



#### Welcome to E-XFL.COM

#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Active                                                       |
|---------------------------------|--------------------------------------------------------------|
| Core Processor                  | PowerPC e500                                                 |
| Number of Cores/Bus Width       | 2 Core, 32-Bit                                               |
| Speed                           | 1.333GHz                                                     |
| Co-Processors/DSP               | Signal Processing; SC3850, Security; SEC 4.4                 |
| RAM Controllers                 | DDR3, DDR3L                                                  |
| Graphics Acceleration           | No                                                           |
| Display & Interface Controllers | -                                                            |
| Ethernet                        | 10/100/1000Mbps (2)                                          |
| SATA                            | -                                                            |
| USB                             | USB 2.0 (1)                                                  |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                             |
| Operating Temperature           | 0°C ~ 105°C (TA)                                             |
| Security Features               | Boot Security, Cryptography, Random Number Generator         |
| Package / Case                  | 780-BFBGA, FCBGA                                             |
| Supplier Device Package         | 780-FCBGA (23x23)                                            |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=bsc9132nse7knkb |
|                                 |                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



**Pin Assignments** 

| Signal                                                   | Signal Description                                                                                       | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------|-------------|-----------------|-------|
| IFC_CLE/<br>GPO48                                        | NAND Command Latch Enable/GPCM Write<br>Byte Select1                                                     | L25           | 0           | BVDD            | 18    |
| IFC_OE_B/<br>GPO49                                       | NOR Output Enable/NAND Read Enable/<br>GPCM Output Enable/Generic ASIC Interface<br>Read-Write Indicator | K23           | 0           | BVDD            | 2     |
| IFC_WP_B/<br>GPO66                                       | IFC Write Protect                                                                                        | K26           | 0           | BVDD            | 18    |
| IFC_RB_B/<br>GPO50                                       | IFC Read Busy/GPCM External Transreciver/<br>Generic ASIC i/f Ready Indicator                            | K25           | I           | BVDD            | —     |
| IFC_BCTL/<br>GPO67                                       | Data Buffer Control                                                                                      | K22           | 0           | BVDD            | 18    |
| IFC_CLK00/<br>GPO68                                      | IFC Clock                                                                                                | K27           | 0           | BVDD            | -     |
|                                                          | eSDHC                                                                                                    |               | L           |                 | l     |
| SDHC_CLK/<br>SIM_CLK/<br>GPO52                           | SDHC Clock                                                                                               | B27           | 0           | BVDD            | -1    |
| SDHC_CMD/<br>SIM_RST_B/<br>GPIO48                        | SDHC Command                                                                                             | C26           | I/O         | BVDD            | 15    |
| SDHC_DATA00/<br>SIM_TRXD/<br>GPIO49                      | SDHC Data2 in all modes                                                                                  | D25           | I/O         | BVDD            | 15    |
| SDHC_DATA01/<br>SIM_SVEN/<br>GPIO50                      | SDHC Data1 in 4-bit mode                                                                                 | F23           | I/O         | BVDD            | 15    |
| SDHC_DATA02/<br>SIM_PD/<br>GPIO51                        | SDHC Data2 in 4-bit mode                                                                                 | F24           | I/O         | BVDD            | 15    |
| SDHC_DATA03/<br>DMA_DDONE_B00/<br>CKSTP1_IN_B/<br>GPIO77 | SDHC Data3 in 1-bit mode<br>SDHC Data3 in 4-bit mode                                                     | E25           | I/O         | BVDD            | 15,16 |
| SDHC_WP/<br>DMA_DREQ_B00/<br>CKSTP0_IN_B/<br>GPIO78      | SDHC Write Protect Detect                                                                                | G23           | I           | BVDD            | -1    |
| SDHC_CD/<br>DMA_DACK_B00/<br>MCP1_B/<br>GPIO79/<br>IRQ10 | SDHC Card Detect                                                                                         | C25           | I           | BVDD            | - 1   |
|                                                          | USIM                                                                                                     |               |             |                 | l     |



**Pin Assignments** 

| Table 1. | BSC9132 | Pinout | Listing | (continued) |
|----------|---------|--------|---------|-------------|
|----------|---------|--------|---------|-------------|

| Signal                                                   | Signal Description | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|----------------------------------------------------------|--------------------|---------------|-------------|-----------------|------|
| SDHC_CLK/<br>SIM_CLK/<br>GPO52                           | SIM Clock          | B27           | 0           | BVDD            | -1   |
| SDHC_CMD/<br>SIM_RST_B/<br>GPIO48                        | SIM Reset          | C26           | 0           | BVDD            | 17   |
| SDHC_DATA00/<br>SIM_TRXD/<br>GPIO49                      | SIM TX RX Data     | D25           | I/O         | BVDD            | 15   |
| SDHC_DATA01/<br>SIM_SVEN/<br>GPIO50                      | SIM Enable         | F23           | 0           | BVDD            | 17   |
| SDHC_DATA02/<br>SIM_PD/<br>GPIO51                        | SIM Card Detect    | F24           | I           | BVDD            | 17   |
|                                                          | USIM over SPI1     |               |             |                 | l    |
| SPI1_CLK/<br>SIM_CLK                                     | SIM Clock          | M27           | 0           | CVDD            | - 1  |
| SPI1_MISO/<br>UART_CTS_B03/<br>SIM_RST_B/<br>GPIO55      | SIM Reset          | M22           | 0           | CVDD            | 17   |
| SPI1_CS0_B/<br>UART_RTS_B03/<br>SIM_TRXD                 | SIM TX RX Data     | M28           | I/O         | CVDD            | 15   |
| SPI1_MOSI/<br>UART_SIN03/<br><b>SIM_SVEN</b> /<br>GPI054 | SIM Enable         | L22           | 0           | CVDD            | 17   |
| UART_CTS_B00/<br>SIM_PD/<br>TIMER04/<br>GPIO42/<br>IRQ04 | SIM Card Detect    | AB27          | I           | OVDD            | 17   |
|                                                          | USB                |               |             |                 |      |
| USB_CLK/<br>UART_SIN02/<br>GPIO69/<br>IRQ11/<br>TIMER03  | ULPI Clock         | R24           | I           | CVDD            | - 1  |
| USB_D07/<br>UART_SOUT02/<br>GPIO70                       | ULPI Data          | P28           | I/O         | CVDD            | _    |



**Pin Assignments** 

#### Pin Pin Power Signal **Signal Description** Note Number Туре Supply ANT3\_RX\_CLK/ General Purpose I/O D1 I/O X2VDD - 1 TDM2\_TCK/ GPIO04 General Purpose I/O ANT4 RX FRAME/ Y5 I/O X1VDD - 1 GPIO05 ANT1 DIO108/ General Purpose I/O T7 I/O X1VDD I GPIO21/ IRQ08 ANT1\_DIO109/ General Purpose I/O U1 I/O X1VDD - 1 GPIO22/ IRQ09 ANT1\_DIO110/ General Purpose I/O U2 I/O X1VDD - 1 TIMER06/ GPIO23 U3 I/O X1VDD ANT1\_DIO111/ General Purpose I/O - 1 TIMER07/ GPIO24 General Purpose I/O ANT2\_DIO000/ E2 I/O X2VDD - 1 USB D00/ GPIO25 ANT2\_DIO001/ General Purpose I/O E1 I/O X2VDD - 1 USB D01/ GPIO26 ANT2\_DIO002/ General Purpose I/O X2VDD J6 I/O - 1 USB\_D02/ GPIO27 ANT2\_DIO003/ General Purpose I/O I/O X2VDD J5 - 1 USB\_D03/ GPIO28 ANT2\_DIO004/ General Purpose I/O I/O X2VDD E5 - 1 USB\_D04/ GPIO29 ANT2\_DIO005/ General Purpose I/O I/O G5 X2VDD - 1 USB\_D05/ GPIO30 General Purpose I/O ANT2\_DIO006/ F1 I/O X2VDD - 1 USB D06/ GPIO31 ANT2\_DIO007/ General Purpose I/O G3 I/O X2VDD - 1 USB\_D07/ GPIO32 ANT2 DIO008/ General Purpose I/O F2 I/O X2VDD - 1 USB DIR/ GPIO33

# Table 1. BSC9132 Pinout Listing (continued)

E28

I/O

General Purpose I/O

BVDD

- 1

IFC AD08/

GPIO34



| Signal                                                                 | Signal Description  | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|------------------------------------------------------------------------|---------------------|---------------|-------------|-----------------|------|
| IFC_AD09/<br>GPIO35                                                    | General Purpose I/O | F27           | I/O         | BVDD            | -1   |
| IFC_AD10/<br>GPIO36                                                    | General Purpose I/O | F28           | I/O         | BVDD            | -1   |
| IFC_AD11/<br>GPIO37/<br>IRQ08                                          | General Purpose I/O | G25           | I/O         | BVDD            | -1   |
| IFC_AD12/<br>GPI038/<br>IRQ09                                          | General Purpose I/O | G26           | I/O         | BVDD            | -1   |
| IFC_AD13/<br>GPI039/<br>IRQ07                                          | General Purpose I/O | G27           | I/O         | BVDD            | -1   |
| IFC_AD14/<br>GPI040/<br>IRQ06                                          | General Purpose I/O | G28           | I/O         | BVDD            | -1   |
| IFC_AD15/<br>GPI041/<br>TIMER02                                        | General Purpose I/O | H28           | I/O         | BVDD            | -1   |
| UART_CTS_B00/<br>SIM_PD/<br>TIMER04/<br><b>GPI042</b> /<br>IRQ04       | General Purpose I/O | AB27          | I/O         | OVDD            | - 1  |
| UART_CTS_B01/<br>SYS_DMA_REQ/<br>SRESET_B/<br><b>GPI044</b> /<br>IRQ05 | General Purpose I/O | W22           | I/O         | OVDD            | -1   |
| IIC1_SDA/<br>GPIO46                                                    | General Purpose I/O | V25           | I/O         | OVDD            | - 1  |
| IIC1_SCL/<br>GPIO47                                                    | General Purpose I/O | V24           | I/O         | OVDD            | - 1  |
| SDHC_CMD/<br>SIM_RST_B/<br>GPI048                                      | General Purpose I/O | C26           | I/O         | BVDD            | -1   |
| SDHC_DATA00/<br>SIM_TRXD/<br>GPIO49                                    | General Purpose I/O | D25           | I/O         | BVDD            | -1   |
| SDHC_DATA01/<br>SIM_SVEN/<br>GPI050                                    | General Purpose I/O | F23           | I/O         | BVDD            | -1   |
| SDHC_DATA02/<br>SIM_PD/<br>GPI051                                      | General Purpose I/O | F24           | I/O         | BVDD            | -1   |

# Table 1. BSC9132 Pinout Listing (continued)



**Pin Assignments** 

| Table 1. BSC9132 | Pinout Listing | (continued) |
|------------------|----------------|-------------|
|------------------|----------------|-------------|

| Signal                                                       | Signal Description     | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|--------------------------------------------------------------|------------------------|---------------|-------------|-----------------|------|
| IFC_ADDR18/<br>GPO10                                         | General Purpose Output | H24           | 0           | BVDD            | - 1  |
| IFC_ADDR19/<br>GPO11                                         | General Purpose Output | H22           | 0           | BVDD            | - 1  |
| IFC_ADDR20/<br>GPO12                                         | General Purpose Output | H21           | 0           | BVDD            | - 1  |
| IFC_ADDR21/<br>GPO13                                         | General Purpose Output | J28           | 0           | BVDD            | - 1  |
| IFC_ADDR22/<br>GPO14                                         | General Purpose Output | J27           | 0           | BVDD            | - 1  |
| IFC_ADDR23/<br>GPO15                                         | General Purpose Output | J25           | 0           | BVDD            | - 1  |
| IFC_ADDR24/<br>GPO16                                         | General Purpose Output | J24           | 0           | BVDD            | - 1  |
| IFC_ADDR25/<br>GPO17                                         | General Purpose Output | J23           | 0           | BVDD            | - 1  |
| IFC_ADDR26/<br>GPO18                                         | General Purpose Output | J22           | 0           | BVDD            | - 1  |
| ANT1_TXNRX/<br>TSEC_1588_PULSE_OUT2/<br>GPO19                | General Purpose Output | P3            | 0           | X1VDD           | -1   |
| ANT1_TX_FRAME/<br>GPO20                                      | General Purpose Output | R4            | 0           | X1VDD           | - 1  |
| UART_RTS_B00/<br>PPS_LED/<br><b>GPO43</b>                    | General Purpose Output | AB26          | 0           | OVDD            | - 1  |
| UART_RTS_B01/<br>SYS_DMA_DONE/<br><b>GPO45</b> /<br>ANT4_AGC | General Purpose Output | Y27           | 0           | OVDD            | - 1  |
| IFC_CLE/<br>GPO48                                            | General Purpose Output | L25           | 0           | BVDD            | - 1  |
| IFC_OE_B/<br>GPO49                                           | General Purpose Output | K23           | 0           | BVDD            | - 1  |
| IFC_RB_B/<br>GPO50                                           | General Purpose Output | K25           | 0           | BVDD            | - 1  |
| IFC_WE_B/<br>GPO52                                           | General Purpose Output | L26           | 0           | BVDD            | - 1  |
| IFC_AVD/<br>GPO54                                            | General Purpose Output | L28           | 0           | BVDD            | - 1  |
| IFC_CS_B00/<br>GP055                                         | General Purpose Output | K21           | 0           | BVDD            | - 1  |
| UART_SOUT01/<br>GPO56                                        | General Purpose Output | W23           | 0           | OVDD            | - 1  |



| Signal | Signal Description   | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|--------|----------------------|---------------|-------------|-----------------|------|
| VDDC   | Core/Platform Supply | Y10           | —           | VDDC            | _    |
| VDDC   | Core/Platform Supply | Y14           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | J16           | _           | VDDC            | —    |
| VDDC   | Core/Platform Supply | J18           | _           | VDDC            | —    |
| VDDC   | Core/Platform Supply | K16           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | K18           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | L16           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | L18           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | M16           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | M18           | _           | VDDC            | —    |
| VDDC   | Core/Platform Supply | N16           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | N18           | _           | VDDC            | —    |
| VDDC   | Core/Platform Supply | P16           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | P18           | —           | VDDC            | _    |
| VDDC   | Core/Platform Supply | R16           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | R18           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | T16           | —           | VDDC            | _    |
| VDDC   | Core/Platform Supply | T18           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | U16           |             | VDDC            |      |
| VDDC   | Core/Platform Supply | U18           | —           | VDDC            | _    |
| VDDC   | Core/Platform Supply | V16           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | V18           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | W16           | —           | VDDC            | —    |
| VDDC   | Core/Platform Supply | W18           | _           | VDDC            | —    |
| VDDC   | Core/Platform Supply | Y18           | _           | VDDC            | —    |
| VDD    | MAPLE Supply         | J10           | —           | VDD             | —    |
| VDD    | MAPLE Supply         | J12           | _           | VDD             | —    |
| VDD    | MAPLE Supply         | K10           | _           | VDD             | —    |
| VDD    | MAPLE Supply         | K12           | —           | VDD             | —    |
| VDD    | MAPLE Supply         | L10           | _           | VDD             | —    |
| VDD    | MAPLE Supply         | L12           | _           | VDD             | —    |
| VDD    | MAPLE Supply         | M10           | —           | VDD             | —    |
| VDD    | MAPLE Supply         | M12           | _           | VDD             | —    |
| VDD    | MAPLE Supply         | N10           | _           | VDD             | —    |
| VDD    | MAPLE Supply         | N12           | —           | VDD             | —    |
| G1VDD  | DDR Supply           | B13           | —           | G1VDD           | 1 —  |

# Table 1. BSC9132 Pinout Listing (continued)



### Table 3. Recommended Operating Conditions (continued)

| Characteristic | Symbol | Recommended Value | Unit | Note |
|----------------|--------|-------------------|------|------|
| Note:          |        |                   |      |      |

| 1 | Caution: POV <sub>DD1</sub> must be supplied 1.5 V and the device must operate in the specified fuse programming temperature range   |
|---|--------------------------------------------------------------------------------------------------------------------------------------|
|   | only during secure boot fuse programming. For all other operating conditions, POV <sub>DD1</sub> must be tied to GND, subject to the |
|   | power sequencing constraints shown in Section 2.2, "Power Sequencing."                                                               |

- <sup>2</sup> USIM pins are multiplexed with the pins of other interfaces. Check Table 3 for which power supply is used (BV<sub>DD</sub> or a CV<sub>DD</sub>) for each particular USIM pin.
- <sup>3</sup> Unless otherwise stated in an interface's DC specifications, the maximum allowed input capacitance in this table is a general recommendation for signals.

This figure shows the undershoot and overshoot voltages at the interfaces.





The core voltage must always be provided at nominal 1 V (see Table 3 for actual recommended core voltage). Voltage to the processor interface I/Os are provided through separate sets of supply pins and must be provided at the voltages shown in Table 3. The input voltage threshold scales with respect to the associated I/O supply voltage.  $OV_{DD}$  and  $LV_{DD}$  based receivers are simple CMOS I/O circuits and satisfy appropriate LVCMOS type specifications. The DDR3 SDRAM interface uses a differential receiver referenced the externally supplied  $MV_{REF}$  signal (nominally set to  $GV_{DD}/2$ ). The DDR DQS receivers cannot be operated in single-ended fashion. The complement signal must be properly driven and cannot be grounded.



# 2.7.5 **RF Parallel Interface Clock Specifications**

The following table lists the RF parallel interface clock DC electrical characteristics.

## Table 16. RF Parallel Reference Clock DC Electrical Characteristics

| Parameter                                                                   | Symbol          | Min | Typical | Мах | Unit | Note |
|-----------------------------------------------------------------------------|-----------------|-----|---------|-----|------|------|
| Input high voltage                                                          | V <sub>IH</sub> | 2.0 | —       | —   | V    | 1    |
| Input low voltage                                                           | V <sub>IL</sub> | —   | —       | 0.8 | V    | 1    |
| Input capacitance                                                           | C <sub>IN</sub> | —   | 7       | 15  | С    | _    |
| Input current (V <sub>IN</sub> = 0 V or V <sub>IN</sub> = V <sub>DDC)</sub> | I <sub>IN</sub> | —   | —       | ±50 | μΑ   | 2    |

Note:

1. The max  $V_{IH}$ , and min  $V_{IL}$  values can be found in Table 3.

2. The symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 3.

The following table lists the RF parallel interface clock AC electrical characteristics.

### Table 17. RF Parallel Reference Clock AC Electrical Characteristics

At recommended operating conditions with  $OV_{DD}$  = 3.3 V ± 165 mV

| Parameter/Condition                      | Symbol                                     | Min | Typical | Max  | Unit | Note |
|------------------------------------------|--------------------------------------------|-----|---------|------|------|------|
| ANTn_REF_CLK frequency                   | fant_ref_clk                               | —   | 19.2    | _    | MHz  | —    |
| ANT <i>n</i> _REF_CLK cycle time         | t <sub>ANT_REF_CLK</sub>                   | —   | 52      |      | ns   | —    |
| ANTn_REF_CLK duty cycle                  | t <sub>KHK</sub> /t <sub>ANT_REF_CLK</sub> | 48  | 50      | 52   | %    | —    |
| ANT <i>n</i> _REF_CLK slew rate          | —                                          | 1   | —       | 4    | V/ns | 1    |
| ANTn_REF_CLK peak period jitter          | —                                          | —   | —       | ±100 | ps   | —    |
| AC Input Swing Limits at 3.3 V $OV_{DD}$ | $\Delta V_{AC}$                            | 1.9 | —       | _    | V    | —    |

Note:

1. Slew rate as measured from  $\pm 0.3 \Delta V_{AC}$  at the center of peak to peak voltage at clock input.

# 2.7.6 Other Input Clocks

A description of the overall clocking of this device is available in the *BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual* in the form of a clock subsystem block diagram. For information about the input clock requirements of other functional blocks such as SerDes, Ethernet Management, eSDHC, and IFC, see the specific interface section.

# 2.8 DDR3 and DDR3L SDRAM Controller

This section describes the DC and AC electrical specifications for the DDR3 and DDR3L SDRAM controller interface. Note that the required  $GV_{DD}(typ)$  voltage is 1.5 V and 1.35 V when interfacing to DDR3 or DDR3L SDRAM, respectively.



# Table 25. DDR3 and DDR3L SDRAM Interface Output AC Timing Specifications (continued)

At recommended operating conditions with  $GV_{DD}$  of 1.5 V  $\pm$  5% for DDR3 or 1.35 V  $\pm$  5% for DDR3L.

| Parameter                                 | Symbol <sup>1</sup> | Min    | Мах   | Unit | Note |
|-------------------------------------------|---------------------|--------|-------|------|------|
| ADDR/CMD output setup with respect to MCK | t <sub>DDKHAS</sub> |        |       | ns   | 3    |
| 1333 MHz data rate                        |                     | 0.606  | —     |      |      |
| 1200 MHz data rate                        |                     | 0.675  | —     |      |      |
| 1066 MHz data rate                        |                     | 0.744  | —     |      |      |
| 800 MHz data rate                         |                     | 0.917  | —     |      |      |
| 667 MHz data rate                         |                     | 1.10   | —     |      |      |
| ADDR/CMD output hold with respect to MCK  | t <sub>DDKHAX</sub> |        |       | ns   | 3    |
| 1333 MHz data rate                        |                     | 0.606  | —     |      |      |
| 1200 MHz data rate                        |                     | 0.675  | —     |      |      |
| 1066 MHz data rate                        |                     | 0.744  | —     |      |      |
| 800 MHz data rate                         |                     | 0.917  | —     |      |      |
| 667 MHz data rate                         |                     | 1.10   | —     |      |      |
| MCS[n]_B output setup with respect to MCK | t <sub>DDKHCS</sub> |        |       | ns   | 3    |
| 1333 MHz data rate                        |                     | 0.606  | —     |      |      |
| 1200 MHz data rate                        |                     | 0.675  | —     |      |      |
| 1066 MHz data rate                        |                     | 0.744  | —     |      |      |
| 800 MHz data rate                         |                     | 0.917  | —     |      |      |
| 667 MHz data rate                         |                     | 1.10   | —     |      |      |
| MCS[n]_B output hold with respect to MCK  | t <sub>DDKHCX</sub> |        |       | ns   | 3    |
| 1333 MHz data rate                        |                     | 0.606  | —     |      |      |
| 1200 MHz data rate                        |                     | 0.675  | —     |      |      |
| 1066 MHz data rate                        |                     | 0.744  | —     |      |      |
| 800 MHz data rate                         |                     | 0.917  | —     |      |      |
| 667 MHz data rate                         |                     | 1.10   | —     |      |      |
| MCK to MDQS Skew                          | t <sub>DDKHMH</sub> |        |       | ns   | 4    |
| ≥ 1066 MHz data rate                      |                     | -0.245 | 0.245 |      |      |
| 800 MHz data rate                         |                     | -0.375 | 0.375 |      |      |
| 667 MHz data rate                         |                     | -0.6   | 0.6   |      |      |



## Table 48. eSDHC Interface DC Electrical Characteristics (continued)

At recommended operating conditions with  $BV_{DD} = 3.3$  V or 1.8 V.

| Characteristic               | Symbol                           | Condition              | Min | Max | Unit | Note |
|------------------------------|----------------------------------|------------------------|-----|-----|------|------|
| Output low voltage           | V <sub>OL</sub>                  | I <sub>OL</sub> = 2 mA | -   | 0.3 | V    | 2    |
| Input/output leakage current | I <sub>IN</sub> /I <sub>OZ</sub> | —                      | -10 | 10  | uA   | _    |

#### Note:

1. Note that the min V<sub>IL</sub>and max V<sub>IH</sub> values are based on the respective min and max BV<sub>IN</sub> values found in Figure 3.

2. Open drain mode for MMC cards only.

# 2.14.2 eSDHC AC Timing Specifications

This table provides the eSDHC AC timing specifications as defined in Figure 25.

## Table 49. eSDHC AC Timing Specifications

At recommended operating conditions with  $\mathsf{BV}_{\mathsf{DD}}$  = 3.3 or 1.8 V

| Parameter                                                                                       | Symbol <sup>1</sup>                         | Min    | Max            | Unit | Note |
|-------------------------------------------------------------------------------------------------|---------------------------------------------|--------|----------------|------|------|
| SD_CLK clock frequency:<br>SD/SDIO Full-speed/High-speed mode<br>MMC Full-speed/High-speed mode | f <sub>SFSCK</sub>                          | 0<br>0 | 25/50<br>20/52 | MHz  | 2, 4 |
| SD_CLK clock low time—Full-speed/High-speed mode                                                | t <sub>SFSCKL</sub>                         | 10/7   | _              | ns   | 4    |
| SD_CLK clock high time—Full-speed/High-speed mode                                               | t <sub>SFSCKH</sub>                         | 10/7   |                | ns   | 4    |
| SD_CLK clock rise and fall times                                                                | t <sub>SFSCKR∕</sub><br>t <sub>SFSCKF</sub> | —      | 3              | ns   | 4    |
| Input setup times: SD_CMD, SD_DATx                                                              | t <sub>SFSIVKH</sub>                        | 2.5    |                | ns   | 3, 4 |
| Input hold times: SD_CMD, SD_DATx                                                               | t <sub>SFSIXKH</sub>                        | 2.5    | _              | ns   | 3, 4 |
| Output delay time: SD_CLK to SD_CMD, SD_DATx valid                                              | t <sub>SFSKHOV</sub>                        | —      | 3              | ns   | 4    |
| Output delay time: SD_CLK to SD_CMD, SD_DATx hold time                                          | t <sub>SFSKHOX</sub>                        | -3     |                | ns   | 4    |

#### Note:

 The symbols used for timing specifications herein follow the pattern of t<sub>(first three letters of functional block)(signal)(state)</sub> (reference)(state) for inputs and t<sub>(first three letters of functional block)</sub>(reference)(state)(signal)(state) for outputs. For example, t<sub>FHSKHOV</sub> symbolizes eSDHC high speed mode device timing (SHS) clock reference (K) going to the high (H) state, with respect to the output (O) reaching the invalid state (X) or output hold time. Note that, in general, the clock reference symbol representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. In full speed mode, clock frequency value can be 0–25 MHz for a SD/SDIO card and 0–20 MHz for a MMC card. In high speed mode, clock frequency value can be 0–50 MHz for a SD/SDIO card and 0–52 MHz for a MMC card.

3. To satisfy setup timing, one way board routing delay between Host and Card, on SD\_CLK, SD\_CMD and SD\_DATx should not exceed 1 ns for any high speed MMC card. For any high speed or default speed mode SD card, the one way board routing delay between Host and Card, on SD\_CLK, SD\_CMD and SD\_DATx should not exceed 1.5 ns.

4. CCARD  $\leq$ 10 pF, (1 card), and CL = CBUS + CHOST + CCARD  $\leq$  40 pF



### Table 55. JTAG AC Timing Specifications (continued)

For recommended operating conditions see Table 3.

| Parameter                                    | Symbol <sup>1</sup> | Min | Max | Unit | Note |
|----------------------------------------------|---------------------|-----|-----|------|------|
| JTAG external clock to output high impedance | t <sub>JTKLDZ</sub> | 4   | 10  | ns   | —    |

Note:

- 1. The symbols used for timing specifications follow the pattern t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>JTDVKH</sub> symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t<sub>JTG</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>JTDXKH</sub> symbolizes JTAG timing (JT) with respect to the time data input signals (D) reaching the invalid state (X) relative to the t<sub>JTG</sub> clock reference (K) going to the high (H) state. Note that in general, the clock reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub>
- 2. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 3. All outputs are measured from the midpoint voltage of the falling/rising edge of t<sub>TCLK</sub> to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load. Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

This figure provides the AC test load for TDO and the boundary-scan outputs.



Figure 26. AC Test Load for the JTAG Interface

This figure provides the JTAG clock input timing diagram.



Figure 27. JTAG Clock Input Timing Diagram

This figure provides the TRST\_B timing diagram.



Figure 28. TRST\_B Timing Diagram



This figure shows the TDM transmit signal timing.



Figure 34. TDM Transmit Signals

This figure provides the AC test load for the TDM.



Figure 35. TDM AC Test Load

# 2.20 High-Speed Serial Interface (HSSI) DC Electrical Characteristics

The device features an HSSI that includes one 4-channel SerDes port (lanes 0 through 3) used for high-speed serial interface applications (PCI Express, CPRI, and SGMII). This section and its subsections describe the common portion of the SerDes DC, including the DC requirements for the SerDes reference clocks and the SerDes data lane transmitter (Tx) and receiver (Rx) reference circuits. The data lane circuit specifications are specific for each supported interface, and they have individual subsections by protocol. The selection of individual data channel functionality is done via the reset configuration word. Specific AC electrical characteristics are defined in Section 2.20.3, "HSSI AC Timing Specifications."



## Table 1. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications (continued)

| Parameter | Symbol | Min | Nom | Мах | Unit | Note |
|-----------|--------|-----|-----|-----|------|------|
| Note:     |        |     |     |     |      |      |

1.  $V_{RX-DIFFp-p} = 2 \times |V_{RX-D+} - V_{RX-D-}|$  Measured at the package pins with a test load of 50  $\Omega$  to GND on each pin.

- 2. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.
- Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.
- 4. Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground.

5.  $V_{RX-IDLE-DET-DIFFp-p} = 2 \times |V_{RX-D+} - V_{RX-D-}|$ . Measured at the package pins of the receiver.

# 2.20.2.3 DC-Level Requirements for CPRI Configurations

This section provide various DC-level requirements for CPRI Configurations. Specifications are valid at the recommended operating conditions listed in Table 3.

| Parameter                   | Symbol              | Min   | Nom | Max  | Unit  | Condition                                                                   |
|-----------------------------|---------------------|-------|-----|------|-------|-----------------------------------------------------------------------------|
| Output voltage              | V <sub>O</sub>      | -0.40 | —   | 2.30 | V     | Voltage relative to COMMON of either signal comprising a differential pair. |
| Differential output voltage | V <sub>DIFFPP</sub> | 800   | —   | 1600 | mVp-p | L[0:3]TECR0[AMP_RED] = 0b000000.                                            |
| Differential resistance     | T_Rd                | 80    | 100 | 120  | Ω     | —                                                                           |

 Table 70. CPRI Transmitter DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps)

Note: LV is XAUI-based.

### Table 71. CPRI Transmitter DC Specifications (LV-II: 1.2288, 2.4576, 3.072, 4.9152, and 6.144 Gbps)

| Parameter                                                              | Symbo<br>I | Min | Nom | Max  | Unit | Condition                       |
|------------------------------------------------------------------------|------------|-----|-----|------|------|---------------------------------|
| Output differential voltage (into floating load Rload = 100 $\Omega$ ) | T_Vdiff    | 800 | —   | 1200 | mV   | L[0:3]TECR0[AMP_RED] = 0x000000 |
| Differential resistance                                                | T_Rd       | 80  | 100 | 120  | Ω    | —                               |

Note: LV-II is CEI-6G-LR-based.

# Table 72. CPRI Receiver DC Specifications (LV: 1.2288, 2.4576 and 3.072 Gbps)

| Parameter                  | Symbol          | Min | Nom | Мах  | Unit  | Condition             |
|----------------------------|-----------------|-----|-----|------|-------|-----------------------|
| Differential input voltage | V <sub>IN</sub> | 200 | —   | 1600 | mVp-p | Measured at receiver. |
| Difference resistance      | R_Rdin          | 80  | —   | 120  | Ω     | —                     |

Note: LV is XAUI-based.



# NOTE

The intended application is a point-to-point interface up to two connectors. The maximum allowed total loss (channel + interconnects + other loss) is 20.4 dB @ 6.144 Gbps.

# 2.20.3.5 SGMII AC Timing Specifications

Table 85 provides the SGMII transmit AC timing specifications. The AC timing specifications do not include REF\_CLK jitter.

## Table 85. SGMII Transmit AC Timing Specifications

For recommended operating conditions, see Table 3.

| Parameter                                                  | Symbol | Min          | Nom | Мах          | Unit   | Condition                              |  |  |  |
|------------------------------------------------------------|--------|--------------|-----|--------------|--------|----------------------------------------|--|--|--|
| Unit interval                                              | UI     | 800 – 100ppm | 800 | 800 + 100ppm | pS     | ± 100ppm                               |  |  |  |
| Deterministic jitter                                       | JD     | —            |     | 0.17         | UI p-p | —                                      |  |  |  |
| Total jitter                                               | JT     | —            | _   | 0.35         | UI p-p | —                                      |  |  |  |
| AC coupling capacitor                                      | СТХ    | 75           | _   | 200          | nF     | All transmitters must be<br>AC-coupled |  |  |  |
| Note: The AC specifications do not include REF_CLK jitter. |        |              |     |              |        |                                        |  |  |  |

Table 86 provides the SGMII receiver AC timing specifications. The AC timing specifications do not include REF\_CLK jitter.

## Table 86. SGMII Receive AC Timing Specifications

For recommended operating conditions, see Table 3.

| Parameter                                          | Symbol | Min          | Nom | Мах               | Unit   | Condition             |
|----------------------------------------------------|--------|--------------|-----|-------------------|--------|-----------------------|
| Unit interval                                      | UI     | 800 – 100ppm | 800 | 800 + 100ppm      | pS     | ± 100ppm              |
| Deterministic jitter tolerance                     | JD     |              |     | 0.37              | UI p-p | Measured at receiver. |
| Combined deterministic and random jitter tolerance | JDR    | _            | —   | 0.55              | UI p-p | Measured at receiver  |
| Total jitter tolerance                             | JT     | _            |     | 0.65              | UI p-p | Measured at receiver  |
| Bit error ratio                                    | BER    | _            |     | 10 <sup>-12</sup> | —      | —                     |

Note: The AC specifications do not include REF\_CLK jitter. The sinusoidal jitter in the total jitter tolerance may have any amplitude and frequency in the unshaded region shown in Figure 44 or Figure 45.



# 2.21.1.2 RF Parallel Interface AC Electrical Characteristics (eSPI2)

# 2.21.1.2.1 RF Parallel AC Data Interface

Table 89 provides the timing specifications for the RF parallel interface.

# Table 89. RF Parallel Interface Timing Specification (3.3 V, 1.8 V)<sup>1,2</sup>

| Parameter         Symbol         Min         Max         Unit         Note           Data_clk (MCLK) clock period $t_{PDCP}$ 16.276<br>(61.44)                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |                    |                          |      |             |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------|--------------------------|------|-------------|------|
| Data_clk (MCLK) clock periodtpDCP16.276<br>(61.44)ns<br>(MHz)Data_clk (MCLK) and fb_clk (FCLK) pulse widthtpDMP45% of tpDCPDelay between MCLK and FCLK at the external RFIC including<br>trace delaytpDCD7.32nsMCLK input to FCLK output delay at the BSC9132 BBICtpDMFD6.32nsControl/Data output valid time wrt FCLK during Tx from the<br>                                                                                                                                                                           | Parameter                                                               | Symbol             | Min                      | Max  | Unit        | Note |
| Data_clk (MCLK) and fb_clk (FCLK) pulse widthtpDMP45% of tpDCPDelay between MCLK and FCLK at the external RFIC including<br>trace delaytpDCD7.32nsMCLK input to FCLK output delay at the BSC9132 BBICtpDMFD6.32nsControl/Data output valid time wrt FCLK during Tx from the<br>BSC9132 BBICtpDOV6.0nsControl/Data hold from FCLK during Tx from the BSC9132 BBICtpDOX1.37ns3Control/Data hold from FCLK during Tx from the BSC9132 BBICtpDIV2.5nsControl/Data hold from FCLK during Tx from the BSC9132 BBICtpDIV0.4ns | Data_clk (MCLK) clock period                                            | t <sub>PDCP</sub>  | 16.276<br>(61.44)        | _    | ns<br>(MHz) | —    |
| Delay between MCLK and FCLK at the external RFIC including<br>trace delaytpDCD-7.32ns-MCLK input to FCLK output delay at the BSC9132 BBICtpDMFD-6.32ns-Control/Data output valid time wrt FCLK during Tx from the<br>BSC9132 BBICtpDOV-6.0ns-Control/Data hold from FCLK during Tx from the BSC9132 BBICtpDOX1.37-ns3Control/Data setup wrt MCLKtpDIV2.5-ns-Control/Data hold wrt MCLKtpDIX0.4-ns-                                                                                                                     | Data_clk (MCLK) and fb_clk (FCLK) pulse width                           | t <sub>PDMP</sub>  | 45% of t <sub>PDCP</sub> | _    | —           | _    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Delay between MCLK and FCLK at the external RFIC including trace delay  | t <sub>PDCD</sub>  | _                        | 7.32 | ns          | _    |
| Control/Data output valid time wrt FCLK during Tx from the<br>BSC9132 BBICt<br>PDOV-6.0ns-Control/Data hold from FCLK during Tx from the BSC9132 BBICt<br>PDOX1.37-ns3Control/Data setup wrt MCLKt<br>PDIV2.5-ns-Control/Data hold wrt MCLKt<br>PDIX0.4-ns-                                                                                                                                                                                                                                                            | MCLK input to FCLK output delay at the BSC9132 BBIC                     | t <sub>PDMFD</sub> | —                        | 6.32 | ns          | _    |
| Control/Data hold from FCLK during Tx from the BSC9132 BBIC       tpDOX       1.37        ns       3         Control/Data setup wrt MCLK       tpDIV       2.5        ns          Control/Data hold wrt MCLK       tpDIX       0.4        ns                                                                                                                                                                                                                                                                           | Control/Data output valid time wrt FCLK during Tx from the BSC9132 BBIC | t <sub>PDOV</sub>  | _                        | 6.0  | ns          | —    |
| Control/Data setup wrt MCLKtpDIV2.5nsControl/Data hold wrt MCLKtpDIX0.4ns                                                                                                                                                                                                                                                                                                                                                                                                                                              | Control/Data hold from FCLK during Tx from the BSC9132 BBIC             | t <sub>PDOX</sub>  | 1.37                     |      | ns          | 3    |
| Control/Data hold wrt MCLK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control/Data setup wrt MCLK                                             | t <sub>PDIV</sub>  | 2.5                      |      | ns          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control/Data hold wrt MCLK                                              | t <sub>PDIX</sub>  | 0.4                      |      | ns          | _    |

Note:

<sup>1</sup> The max trace delay of MCLK from the external RFIC to the BSC9132 BBIC and FCK/TXNRX/ENABLE from BBIC to RFIC = 1 ns each.

<sup>2</sup> The max allowable trace skew between MCLK/FCLK and the respective data/control is 70 ps.

<sup>3</sup> 1.37 ns includes 70 ps trace skew.



#### Hardware Design Considerations

This figure shows the AC test load for the timers.



Figure 54. Timer AC Test Load

# 3 Hardware Design Considerations

This section discusses the hardware design considerations.

# 3.1 Power Architecture System Clocking

This section describes the PLL configuration for the Power Architecture side of the device. Note that the platform clock is identical to the internal core complex bus (CCB) clock.

This device includes 6 PLLs, as follows:

- The platform PLL generates the platform clock from the externally supplied SYSCLK input. The frequency ratio between the platform and SYSCLK is selected using the platform PLL ratio configuration bits as described in Section 3.1.2, "Power Architecture Platform to SYSCLK PLL Ratio."
- The e500 core PLL generates the core clock from the platform clock. The frequency ratio between the e500 core clock and the platform clock is selected using the e500 PLL ratio configuration bits as described in Section 3.1.3, "e500 Core to Platform Clock PLL Ratios." This device has two e500 core PLLs.
- The DDR PLL generates the clocking for the DDR SDRAM controller. The frequency ratio between DDR clock and platform clock is selected using the DDR PLL ratio configuration bits as described in section 3.1.4, "Power Architecture DDR/DDRCLK PLL Ratio."
- The SerDes block has two PLLs.

# 3.1.1 **Power Architecture Clock Ranges**

Table 97 provides the clocking specifications for the processor core and platform.

### Table 97. Power Architecture Processor Clocking Specifications

| Characteristic                   | Maximum Processor Core<br>Frequency |      | Unit | Note    |
|----------------------------------|-------------------------------------|------|------|---------|
|                                  | Min                                 | Max  |      |         |
| e500 core processor frequency    | 400                                 | 1200 | MHz  | 1, 2, 3 |
| Platform CCB bus clock frequency | 267                                 | 600  | MHz  | 1, 4, 5 |



#### Hardware Design Considerations

• Binary value on IFC\_AD[0:2] at power up

These signals must be pulled to the desired values.

In asynchronous mode, the memory bus clock frequency is decoupled from the platform bus frequency.

| Binary Value of IFC_AD[0:2] Signals | Platform: SYSCLK Ratio |
|-------------------------------------|------------------------|
| 000                                 | 4:1                    |
| 001                                 | 5:1                    |
| 010                                 | 6:1                    |
| All Others                          | Reserved               |

Table 99. Power Architecture Platform/SYSCLK Clock Ratios

# 3.1.3 e500 Core to Platform Clock PLL Ratios

The clock ratio between the e500 core0 and the platform clock is determined by the binary value of IFC\_AD[3:5] signals at power up. Table 100 describes the supported ratios. There are no default values for these PLL ratios; these signals must be pulled to the desired values. Note that IFC\_AD[6] must be pulled low if the core frequency is 1001 MHz or below.

| Binary Value of<br>IFC_AD[3:5]Signals | e500 Core0: Platform<br>Ratio |
|---------------------------------------|-------------------------------|
| 010                                   | 1:1                           |
| 011                                   | 1.5:1                         |
| 100                                   | 2:1                           |
| 101                                   | 2.5:1                         |
| 110                                   | 3:1                           |
| All Others                            | Reserved                      |

Table 100. e500 Core0 to Platform Clock Ratios

The clock ratio between the e500 core1 and the platform clock is determined by the binary value of the IFC\_CLE, IFC\_OE\_B, IFC\_WP\_B signals at power up. Table 101 describes the supported ratios. There are no default values for these PLL ratios; these signals must be pulled to the desired values. Note that IFC\_AD[12] must be pulled low if the core frequency is 1001 MHz or below.

| Binary Value of<br>IFC_CLE, IFC_OE_B, IFC_WP_B Signals | e500 Core1: Platform Ratio |
|--------------------------------------------------------|----------------------------|
| 010                                                    | 1:1                        |
| 011                                                    | 1.5:1                      |
| 100                                                    | 2:1                        |
| 101                                                    | 2.5:1                      |
| 110                                                    | 3:1                        |
| All Others                                             | Reserved                   |

| Table 101. e500 Core1 to Platform Clock Ratio |
|-----------------------------------------------|
|-----------------------------------------------|



**Hardware Design Considerations** 

# 3.2.1 DSP Clock Ranges

Table 104 provides the clocking specifications for the SC3850 processor core, MAPLE, and DSP memory.

 Table 104. DSP Processor Clocking Specifications

| DSP Core           | Minimum Frequency | Maximum Frequency | Unit |
|--------------------|-------------------|-------------------|------|
| SC3850 cores       | 800               | 1200              | MHz  |
| MAPLE eVTPE        | 800               | 800               | MHz  |
| DSP DDR Controller | 800               | 1333              | MHz  |

# 3.2.2 DSPCLKIN and SC3850 Core Frequency Options

Table 105 shows the expected frequency options for DSPCLKIN and SC3850 core frequencies.

|           | DSPCLKIN Frequency (MHz) |               |                |      |
|-----------|--------------------------|---------------|----------------|------|
| FLL_12 MF | 66.66                    | 80            | 100            | 133  |
|           |                          | SC3850 Core F | requency (MHz) |      |
| 1         | 66.66                    | 80            | 100            | 133  |
| 6         | 400                      | 480           | 600            | 800  |
| 7.5       | 500                      | 600           | 750            | 1000 |
| 8         | 533                      | 640           | 800            | 1066 |
| 9         | 600                      | 720           | 900            | 1200 |
| 10        | 667                      | 800           | 1000           | —    |
| 12        | 800                      | 960           | 1200           | —    |
| 15        | 1000                     | 1200          | —              | —    |

# Table 105. Options for SC3850 Core0 and Core1 Clocking

# 3.3 Supply Power Default Setting

This device is capable of supporting multiple power supply levels on its I/O supply. Table 106 through Table 110 shows the encoding used to select the voltage level for each I/O supply. When setting the VSEL signals, "1" is selected through a pull-up resistor to OVDD (as seen in Table 1).

| BVDD_VSEL[0:1] | I/O Voltage Level |
|----------------|-------------------|
| 00             | 3.3 V             |
| 01             | 2.5 V             |
| 10             | 1.8 V             |
| 11             | Reserved          |

## Table 106. Default Voltage Level for BV<sub>DD</sub>



| Table 107 | . Default | Voltage | Level | for | CVDD |
|-----------|-----------|---------|-------|-----|------|
|-----------|-----------|---------|-------|-----|------|

| CVDD_VSEL | I/O Voltage Level |
|-----------|-------------------|
| 0         | 3.3 V             |
| 1         | 1.8 V             |

### Table 108. Default Voltage Level for X1V<sub>DD</sub>

| X1VDD_VSEL | I/O Voltage Level |
|------------|-------------------|
| 0          | 3.3 V             |
| 1          | 1.8 V             |

### Table 109. Default Voltage Level for X2V<sub>DD</sub>

| XVDD2_VSEL | I/O Voltage Level |
|------------|-------------------|
| 0          | 3.3 V             |
| 1          | 1.8 V             |

## Table 110. Default Voltage Level for LV<sub>DD</sub>

| LVDD_VSEL | I/O Voltage Level |
|-----------|-------------------|
| 0         | 3.3 V             |
| 1         | 2.5 V             |

# 3.4 PLL Power Supply Design

Each of the PLLs listed above is provided with power through independent power supply pins (AVDD\_PLAT, AVDD\_CORE0, AVDD\_CORE1, AVDD\_D1\_DDR, AVDD\_D2\_DDR, AVDD\_DSP, and AVDD\_MAPLE respectively). The AV<sub>DD</sub> level should always be equivalent to  $V_{DDC}$ , and these voltages must be derived directly from  $V_{DDC}$  through a low frequency filter scheme.

The recommended solution for PLL filtering is to provide independent filter circuits per PLL power supply, as illustrated in Figure 55, one for each of the  $AV_{DD}$  pins. By providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the other is reduced.

This circuit is intended to filter noise in the PLL's resonant frequency range from a 500-kHz to 10-MHz range. It should be built with surface mount capacitors with minimum Effective Series Inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

Each circuit should be placed as close as possible to the specific  $AV_{DD}$  pin being supplied to minimize noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the  $AV_{DD}$  pin, which is on the periphery of 780 ball FCPBGA the footprint, without the inductance of vias.



## **Revision History**

• e500 PowerPC Core Reference Manual (E500CORERM)

# 7 Revision History

# Table 115. Document Revision History

| Rev | Date    | Substantive Change(s)                      |
|-----|---------|--------------------------------------------|
| 1   | 08/2014 | Updated Table 1, "BSC9132 Pinout Listing." |
| 0   | 03/2014 | Initial public release.                    |