

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V2
Core Size	32-Bit Single-Core
Speed	60MHz
Connectivity	CANbus, Ethernet, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	73
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	112-LQFP
Supplier Device Package	112-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf52235cal60

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF52235 Family Configurations

Module	52230	52231	52232	52233	52234	52235	52236
Version 2 ColdFire Core with EMAC (Enhanced Multiply-Accumulate Unit)	•	•	•	•	•	•	•
System Clock (MHz)	60	60	50	60	60	60	50
Performance (Dhrystone 2.1 MIPS)	56	56	46	56	56	56	46
Flash / Static RAM (SRAM)	128/32 Kbytes	128/32 Kbytes	128/32 Kbytes	256/32 Kbytes	256/32 Kbytes	256/32 Kbytes	256/32 Kbytes
Interrupt Controllers (INTC0/INTC1)	•	•	•	•	•	•	٠
Fast Analog-to-Digital Converter (ADC)	•	•	•	•	•	•	٠
Random Number Generator and Crypto Acceleration Unit (CAU)	—	—	—	—	—	•	_
FlexCAN 2.0B Module	—	•	—	—	•	•	
Fast Ethernet Controller (FEC) with on-chip interface (EPHY)	•	•	•	•	•	•	•
Four-channel Direct-Memory Access (DMA)	•	•	•	•	•	•	•
Software Watchdog Timer (WDT)	•	•	•	•	•	•	•
Programmable Interrupt Timer	2	2	2	2	2	2	2
Four-Channel General Purpose Timer	•	•	•	•	•	•	•
32-bit DMA Timers	4	4	4	4	4	4	4
QSPI	•	•	•	•	•	•	٠
UART(s)	3	3	3	3	3	3	3
l ² C	•	•	•	•	•	•	٠
Eight/Four-channel 8/16-bit PWM Timer	•	•	•	•	•	•	٠
General Purpose I/O Module (GPIO)	•	•	•	•	•	•	•
Chip Configuration and Reset Controller Module	•	•	•	•	•	•	•
Background Debug Mode (BDM)	•	•	•	•	•	•	•
JTAG - IEEE 1149.1 Test Access Port ¹	•	•	•	•	•	•	•
Package	80 LQFP 112 LQFP	80 LQFP 112 LQFP	80 LQFP	80 LQFP 112 LQFP	112 LQFP 121 MAPBGA	112 LQFP 121 MAPBGA	80 LQFP

Table 1. MCF52235 Family Configurations

¹ The full debug/trace interface is available only on the 112- and 121-pin packages. A reduced debug interface is bonded on the 80-pin package.

MCF52235 Family Configurations

- Unique vector number for each interrupt source
- Ability to mask any individual interrupt source or all interrupt sources (global mask-all)
- Support for hardware and software interrupt acknowledge (IACK) cycles
- Combinatorial path to provide wake-up from low power modes
- DMA controller
 - Four fully programmable channels
 - Dual-address transfer support with 8-, 16-, and 32-bit data capability, along with support for 16-byte (4 x 32-bit) burst transfers
 - Source/destination address pointers that can increment or remain constant
 - 24-bit byte transfer counter per channel
 - Auto-alignment transfers supported for efficient block movement
 - Bursting and cycle steal support
 - Software-programmable DMA requesters for the UARTs (3) and 32-bit timers (4)
- Reset
 - Separate reset in and reset out signals
 - Seven sources of reset:
 - Power-on reset (POR)
 - External
 - Software
 - Watchdog
 - Loss of clock
 - Loss of lock
 - Low-voltage detection (LVD)
 - Status flag indication of source of last reset
- Chip integration module (CIM)
 - System configuration during reset
 - Selects one of three clock modes
 - Configures output pad drive strength
 - Unique part identification number and part revision number
- General purpose I/O interface
 - Up to 56 bits of general purpose I/O
 - Bit manipulation supported via set/clear functions
 - Programmable drive strengths
 - Unused peripheral pins may be used as extra GPIO
- JTAG support for system level board testing

1.2.2 V2 Core Overview

The version 2 ColdFire processor core is comprised of two separate pipelines decoupled by an instruction buffer. The two-stage instruction fetch pipeline (IFP) is responsible for instruction-address generation and instruction fetch. The instruction buffer is a first-in-first-out (FIFO) buffer that holds prefetched instructions awaiting execution in the operand execution pipeline (OEP). The OEP includes two pipeline stages. The first stage decodes instructions and selects operands (DSOC); the second stage (AGEX) performs instruction execution and calculates operand effective addresses, if needed.

The V2 core implements the ColdFire instruction set architecture revision A+ with added support for a separate user stack pointer register and four new instructions to assist in bit processing. Additionally, the MCF52235 core includes the enhanced multiply-accumulate (EMAC) unit for improved signal processing capabilities. The EMAC implements a three-stage arithmetic

Figure 3. 112-pin LQFP Pin Assignments

Figure 4 shows the pinout configuration for the 121 MAPBGA.

Pin Group	Primary Function	SecondaryF unction	Tertiary Function	Quaternary Function	Drive Strength/ Control ¹	Wired OR Control	Pull-up/ Pull-down ²	Pin on 121 MAPBGA	Pin on 112 LQFP	Pin on 80 LQFP
ADC ³	AN7			PAN[7]	Low			A10	88	64
-	AN6	-		PAN[6]	Low		—	B10	87	63
F	AN5	—		PAN[5]	Low		—	A11	86	62
-	AN4	—		PAN[4]	Low		—	B11	85	61
F	AN3	—		PAN[3]	Low		—	C9	89	65
F	AN2	—	_	PAN[2]	Low	_	—	B9	90	66
F	AN1	—	—	PAN[1]	Low	—	—	A9	91	67
	AN0	—	_	PAN[0]	Low	_	—	C8	92	68
	SYNCA	CANTX ⁴	FEC_MDIO	PAS[3]	PDSR[39]		—	K1	28	20
ľ	SYNCB	CANRX ⁴	FEC_MDC	PAS[2]	PDSR[39]	—	—	J1	27	19
F	VDDA	—	_	_	N/A	N/A	—	A8	93	69
F	VSSA	—	_	_	N/A	N/A	—	A7	96	72
F	VRH	—	_	_	N/A	N/A	—	B8	94	70
F	VRL	—	_	_	N/A	N/A	—	B7	95	71
Clock	EXTAL	—	_	_	N/A	N/A	—	L7	48	36
Generation	XTAL	—	_	—	N/A	N/A	—	J7	49	37
F	VDDPLL ⁵	—	_	_	N/A	N/A	—	K6	45	33
F	VSSPLL	—	_	_	N/A	N/A	—	K7	47	35
Debug	ALLPST	—	—	_	High	—	—	D3	7	7
Data	DDATA[3:0]	—	_	PDD[7:4]	High	_	—	E1, F3,F2, F1	12,13,16,17	—
-	PST[3:0]	—		PDD[3:0]	High		—	D10, D9, E10, E9	80,79,78,77	—

Table 3. Pin Functions by Primary and Alternate Purpose

N			

18

		Table	3. Pin Functi	ions by Prin	hary and A	Iternate Pu	rpose (conti	nued)	1	
Pin Group	Primary Function	SecondaryF unction	Tertiary Function	Quaternary Function	Drive Strength/ Control ¹	Wired OR Control	Pull-up/ Pull-down ²	Pin on 121 MAPBGA	Pin on 112 LQFP	Pin on 80 LQFP
Ethernet	ACTLED	—	—	PLD[0]	PDSR[32]	PWOR[8]	—	C11	84	60
LEDs	COLLED	—	_	PLD[4]	PDSR[36]	PWOR[12]	—	J9	58	42
	DUPLED	—	—	PLD[3]	PDSR[35]	PWOR[11]	—	J10	59	43
	LNKLED	—	—	PLD[1]	PDSR[33]	PWOR[9]	—	C10	83	59
	SPDLED	—	—	PLD[2]	PDSR[34]	PWOR[10]	—	D11	81	57
	RXLED	—	—	PLD[5]	PDSR[37]	PWOR[13]	—	H9	52	_
	TXLED	—	—	PLD[6]	PDSR[38]	PWOR[14]	—	H8	51	
	VDDR	—	—	—	—	—	—	D8	82	58
Ethernet	PHY_RBIAS	—	_	—	_	_		J11	66	46
PHY	PHY_RXN	—	_	—	—	_		E11	74	54
	PHY_RXP	—	_	—	—	_		F11	73	53
	PHY_TXN	—	_	—	—	_		H11	71	51
	PHY_TXP	—	_	—	—	_		G11	70	50
	PHY_VDDA ⁵	—	_	—		N/A		H10	68	48
	PHY_VDDRX ⁵	—	_	—		N/A		F10	75	55
	PHY_VDDTX ⁵	—	_	—		N/A		G10	69	49
	PHY_VSSA	—	_	—		N/A		G8	67	47
	PHY_VSSRX	—	_	—		N/A		F9	76	56
	PHY_VSSTX	—	—	—		N/A		G9	72	52
l ² C	SCL	CANTX ⁴	UTXD2	PAS[0]	PDSR[0]	_	Pull-Up ⁶	A3	111	79
	SDA	CANRX ⁴	URXD2	PAS[1]	PDSR[0]	_	Pull-Up ⁶	A2	112	80
Interrupts ³	IRQ15	—	_	PGP[7]	PSDR[47]	—	Pull-Up ⁶	A4	106	—
	IRQ14	—	_	PGP[6]	PSDR[46]	—	Pull-Up ⁶	A5	105	—
	IRQ13	—	_	PGP[5]	PSDR[45]	—	Pull-Up ⁶	A6	98	—
	IRQ12	—	_	PGP[4]	PSDR[44]	—	Pull-Up ⁶	C7	97	_

MCF52235 ColdFire Microcontroller, Rev. 10

Pin Group	Primary Function	SecondaryF unction	Tertiary Function	Quaternary Function	Drive Strength/ Control ¹	Wired OR Control	Pull-up/ Pull-down ²	Pin on 121 MAPBGA	Pin on 112 LQFP	Pin on 80 LQFP
Continued	IRQ11	—	—	PGP[3]	PSDR[43]		Pull-Up ⁶	K9	57	41
Interrupts	IRQ10	—		PGP[2]	PSDR[42]		Pull-Up ⁶	L1	29	—
	IRQ9	—	—	PGP[1]	PSDR[41]	_	Pull-Up ⁶	E2	11	—
	IRQ8	—	—	PGP[0]	PSDR[40]	_	Pull-Up	E3	10	—
	IRQ7	—		PNQ[7]	Low		Pull-Up ⁶	L9	56	40
	IRQ6	—	FEC_RXER	PNQ[6]	Low		Pull-Up ⁶	G3	19	—
	IRQ5	—	FEC_RXD[1]	PNQ[5]	Low	_	Pull-Up ⁶	G2	20	—
	IRQ4	_	_	PNQ[4]	Low	_	Pull-Up ⁶	L5	41	29
	IRQ3	_	FEC_RXD[2]	PNQ[3]	Low	_	Pull-Up ⁶	L8	53	—
	IRQ2	—	FEC_RXD[3]	PNQ[2]	Low		Pull-Up ⁶	K8	54	—
	IRQ1	SYNCA	PWM1	PNQ[1]	High		Pull-Up ⁶	J8	55	39
JTAG/BDM	JTAG_EN	—	—	—	N/A	N/A	Pull-Down	G4	18	12
	TCLK/ PSTCLK	CLKOUT	—	_	High	_	Pull-Up ⁷	A1	1	1
	TDI/DSI	—	—	—	N/A	N/A	Pull-Up ⁷	C3	4	4
	TDO/DSO	_	—	—	High	N/A	—	C2	5	5
	TMS/BKPT	—		—	N/A	N/A	Pull-Up ⁷	B1	2	2
	TRST/DSCLK	_	—	—	N/A	N/A	Pull-Up	C1	6	6
Mode Selection	RCON/EZPCS	_	_	_	N/A	N/A	Pull-Up	B2	3	3
PWM	PWM7	—	—	PTD[3]	PDSR[31]		—	C5	104	—
	PWM5	—	—	PTD[2]	PDSR[30]		—	B5	103	—
	PWM3	—	—	PTD[1]	PDSR[29]		—	C6	100	—
	PWM1	—	—	PTD[0]	PDSR[28]	_	—	B6	99	—

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

19

Pin Group	Primary Function	SecondaryF unction	Tertiary Function	Quaternary Function	Drive Strength/ Control ¹	Wired OR Control	Pull-up/ Pull-down ²	Pin on 121 MAPBGA	Pin on 112 LQFP	Pin on 80 LQFP
UART 1 ³	UCTS1	SYNCA	URXD2	PUB[3]	PDSR[15]	—	—	J3	24	16
	URTS1	SYNCB	UTXD2	PUB[2]	PDSR[14]	—	—	H3	23	15
	URXD1	—	FEC_TXD[0]	PUB[1]	PDSR[13]	PWOR[2]	—	К3	32	23
	UTXD1	-	FEC_COL	PUB[0]	PDSR[12]	PWOR[3]	—	L3	33	24
UART 2	UCTS2	—	—	PUC[3]	PDSR[27]	—	—	L10	61	_
	URTS2	-	—	PUC[2]	PDSR[26]	—	—	K10	60	—
	URXD2	—	—	PUC[1]	PDSR[25]	—	—	K11	62	—
	UTXD2	—	—	PUC[0]	PDSR[24]	—	—	L11	63	_
FlexCAN	SYNCA	CANTX ⁴	FEC_MDIO	PAS[3]	PDSR[39]	—	—	—	28	20
	SYNCB	CANRX ⁴	FEC_MDC	PAS[2]	PDSR[39]	—	—	—	27	19
VDD ^{5,11}	VDD	—	—	—	N/A	N/A	—	D7, E8	65,102	45,74
VDDX	VDDX	_	_	—	N/A	N/A	—	D5, D6, E6, G5, G6, G7, H6	14, 43	10, 31
VSS	VSS	—	_	-	N/A	N/A	—	E4, E5, E7,F4, F5, F6, F7, F8	64,101	44,73
VSSX	VSSX	—	—	—	N/A	N/A	—	—	15, 42	11, 30

Table 3. Pin Functions by Primary and Alternate Purpose (continued)

¹ The PDSR and PSSR registers are described in Chapter 14, "General Purpose I/O Module. All programmable signals default to 2mA drive in normal (single-chip) mode.

² All signals have a pull-up in GPIO mode.

³ The use of an external PHY limits ADC, interrupt, and QSPI functionality. It also disables the UART0/1 and timer pins.

⁴ The multiplexed CANTX and CANRX signals do not have dedicated pins, but are available as muxed replacements for other signals.

⁵ The VDD1, VDD2, VDDPLL, and PHY VDD pins are for decoupling only and should not have power directly applied to them.

⁶ For primary and GPIO functions only.

⁷ Only when JTAG mode is enabled.

⁸ For secondary and GPIO functions only.

⁹ RSTI has an internal pull-up resistor; however, the use of an external resistor is strongly recommended.

¹⁰ For GPIO function. Primary Function has pull-up control within the GPT module.
 ¹¹ This list for power and ground does not include those dedicated power/ground pins included elsewhere, e.g. in the Ethernet PHY.

MCF52235 Family Configurations

1.3 Reset Signals

Table 4 describes signals that are used to either reset the chip or as a reset indication.

Table 4. Reset Signals

Signal Name	Abbreviation	Function	I/O
Reset In	RSTI	Primary reset input to the device. Asserting $\overline{\text{RSTI}}$ immediately resets the CPU and peripherals.	I
Reset Out	RSTO	Driven low for 512 CPU clocks after the reset source has deasserted.	0

1.4 PLL and Clock Signals

Table 5 describes signals that are used to support the on-chip clock generation circuitry.

Table 5. PLL and Clock Signals

Signal Name	Abbreviation	Function	I/O
External Clock In	EXTAL	Crystal oscillator or external clock input.	I
Crystal	XTAL	Crystal oscillator output.	0
Clock Out	CLKOUT	This output signal reflects the internal system clock.	0

1.5 Mode Selection

Table 6 describes signals used in mode selection, Table 6 describes particular clocking modes.

Table 6. Mode Selection Signals

Signal Name	Abbreviation	Function	I/O
Reset Configuration	RCON	The Serial Flash Programming mode is entered by asserting the $\overline{\text{RCON}}$ pin (with the TEST pin negated) as the chip comes out of reset. During this mode, the EzPort has access to the Flash memory which can be programmed from an external device.	_
Test	TEST	Reserved for factory testing only and in normal modes of operation should be connected to VSS to prevent unintentional activation of test functions.	I

1.6 External Interrupt Signals

Table 7 describes the external interrupt signals.

Table 7. External Interrupt Signals

Signal Name	Abbreviation	Function	I/O
External Interrupts	IRQ[15:1]	External interrupt sources.	Ι

MCF52235 Family Configurations

1.9 I²C I/O Signals

Table 10 describes the I^2C serial interface module signals.

Table 10. I²C I/O Signals

Signal Name	Abbreviation	Function	I/O
Serial Clock	SCL	Open-drain clock signal for the for the I^2C interface. Either it is driven by the I^2C module when the bus is in master mode or it becomes the clock input when the I^2C is in slave mode.	I/O
Serial Data	SDA	Open-drain signal that serves as the data input/output for the I ² C interface.	I/O

1.10 UART Module Signals

Table 11 describes the UART module signals.

Table 11	. UART	Module	Signals
----------	--------	--------	---------

Signal Name	Abbreviation	Function	I/O
Transmit Serial Data Output	UTXDn	Transmitter serial data outputs for the UART modules. The output is held high (mark condition) when the transmitter is disabled, idle, or in the local loopback mode. Data is shifted out, LSB first, on this pin at the falling edge of the serial clock source.	0
Receive Serial Data Input	URXDn	Receiver serial data inputs for the UART modules. Data is received on this pin LSB first. When the UART clock is stopped for power-down mode, any transition on this pin restarts it.	Ι
Clear-to-Send	UCTSn	Indicate to the UART modules that they can begin data transmission.	I
Request-to-Send	URTSn	Automatic request-to-send outputs from the UART modules. This signal can also be configured to be asserted and negated as a function of the RxFIFO level.	0

1.11 DMA Timer Signals

Table 12 describes the signals of the four DMA timer modules.

Table 12. DMA Timer Signals

Signal Name	Abbreviation	Function	I/O
DMA Timer Input	DTIN <i>n</i>	Event input to the DMA timer modules.	I
DMA Timer Output	DTOUTn	Programmable output from the DMA timer modules.	0

1.16 EzPort Signal Descriptions

Table 17 contains a list of EzPort external signals

Table	17	F 7Port	Signal	Descri	ntions
Iable	17.	LZFUIL	Jighai	Desch	puons

Signal Name	Abbreviation	Function	I/O
EzPort Clock	EZPCK	Shift clock for EzPort transfers	I
EzPort Chip Select	EZPCS	Chip select for signalling the start and end of serial transfers	Ι
EzPort Serial Data In	EZPD	EZPD is sampled on the rising edge of EZPCK	Ι
EzPort Serial Data Out	EZPQ	EZPQ transitions on the falling edge of EZPCK	0

1.17 Power and Ground Pins

The pins described in Table 18 provide system power and ground to the chip. Multiple pins are provided for adequate current capability. All power supply pins must have adequate bypass capacitance for high-frequency noise suppression.

Signal Name	Abbreviation	Function	I/O
PLL Analog Supply	VDDPLL, VSSPLL	Dedicated power supply signals to isolate the sensitive PLL analog circuitry from the normal levels of noise present on the digital power supply.	I
Positive Supply	VDD	These pins supply positive power to the core logic.	Ι
Ground	VSS	This pin is the negative supply (ground) to the chip.	—

Table 18. Power and Ground Pins

Some of the V_{DD} and V_{SS} pins on the device are only to be used for noise bypass. Figure 5 shows a typical connection diagram. Pay particular attention to those pins which show only capacitor connections. Do not connect power supply voltage directly to these pins.

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the MCF52235, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

NOTE

The parameters specified in this appendix supersede any values found in the module specifications.

Characteristic	Symbol	Package ¹	Value	Unit
Junction to ambient, natural convection	θ_{JA}	80-pin LQFP, four-layer board	36.0 ^{2,3}	°C/W
		112-pin LQFP, four-layer board	35.0	
		121 MAPBGA, four-layer board	32	
		80-pin LQFP, one-layer board ¹	49.0 ¹	
		121 MAPBGA, one-layer board ¹	56 ¹	
		112-pin LQFP, one-layer board ¹	44.0 ¹	
Junction to ambient (@200 ft/min)	θ_{JMA}	80-pin LQFP, four-layer board	30.0	°C/W
		112-pin LQFP, four-layer board	29.0	
		121 MAPBGA, four-layer board	28	
		80-pin LQFP, one-layer board ¹	39.0 ¹	
		112-pin LQFP, one-layer board ¹	35.0 ¹	
		121 MAPBGA, one-layer board ¹	46 ¹	
Junction to board	θ_{JB}	80-pin LQFP	22.0 ⁴	°C/W
		112-pin LQFP	23.0	
		121 MAPBGA, four-layer board	18	
Junction to case	θ^{JC}	80-pin LQFP	6.0 ⁵	°C/W
		112-pin LQFP	6.0	
		121 MAPBGA	10	
Junction to top of package, natural convection	Ψ _{jt}	80-pin LQFP	2.0 ⁶	°C/W
		112-pin LQFP	2.0 ⁶	
		121 MAPBGA	2.0 ⁶	
Maximum operating junction temperature	Тj	All	130	°C

Table 20. Thermal Characteristics

¹ The use of this device in one- or two-layer board designs is not recommended due to the limited thermal conductance provided by those boards.

- $^2 \quad \theta_{JMA}$ and Ψ_{jt} parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale recommends the use of θ_{JMA} and power dissipation specifications in the system design to prevent device junction temperatures from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly influenced by board layout and surrounding devices. Conformance to the device junction temperature specification can be verified by physical measurement in the customer's system using the Ψ_{jt} parameter, the device power dissipation, and the method described in EIA/JESD Standard 51-2.
- ³ Per JEDEC JESD51-6 with the board horizontal.
- ⁴ Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance with Psi-JT.

2.3 DC Electrical Specifications

Table 22. DC Electrical Specifications ¹

Characteristic	Symbol	Min	Max	Unit
Supply voltage	V _{DD}	3.0	3.6	V
Input high voltage	V _{IH}	$0.7 \times V_{DD}$	4.0	V
Input low voltage	V _{IL}	$V_{SS} - 0.3$	0.35 x V _{DD}	V
Input hysteresis	V _{HYS}	$0.06 \times V_{DD}$	_	mV
Low-voltage detect trip voltage (V _{DD} falling)	V _{LVD}	2.15	2.3	V
Low-voltage detect hysteresis (V _{DD} rising)	V _{LVDHYS}	60	120	mV
Input leakage current $V_{in} = V_{DD}$ or V_{SS} , input-only pins	l _{in}	-1.0	1.0	μA
High impedance (off-state) leakage current $V_{in} = V_{DD}$ or V_{SS} , all input/output and output pins	I _{OZ}	-1.0	1.0	μA
Output high voltage (all input/output and all output pins) $I_{OH} = -2.0 \text{ mA}$	V _{OH}	V _{DD} - 0.5		V
Output low voltage (all input/output and all output pins) $I_{OL} = 2.0 \text{ mA}$	V _{OL}		0.5	V
Weak internal pull-up device current, tested at V _{IL} max. ²	I _{APU}	-10	-130	μA
Input capacitance ³ All input-only pins All input/output (three-state) pins	C _{in}		7 7	pF
Load capacitance ⁴ Low drive strength High drive strength	CL		25 50	pF
DC injection current ^{3, 5, 6, 7} $V_{NEGCLAMP} = V_{SS} - 0.3 V$, $V_{POSCLAMP} = V_{DD} + 0.3$ Single pin limit Total MCU limit, Includes sum of all stressed pins	I _{IC}	-1.0 -10	1.0 10	mA

¹ Refer to Table 25 for additional PLL specifications.

² Refer to Table 3 for pins with internal pull-up devices.

³ This parameter is characterized before qualification rather than 100% tested.

⁴ pF load ratings are based on DC loading and are provided as an indication of driver strength. High speed interfaces require transmission line analysis to determine proper drive strength and termination.

⁵ All functional non-supply pins are internally clamped to V_{SS} and their respective V_{DD}.

⁶ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.

⁷ The power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{in} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure that the external V_{DD} load shunts current greater than maximum injection current. This is the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low which would reduce overall power consumption. Also, the system clock is not present during the power-up sequence until the PLL has attained lock.

		Typical					
Characteristic	Symbol	Running from SRAM, EPHY Off	Running from Flash, EPHY Off	Running from Flash, EPHY 10BaseT	Running from Flash, EPHY 100BaseT	Peak	Unit
Active current, core and I/O PLL @25 MHz PLL @60 MHz	I _{DDR} +I _{DDX} +I _{DDA}	75 130	82 138	150 220	260 310	290 340	mA
Analog supply current Normal operation Low-power STOP	I _{DDA}	20 15	20 15	20 15	20 15	30 50	mA μA

Table 23. Active Current Consumption Specifications

Table 24. Current Consumption Specifications in Low-Power Modes¹

Mode ²	PLL @25 MHz (typical) ³	PLL @60 MHz (typical) ³	PLL @60 MHz (peak) ⁴	Unit
STOP mode 3 (STPMD[1:0]=11)	0.2		1.0	mA
STOP mode 2 (STPMD[1:0]=10)	7	7	_	
STOP mode 1 (STPMD[1:0]=01)	node 1 (STPMD[1:0]=01) 10		_	
STOP mode 0 (STPMD[1:0]=00)	10	12	_	
WAIT	16	27	_	
DOZE	16	27		
RUN	25	45	_	

¹ All values are measured with a 3.30 V power supply.

² Refer to the "Power Management" chapter in the *MCF52235 ColdFire[®] Integrated Microcontroller Reference Manual* for more information on low-power modes.

⁴ These values were obtained with CLKOUT and all peripheral clocks enabled. All code was executed from flash memory.

³ These values were obtained with CLKOUT and all peripheral clocks except for the CFM clock disabled prior to entering low-power mode. The tests were performed at room temperature. All code was executed from flash memory; running code from SRAM further reduces power consumption.

2.6 Reset Timing

Table 27. Reset and Configuration Override Timing

Num	Characteristic	Symbol	Min	Мах	Unit
R1	RSTI input valid to CLKOUT high	t _{RVCH}	9	—	ns
R2	CLKOUT high to RSTI input invalid	t _{CHRI}	1.5	—	ns
R3	RSTI input valid time ²	t _{RIVT}	5	—	t _{CYC}
R4	CLKOUT high to RSTO valid	t _{CHROV}	—	10	ns

¹ All AC timing is shown with respect to 50% V_{DD} levels unless otherwise noted.

² During low power STOP, the synchronizers for the RSTI input are bypassed and RSTI is asserted asynchronously to the system. Therefore, RSTI must be held a minimum of 100ns.

Figure 7. RSTI and Configuration Override Timing

2.7 I²C Input/Output Timing Specifications

Table 28 lists specifications for the I^2C input timing parameters shown in Figure 8.

Table 28. I ² C Input Timin	g Specifications between I	2C_SCL and I2C_SDA
--	----------------------------	--------------------

Num	Characteristic	Min	Max	Units
1	Start condition hold time	$2 \times t_{CYC}$	_	ns
12	Clock low period	$8 \times t_{CYC}$	—	ns
13	SCL/SDA rise time (V _{IL} = 0.5 V to V _{IH} = 2.4 V)	_	1	ms
14	Data hold time	0	—	ns
15	SCL/SDA fall time ($V_{IH} = 2.4 \text{ V}$ to $V_{IL} = 0.5 \text{ V}$)	_	1	ms
16	Clock high time	$4 \times t_{CYC}$	_	ns
17	Data setup time	0	—	ns
18	Start condition setup time (for repeated start condition only)	$2 \times t_{CYC}$	—	ns
19	Stop condition setup time	$2 \times t_{CYC}$	—	ns

Table 29 lists specifications for the I^2C output timing parameters shown in Figure 8.

Num	Characteristic	Min	Max	Units
l1 ¹	Start condition hold time	$6 imes t_{CYC}$	_	ns
l2 ¹	Clock low period	$10 imes t_{CYC}$		ns
13 ²	I2C_SCL/I2C_SDA rise time $(V_{IL} = 0.5 \text{ V to } V_{IH} = 2.4 \text{ V})$	—	_	μs
l4 ¹	Data hold time	$7 \times t_{CYC}$	_	ns
15 ³	I2C_SCL/I2C_SDA fall time $(V_{IH} = 2.4 \text{ V to } V_{IL} = 0.5 \text{ V})$	—	3	ns
l6 ¹	Clock high time	$10 imes t_{CYC}$		ns
I7 ¹	Data setup time	$2 \times t_{CYC}$	_	ns
18 ¹	Start condition setup time (for repeated start condition only)	20 x t _{CYC}		ns
19 ¹	Stop condition setup time	10 x t _{CYC}		ns

Table 29. I²C Output Timing Specifications between I2C_SCL and I2C_SDA

¹ Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table 29. The I²C interface is designed to scale the actual data transition time to move it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed into the IFDR; however, the numbers given in Table 29 are minimum values.

- ² Because SCL and SDA are open-collector-type outputs, which the processor can only actively drive low, the time SCL or SDA take to reach a high level depends on external signal capacitance and pull-up resistor values.
- ³ Specified at a nominal 50-pF load.

Figure 8 shows timing for the values in Table 28 and Table 29.

Figure 8. I²C Input/Output Timings

2.8 EPHY Parameters

2.8.1 EPHY Timing

Table 30 and Figure 9 show the relevant EPHY timing parameters.

Table 30. EPHY Timing Parameters

Num	Characteristic	Symbol	Value	Unit
E1	EPHY startup time	t _{Start-Up}	360	μS

2.8.2 10BASE-T SQE (Heartbeat) Timing

Table 31 and Figure 10 show the relevant 10BASE-T SQE (heartbeat) timing parameters.

Table 31. 10BASE-T SQE (Heartbeat) Timing Parameters

Characteristic	Symbol	Min	Typ ¹	Max	Units
COL (SQE) delay after TXEN off	t1	_	1.0	—	μS
COL (SQE) pulse duration	t2	_	1.0	—	μS

¹ Typical values are at 25°C.

- ¹ Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pF
- ² Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pF
- ³ Equivalent resistance for the channel select mux; 100 ohms
- ⁴ Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1.4pF
- ⁵ Equivalent input impedance, when the input is selected = _______ADC CL

C CLOCK RATE
$$\times (1.4 \times 10^{-12})$$

Figure 12. Equivalent Circuit for A/D Loading

2.10 DMA Timers Timing Specifications

Table 36 lists timer module AC timings.

Table 36. Timer Module AC Timing Specifications

Name	Characteristic ¹	Min	Мах	Unit
T1	DTIN0 / DTIN1 / DTIN2 / DTIN3 cycle time	$3 \times t_{CYC}$	_	ns
T2	DTIN0 / DTIN1 / DTIN2 / DTIN3 pulse width	$1 \times t_{CYC}$	_	ns

¹ All timing references to CLKOUT are given to its rising edge.

2.11 EzPort Electrical Specifications

Table 37. EzPort Electrical Specifications

Name	Characteristic	Min	Max	Unit
EP1	EPCK frequency of operation (all commands except READ)		f _{sys} / 2	MHz
EP1a	EPCK frequency of operation (READ command)	_	f _{sys} / 8	MHz
EP2	EPCS_b negation to next EPCS_b assertion	$2 \times T_{cyc}$		ns
EP3	EPCS_B input valid to EPCK high (setup)	5	_	ns
EP4	EPCK high to EPCS_B input invalid (hold)	5	_	ns
EP5	EPD input valid to EPCK high (setup)	2	_	ns
EP6	EPCK high to EPD input invalid (hold)	5		ns

MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10

2.14 Debug AC Timing Specifications

Table 40 lists specifications for the debug AC timing parameters shown in Figure 19.

Nume	Characteristic	60 M	Unito		
Num	Characteristic	Min	Max	Cinto	
D1	PST, DDATA to CLKOUT setup	4	_	ns	
D2	CLKOUT to PST, DDATA hold	1.5	_	ns	
D3	DSI-to-DSCLK setup	$1 \times t_{CYC}$	_	ns	
D4 ¹	DSCLK-to-DSO hold	$4 \times t_{CYC}$	_	ns	
D5	DSCLK cycle time	$5 imes t_{CYC}$	_	ns	
D6	BKPT input data setup time to CLKOUT Rise	4	_	ns	
D7	BKPT input data hold time to CLKOUT Rise	1.5	_	ns	
D8	CLKOUT high to BKPT high Z	0.0	10.0	ns	

Table 40. Debug AC Timing Specification

¹ DSCLK and DSI are synchronized internally. D4 is measured from the synchronized DSCLK input relative to the rising edge of CLKOUT.

Figure 18 shows real-time trace timing for the values in Table 40.

Figure 18. Real-Time Trace AC Timing

Figure 19 shows BDM serial port AC timing for the values in Table 40.

MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10

Mechanical Outline Drawings 3

This section describes the physical properties of the MCF52235 and its derivatives.

80-pin LQFP Package 3.1

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE.H.- IS LOCATED AT BOTTOM OF LEAD AND IS CONCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS -L.-, -M- AND -N- TO BE DETERMINED AT DATUM PLANE.H-. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE.-T.-. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE

- 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE –H-. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.460 (0.013). MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD OR PROTRUSION AND ADJACENT LEAD OR

	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	14.00	BSC	0.551	BSC
A1	7.00	BSC	0.276	BSC
В	14.00 BSC		0.551	BSC
B1	7.00	BSC	0.276	BSC
С		1.60		0.063
C1	0.04	0.24	0.002	0.009
C2	1.30	1.50	0.051	0.059
D	0.22	0.38	0.009	0.015
E	0.40	0.75	0.016	0.030
F	0.17	0.33	0.007	0.013
G	0.65	BSC	0.026	BSC
J	0.09	0.27	0.004	0.011
K	0.50	REF	0.020	REF
Ρ	0.325	BSC	0.013	REF
R1	0.10	0.20	0.004	0.008
S	16.00	16.00 BSC		BSC
S1	8.00	BSC	0.315	BSC
U	0.09	0.16	0.004	0.006
V	16.00	BSC	0.630	BSC
V1	8.00	BSC	0.315 BSC	
W	0.20	REF	0.008 REF	
Z	1.00	REF	0.039 REF	
0	0 °	10°	0 °	10°
01	0 °		0 °	
02	9°	14°	9°	14°

CASE 917A-02 **ISSUE C**

DATE 09/21/95

MCF52235 ColdFire Microcontroller Data Sheet, Rev. 10