16 EzPort Signal Descriptions

Table 17 contains a list of EzPort external signals

Table	17	F 7Port	Signal	Descri	ntions
Iable	17.	LZFUIL	Jighai	Desch	puons

Signal Name	Abbreviation	Function	I/O
EzPort Clock	EZPCK	Shift clock for EzPort transfers	I
EzPort Chip Select	EZPCS	Chip select for signalling the start and end of serial transfers	Ι
EzPort Serial Data In	EZPD	EZPD is sampled on the rising edge of EZPCK	Ι
EzPort Serial Data Out	EZPQ	EZPQ transitions on the falling edge of EZPCK	0

1.17 Power and Ground Pins

The pins described in Table 18 provide system power and ground to the chip. Multiple pins are provided for adequate current capability. All power supply pins must have adequate bypass capacitance for high-frequency noise suppression.

Signal Name	Abbreviation	Function	I/O
PLL Analog Supply	VDDPLL, VSSPLL	Dedicated power supply signals to isolate the sensitive PLL analog circuitry from the normal levels of noise present on the digital power supply.	I
Positive Supply	VDD	These pins supply positive power to the core logic.	Ι
Ground	VSS	This pin is the negative supply (ground) to the chip.	—

Table 18. Power and Ground Pins

Some of the V_{DD} and V_{SS} pins on the device are only to be used for noise bypass. Figure 5 shows a typical connection diagram. Pay particular attention to those pins which show only capacitor connections. Do not connect power supply voltage directly to these pins.

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the MCF52235, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

NOTE

The parameters specified in this appendix supersede any values found in the module specifications.

Characteristic	Symbol	Package ¹	Value	Unit	
Junction to ambient, natural convection	θ_{JA}	80-pin LQFP, four-layer board	36.0 ^{2,3}	°C/W	
		112-pin LQFP, four-layer board	35.0		
		121 MAPBGA, four-layer board	32		
		80-pin LQFP, one-layer board ¹	49.0 ¹		
		121 MAPBGA, one-layer board ¹	56 ¹		
		112-pin LQFP, one-layer board ¹	44.0 ¹		
Junction to ambient (@200 ft/min)	θ_{JMA}	80-pin LQFP, four-layer board	30.0	°C/W	
		112-pin LQFP, four-layer board	29.0		
		121 MAPBGA, four-layer board	28		
		80-pin LQFP, one-layer board ¹	39.0 ¹		
		112-pin LQFP, one-layer board ¹	35.0 ¹		
		121 MAPBGA, one-layer board ¹	46 ¹		
Junction to board	θ_{JB}	80-pin LQFP	22.0 ⁴	°C/W	
		112-pin LQFP	23.0		
		121 MAPBGA, four-layer board	18		
Junction to case	θ_{JC}	80-pin LQFP	6.0 ⁵	°C/W	
		112-pin LQFP	6.0		
		121 MAPBGA	10		
Junction to top of package, natural convection	Ψ _{jt}	80-pin LQFP	2.0 ⁶	°C/W	
		112-pin LQFP	2.0 ⁶		
		121 MAPBGA	2.0 ⁶		
Maximum operating junction temperature	Тj	All	130	°C	

Table 20. Thermal Characteristics

¹ The use of this device in one- or two-layer board designs is not recommended due to the limited thermal conductance provided by those boards.

- $^2 \quad \theta_{JMA}$ and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JMA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ³ Per JEDEC JESD51-6 with the board horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

The average chip-junction temperature (T_1) in °C can be obtained from

$$T_J = T_A + (P_D \times \Theta_{JMA})$$
 Eqn. 1

where

- T_A = ambient temperature, °C
- Θ_{JMA} = package thermal resistance, junction-to-ambient, °C/W
- $P_D = P_{INT} + P_{I/O}$
- P_{INT} = chip internal power, $I_{DD} \times V_{DD}$, watts
- $P_{I/O}$ = power dissipation on input and output pins user determined

For most applications, $PI/O < P_{INT}$ and can be ignored. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_J + 273^{\circ}C)$$
 Eqn. 2

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \Theta_{IMA} \times P_D^{-2}$$
 Eqn. 3

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.2 ESD Protection

Table 21. ESD Protection Characteristics¹

Characteristic	Symbol	Value	Units
ESD target for Human Body Model	HBM	1500 (ADC and EPHY pins) 2000 (All other pins)	V
ESD target for Charged Device Model	CDM	250	V
HBM circuit description	R _{series}	1500	ohms
	С	100	pF
Number of pulses per pin (HBM)			_
positive pulses	—	1	
negative pulses	—	1	
Number of pulses per pin (CDM)			_
positive pulses	—	3	
negative pulses	—	3	
Interval of pulses (HBM)	_	1.0	sec
Interval of pulses (CDM)	_	0.2	sec

¹ A device is defined as a failure if the device no longer meets the device specification requirements after exposure to ESD pulses. Complete DC parametric and functional testing is performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

2.3 DC Electrical Specifications

Table 22. DC Electrical Specifications ¹

Characteristic	Symbol	Min	Max	Unit
Supply voltage	V _{DD}	3.0	3.6	V
Input high voltage	V _{IH}	$0.7 \times V_{DD}$	4.0	V
Input low voltage	V _{IL}	$V_{SS} - 0.3$	0.35 x V _{DD}	V
Input hysteresis	V _{HYS}	$0.06 \times V_{DD}$	_	mV
Low-voltage detect trip voltage (V _{DD} falling)	V _{LVD}	2.15	2.3	V
Low-voltage detect hysteresis (V _{DD} rising)	V _{LVDHYS}	60	120	mV
Input leakage current $V_{in} = V_{DD}$ or V_{SS} , input-only pins	l _{in}	-1.0	1.0	μA
High impedance (off-state) leakage current $V_{in} = V_{DD}$ or V_{SS} , all input/output and output pins	I _{OZ}	-1.0	1.0	μA
Output high voltage (all input/output and all output pins) $I_{OH} = -2.0 \text{ mA}$	V _{OH}	V _{DD} - 0.5		V
Output low voltage (all input/output and all output pins) $I_{OL} = 2.0 \text{ mA}$	V _{OL}		0.5	V
Weak internal pull-up device current, tested at V _{IL} max. ²	I _{APU}	-10	-130	μA
Input capacitance ³ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF
Load capacitance ⁴ Low drive strength High drive strength	CL		25 50	pF
DC injection current ^{3, 5, 6, 7} $V_{NEGCLAMP} = V_{SS} - 0.3 V$, $V_{POSCLAMP} = V_{DD} + 0.3$ Single pin limit Total MCU limit, Includes sum of all stressed pins	I _{IC}	-1.0 -10	1.0 10	mA

¹ Refer to Table 25 for additional PLL specifications.

² Refer to Table 3 for pins with internal pull-up devices.

³ This parameter is characterized before qualification rather than 100% tested.

⁴ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination.

⁵ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁷ The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, the system clock is not present during the power-up sequence until the PLL has attained lock.

2.4 Phase Lock Loop Electrical Specifications

Table 25. Oscillator and PLL Electrical Specifications

 $(V_{DD} \text{ and } V_{DDPLL} = 2.7 \text{ to } 3.6 \text{ V}, V_{SS} = V_{SSPLL} = 0 \text{ V})$

Characteristic	Symbol	Min	Мах	Unit
Clock Source Frequency Range of EXTAL Frequency Range • Crystal • External ¹	f _{crystal} f _{ext}	0.5 0	25.0 60.0	MHz
PLL reference frequency range	f _{ref_pll}	2	10.0	MHz
System frequency ² External clock mode On-Chip PLL Frequency	f _{sys}	0 f _{ref} / 32	60 60	MHz
Loss of reference frequency ^{3, 5}	f _{LOR}	100	1000	kHz
Self clocked mode frequency ^{4, 5}	f _{SCM}	1	5	MHz
Crystal start-up time ^{5, 6}	t _{cst}	—	10	ms
EXTAL input high voltage Crystal reference External reference	V _{IHEXT}	V _{DD} - 1.0 2.0	V _{DD} 3.0 ⁷	V
EXTAL input low voltage Crystal reference External reference	V _{ILEXT}	V _{SS} V _{SS}	1.0 0.8	V
XTAL output high voltage I _{OH} = 1.0 mA	V _{OL}	V _{DD} -1.0	_	V
XTAL output low voltage I _{OL} = 1.0 mA	V _{OL}	_	0.5	V
XTAL load capacitance ⁸		—	—	pF
PLL lock time ^{5,9}	t _{lpll}	—	500	μs
Power-up to lock time ^{5, 7,9} With crystal reference Without crystal reference	t _{ipik}		10.5 500	ms μs
Duty cycle of reference ⁵	t _{dc}	40	60	% f _{sys}
Frequency un-LOCK range	f _{UL}	-1.5	1.5	% f _{sys}
Frequency LOCK range	fLCK	-0.75	0.75	% f _{sys}
CLKOUT period Jitter ^{5, 6, 8, 10,11} , measured at f _{SYS} Max Peak-to-peak jitter (clock edge to clock edge) Long term jitter (averaged over 2 ms interval)	C _{jitter}	—	10 0.01	% f _{sys}

¹ In external clock mode, it is possible to run the chip directly from an external clock source without enabling the PLL.

² All internal registers retain data at 0 Hz.

³ Loss of reference frequency is the reference frequency detected internally that transitions the PLL into self-clocked mode.

⁴ Self-clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f_{LOR} with default MFD/RFD settings.

⁵ This parameter is characterized before qualification rather than 100% tested.

⁶ Proper PC board layout procedures must be followed to achieve specifications.

2.6 Reset Timing

Table 27. Reset and Configuration Override Timing

Num	Characteristic	Symbol	Min	Мах	Unit
R1	RSTI input valid to CLKOUT high	t _{RVCH}	9	—	ns
R2	CLKOUT high to RSTI input invalid	t _{CHRI}	1.5	—	ns
R3	RSTI input valid time ²	t _{RIVT}	5	—	t _{CYC}
R4	CLKOUT high to RSTO valid	t _{CHROV}	_	10	ns

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the system. Therefore, RSTI must be held a minimum of 100ns.

Figure 7. RSTI and Configuration Override Timing

2.7 I²C Input/Output Timing Specifications

Table 28 lists specifications for the I^2C input timing parameters shown in Figure 8.

Table 28. I ² C Input Timin	g Specifications between I	2C_SCL and I2C_SDA
--	----------------------------	--------------------

Num	Characteristic	Min	Max	Units
1	Start condition hold time	$2 \times t_{CYC}$	_	ns
12	Clock low period	$8 \times t_{CYC}$	—	ns
13	SCL/SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	1	ms
14	Data hold time	0	—	ns
15	SCL/SDA fall time ($V_{IH} = 2.4 \text{ V}$ to $V_{IL} = 0.5 \text{ V}$)	_	1	ms
16	Clock high time	$4 \times t_{CYC}$	_	ns
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	$2 \times t_{CYC}$	—	ns
19	Stop condition setup time	$2 \times t_{CYC}$	—	ns

Table 29 lists specifications for the I^2C output timing parameters shown in Figure 8.

- ¹ Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pF
- ² Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pF
- ³ Equivalent resistance for the channel select mux; 100 ohms
- ⁴ Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1.4pF
- ⁵ Equivalent input impedance, when the input is selected = _______ADC CL

C CLOCK RATE
$$\times (1.4 \times 10^{-12})$$

Figure 12. Equivalent Circuit for A/D Loading

2.10 DMA Timers Timing Specifications

Table 36 lists timer module AC timings.

Table 36. Timer Module AC Timing Specifications

Name	Characteristic ¹	Min	Мах	Unit
T1	DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time	$3 \times t_{CYC}$	—	ns
T2	DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width	$1 \times t_{CYC}$	—	ns

¹ All timing references to CLKOUT are given to its rising edge.

2.11 EzPort Electrical Specifications

Table 37. EzPort Electrical Specifications

Name	Characteristic	Min	Max	Unit
EP1	EPCK frequency of operation (all commands except READ)		f _{sys} / 2	MHz
EP1a	EPCK frequency of operation (READ command)	_	f _{sys} / 8	MHz
EP2	EPCS_b negation to next EPCS_b assertion	$2 \times T_{cyc}$		ns
EP3	EPCS_B input valid to EPCK high (setup)	5	_	ns
EP4	EPCK high to EPCS_B input invalid (hold)	5	_	ns
EP5	EPD input valid to EPCK high (setup)	2	_	ns
EP6	EPCK high to EPD input invalid (hold)	5		ns

Name	Characteristic	Min	Max	Unit
EP7	EPCK low to EPQ output valid (out setup)	—	12	ns
EP8	EPCK low to EPQ output invalid (out hold)	0	_	ns
EP9	EPCS_B negation to EPQ tri-state		12	ns

Table 37. EzPort Electrical Specifications (continued)

2.12 **QSPI Electrical Specifications**

Table 38 lists QSPI timings.

Table 38. QSPI Modu	les AC Timing	Specifications
---------------------	---------------	----------------

Name	Characteristic	Min	Мах	Unit
QS1	QSPI_CS[3:0] to QSPI_CLK	1	510	t _{CYC}
QS2	QSPI_CLK high to QSPI_DOUT valid	_	10	ns
QS3	QSPI_CLK high to QSPI_DOUT invalid (output hold)	2	—	ns
QS4	QSPI_DIN to QSPI_CLK (input setup)	9	—	ns
QS5	QSPI_DIN to QSPI_CLK (input hold)	9	—	ns

The values in Table 38 correspond to Figure 13.

2.14 Debug AC Timing Specifications

Table 40 lists specifications for the debug AC timing parameters shown in Figure 19.

Num	Characteristic	60 M	Unito	
	Characteristic	Min	Max	Units
D1	PST, DDATA to CLKOUT setup	4	_	ns
D2	CLKOUT to PST, DDATA hold	1.5	_	ns
D3	DSI-to-DSCLK setup	$1 \times t_{CYC}$	_	ns
D4 ¹	DSCLK-to-DSO hold	$4 \times t_{CYC}$	_	ns
D5	DSCLK cycle time	$5 imes t_{CYC}$	_	ns
D6	BKPT input data setup time to CLKOUT Rise	4	_	ns
D7	BKPT input data hold time to CLKOUT Rise	1.5	_	ns
D8	CLKOUT high to BKPT high Z	0.0	10.0	ns

Table 40. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 18 shows real-time trace timing for the values in Table 40.

Figure 18. Real-Time Trace AC Timing

Figure 19 shows BDM serial port AC timing for the values in Table 40.

Mechanical Outline Drawings

3.2 112-pin LQFP Package

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.		LOUTLINE	PRINT VERSION NO	DT TO SCALE
TITLE: 112LD LQFP		DOCUMENT NO): 98ASS23330W	REV: E
20 X 20 X 1.4 0.65 PITCH		CASE NUMBER: 987-02		25 MAY 2005
		STANDARD: JE	DEC MS-026 BFA	

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	LOUTLINE	PRINT VERSION NOT TO SCALE		
TITLE: 112LD LQFP		DOCUMENT NO): 98ASS23330W	REV: E	
20 X 20 X 1.4		CASE NUMBER: 987-02		25 MAY 2005	
0.65 PITCH		STANDARD: JE	DEC MS-026 BFA		

Mechanical Outline Drawings

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- 3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.
- $\cancel{4}$ dimensions to be determined at seating plane c.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 MM. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION 0.07 MM.
- THIS DIMENSION DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.254 MM PER SIDE. THIS DIMENSION IS MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDING MOLD MISMATCH.
- ✓7 EXACT SHAPE OF EACH CORNER IS OPTIONAL.
- THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10 MM AND 0.25 MM FROM THE LEAD TIP.

© FREESCALE SEMICONDUCTOR, INC. All Rights reserved.		LOUTLINE	PRINT VERSION NO	VERSION NOT TO SCALE	
TITLE: 112LD LQFP, 20 X 20 X 1.4 PKG, 0.65 PITCH		DOCUMENT NO: 98ASS23330W REV		REV: E	
		CASE NUMBER: 987-02		25 MAY 2005	
		STANDARD: JE	DEC MS-026 BFA		