



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Active                                                       |
|---------------------------------|--------------------------------------------------------------|
| Core Processor                  | PowerPC e500                                                 |
| Number of Cores/Bus Width       | 2 Core, 32-Bit                                               |
| Speed                           | 1.333GHz                                                     |
| Co-Processors/DSP               | Signal Processing; SC3850, Security; SEC 4.4                 |
| RAM Controllers                 | DDR3, DDR3L                                                  |
| Graphics Acceleration           | No                                                           |
| Display & Interface Controllers | -                                                            |
| Ethernet                        | 10/100/1000Mbps (2)                                          |
| SATA                            | -                                                            |
| USB                             | USB 2.0 (1)                                                  |
| Voltage - I/O                   | 1.8V, 2.5V, 3.3V                                             |
| Operating Temperature           | -40°C ~ 105°C (TA)                                           |
| Security Features               | Boot Security, Cryptography, Random Number Generator         |
| Package / Case                  | 780-BFBGA, FCBGA                                             |
| Supplier Device Package         | 780-FCBGA (23x23)                                            |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=bsc9132nxe7knkb |
|                                 |                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



**Pin Assignments** 

## Table 1. BSC9132 Pinout Listing

| Signal   | Signal Description         | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|----------|----------------------------|---------------|-------------|-----------------|------|
|          | DDR 1 (Power Architecture) |               |             |                 |      |
| D1_MDQ00 | Data                       | F16           | I/O         | G1VDD           | —    |
| D1_MDQ01 | Data                       | G16           | I/O         | G1VDD           | —    |
| D1_MDQ02 | Data                       | G15           | I/O         | G1VDD           | —    |
| D1_MDQ03 | Data                       | E18           | I/O         | G1VDD           | —    |
| D1_MDQ04 | Data                       | E16           | I/O         | G1VDD           | —    |
| D1_MDQ05 | Data                       | F17           | I/O         | G1VDD           | —    |
| D1_MDQ06 | Data                       | G17           | I/O         | G1VDD           | —    |
| D1_MDQ07 | Data                       | F15           | I/O         | G1VDD           | —    |
| D1_MDQ08 | Data                       | C17           | I/O         | G1VDD           | —    |
| D1_MDQ09 | Data                       | A15           | I/O         | G1VDD           | —    |
| D1_MDQ10 | Data                       | B16           | I/O         | G1VDD           | —    |
| D1_MDQ11 | Data                       | C14           | I/O         | G1VDD           | —    |
| D1_MDQ12 | Data                       | A16           | I/O         | G1VDD           | —    |
| D1_MDQ13 | Data                       | C15           | I/O         | G1VDD           | —    |
| D1_MDQ14 | Data                       | D14           | I/O         | G1VDD           | —    |
| D1_MDQ15 | Data                       | D15           | I/O         | G1VDD           | —    |
| D1_MDQ16 | Data                       | G12           | I/O         | G1VDD           | —    |
| D1_MDQ17 | Data                       | F14           | I/O         | G1VDD           | —    |
| D1_MDQ18 | Data                       | G14           | I/O         | G1VDD           | —    |
| D1_MDQ19 | Data                       | E14           | I/O         | G1VDD           | —    |
| D1_MDQ20 | Data                       | E12           | I/O         | G1VDD           | —    |
| D1_MDQ21 | Data                       | E13           | I/O         | G1VDD           | —    |
| D1_MDQ22 | Data                       | G11           | I/O         | G1VDD           | —    |
| D1_MDQ23 | Data                       | G13           | I/O         | G1VDD           | —    |
| D1_MDQ24 | Data                       | D10           | I/O         | G1VDD           | —    |
| D1_MDQ25 | Data                       | D12           | I/O         | G1VDD           | —    |
| D1_MDQ26 | Data                       | C10           | I/O         | G1VDD           | _    |
| D1_MDQ27 | Data                       | D11           | I/O         | G1VDD           | —    |
| D1_MDQ28 | Data                       | A11           | I/O         | G1VDD           | —    |
| D1_MDQ29 | Data                       | B9            | I/O         | G1VDD           | _    |
| D1_MDQ30 | Data                       | C12           | I/O         | G1VDD           | —    |
| D1_MDQ31 | Data                       | C9            | I/O         | G1VDD           | _    |
| D1_MDM00 | Data Mask                  | E17           | 0           | G1VDD           | _    |
| D1_MDM01 | Data Mask                  | A13           | 0           | G1VDD           | _    |
| D1_MDM02 | Data Mask                  | F12           | 0           | G1VDD           | _    |



## Table 1. BSC9132 Pinout Listing (continued)

| Signal                                    | Signal Description       | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|-------------------------------------------|--------------------------|---------------|-------------|-----------------|------|
| ANT2_DIO104/<br>TDM1_RCK/<br>GPIO92       | TDM1 Receive Clock       | K4            | I/O         | X2VDD           | -1   |
| ANT2_DIO105/<br>TDM1_RFS/<br>TIMER08      | TDM1 Receive Frame Sync  | K7            | I/O         | X2VDD           | -1   |
| ANT2_DIO102/<br>TDM1_RXD                  | TDM1 Receive Data        | J7            | I/O         | X2VDD           | -1   |
|                                           | TDM2 over RF3            |               |             |                 | I    |
| ANT3_RX_CLK/<br>TDM2_TCK/<br>GPIO04       | TDM2 Clock               | D1            | I/O         | X2VDD           | -1   |
| ANT3_DIO007/<br>TDM2_TFS                  | TDM2 Transmit Frame Sync | B3            | I/O         | X2VDD           | -1   |
| ANT3_DIO011/<br>TDM2_TXD                  | TDM2 Transmit Data       | B1            | I/O         | X2VDD           | -1   |
| ANT3_DIO008/<br>TDM2_RCK/<br>CKSTP0_OUT_B | TDM2 Receive Clock       | A2            | I/O         | X2VDD           | -1   |
| ANT3_DIO009/<br>TDM2_RFS/<br>CKSTP1_OUT_B | TDM2 Receive Frame Sync  | C3            | I/O         | X2VDD           | -1   |
| ANT3_DIO010/<br>TDM2_RXD                  | TDM2 Receive Data        | D4            | I/O         | X2VDD           | -1   |
|                                           | SerDes                   |               |             |                 |      |
| SD_TX03                                   | Tx Data out              | AE19          | 0           | XPADVDD         | —    |
| SD_TX02                                   | Tx Data out              | AE21          | 0           | XPADVDD         | —    |
| SD_TX01                                   | Tx Data out              | AE23          | 0           | XPADVDD         | —    |
| SD_TX00                                   | Tx Data out              | AE25          | 0           | XPADVDD         | —    |
| SD_TX_B03                                 | Tx Data out, inverted    | AF19          | 0           | XPADVDD         | —    |
| SD_TX_B02                                 | Tx Data out, inverted    | AF21          | 0           | XPADVDD         |      |
| SD_TX_B01                                 | Tx Data out, inverted    | AF23          | 0           | XPADVDD         |      |
| SD_TX_B00                                 | Tx Data out, inverted    | AF25          | 0           | XPADVDD         |      |
| SD_RX03                                   | Rx Data in               | AG18          | I           | XCOREVDD        |      |
| SD_RX02                                   | Rx Data in               | AG20          | I           | XCOREVDD        | —    |
| SD_RX01                                   | Rx Data in               | AG22          | I           | XCOREVDD        | —    |
| SD_RX00                                   | Rx Data in               | AG24          | I           | XCOREVDD        | —    |
| SD_RX_B03                                 | Rx Data in, Inverted     | AH18          | I           | XCOREVDD        | —    |
| SD_RX_B02                                 | Rx Data in, Inverted     | AH20          | I           | XCOREVDD        | —    |
| SD_RX_B01                                 | Rx Data in, Inverted     | AH22          | I           | XCOREVDD        | —    |



| Table 1. BSC | 9132 Pinout | Listing | (continued) |
|--------------|-------------|---------|-------------|
|--------------|-------------|---------|-------------|

| Signal                                                           | Signal Description  | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|------------------------------------------------------------------|---------------------|---------------|-------------|-----------------|------|
| USB_D00/<br>IRQ02/<br><b>GPI053</b>                              | General Purpose I/O | N28           | I/O         | CVDD            | -1   |
| SPI1_MOSI/<br>UART_SIN03/<br>SIM_SVEN/<br>GPI054                 | General Purpose I/O | L22           | I/O         | CVDD            | - 1  |
| SPI1_MISO/<br>UART_CTS_B03/<br>SIM_RST_B/<br><b>GPI055</b>       | General Purpose I/O | M22           | I/O         | CVDD            | -1   |
| UART_SIN01/<br>GPIO57                                            | General Purpose I/O | Y28           | I/O         | OVDD            | -1   |
| ANT2_DIO009/<br>USB_CLK/<br>GPIO59                               | General Purpose I/O | F4            | I/O         | X2VDD           | -    |
| ANT2_DIO010/<br>USB_NXT/<br><b>GPIO60</b>                        | General Purpose I/O | F5            | I/O         | X2VDD           | -    |
| ANT2_DIO011/<br>GPIO61                                           | General Purpose I/O | F3            | I/O         | X2VDD           | - 1  |
| USB_D06/<br>UART_CTS_B02/<br>GPIO62                              | General Purpose I/O | P25           | I/O         | CVDD            | -    |
| USB_D05/<br>UART_RTS_B02/<br>GPIO63                              | General Purpose I/O | R22           | I/O         | CVDD            | -    |
| USB_CLK/<br>UART_SIN02/<br>G <b>PIO69</b> /<br>IRQ11/<br>TIMER03 | General Purpose I/O | R24           | I/O         | CVDD            | -1   |
| USB_D07/<br>UART_SOUT02/<br>GPIO70                               | General Purpose I/O | P28           | I/O         | CVDD            | -1   |
| USB_D02/<br>IIC2_SDA/<br>GPIO71                                  | General Purpose I/O | N26           | I/O         | CVDD            | -    |
| USB_D01/<br>IIC2_SCL/<br>GPI072                                  | General Purpose I/O | N27           | I/O         | CVDD            | -    |
| SDHC_DATA03/<br>DMA_DDONE_B00/<br>CKSTP1_IN_B/<br>GPI077         | General Purpose I/O | E25           | I/O         | BVDD            | -1   |



**Pin Assignments** 

| Table 1. BSC9132 Pinout Listing (continued | ł) |
|--------------------------------------------|----|
|--------------------------------------------|----|

| Signal                                                   | Signal Description     | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|----------------------------------------------------------|------------------------|---------------|-------------|-----------------|------|
| SDHC_WP/<br>DMA_DREQ_B00/<br>CKSTP0_IN_B/<br>GPI078      | General Purpose I/O    | G23           | I/O         | BVDD            | - 1  |
| SDHC_CD/<br>DMA_DACK_B00/<br>MCP1_B/<br>GPI079/<br>IRQ10 | General Purpose I/O    | C25           | I/O         | BVDD            | -1   |
| ANT1_RX_FRAME/<br>GPIO80                                 | General Purpose I/O    | R2            | I/O         | X1VDD           | - 1  |
| ANT1_DIO100/<br>GPIO81                                   | General Purpose I/O    | P4            | I/O         | X1VDD           | - 1  |
| ANT1_DIO101/<br>GPIO82                                   | General Purpose I/O    | R1            | I/O         | X1VDD           | - 1  |
| ANT1_DIO102/<br>GPIO83                                   | General Purpose I/O    | R5            | I/O         | X1VDD           | - 1  |
| ANT1_DIO103/<br>GPIO84                                   | General Purpose I/O    | R7            | I/O         | X1VDD           | - 1  |
| ANT1_DIO104/<br>GPIO85                                   | General Purpose I/O    | T1            | I/O         | X1VDD           | - 1  |
| ANT1_DIO105/<br>GPIO86                                   | General Purpose I/O    | Т3            | I/O         | X1VDD           | - 1  |
| ANT1_DIO106/<br><b>GPI087</b> /<br>IRQ10                 | General Purpose I/O    | T5            | I/O         | X1VDD           |      |
| ANT1_DIO107/<br>G <b>PI088</b> /<br>IRQ11                | General Purpose I/O    | T6            | I/O         | X1VDD           |      |
| ANT2_RX_CLK/<br>GPIO91                                   | General Purpose I/O    | J3            | I/O         | X2VDD           | - 1  |
| ANT2_DIO104/<br>TDM1_RCK/<br>GPI092                      | General Purpose I/O    | К4            | I/O         | X2VDD           |      |
| ANT1_RX_CLK/<br>TSEC_1588_TRIG_IN2/<br>GPIO95            | General Purpose I/O    | P2            | I/O         | X1VDD           | - 1  |
|                                                          | GPO                    |               |             |                 |      |
| ANT4_TX_FRAME/<br>GP006                                  | General Purpose Output | Y3            | 0           | X1VDD           | - 1  |
| IFC_ADDR16/<br>GP008                                     | General Purpose Output | H26           | 0           | BVDD            | - 1  |
| IFC_ADDR17/<br>GP009                                     | General Purpose Output | H25           | 0           | BVDD            | - 1  |



| Table 1. BSC9132 | Pinout Listing | (continued) |
|------------------|----------------|-------------|
|------------------|----------------|-------------|

| Signal                                                       | Signal Description     | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |
|--------------------------------------------------------------|------------------------|---------------|-------------|-----------------|------|
| IFC_ADDR18/<br>GPO10                                         | General Purpose Output | H24           | 0           | BVDD            | - 1  |
| IFC_ADDR19/<br>GPO11                                         | General Purpose Output | H22           | 0           | BVDD            | - 1  |
| IFC_ADDR20/<br>GPO12                                         | General Purpose Output | H21           | 0           | BVDD            | - 1  |
| IFC_ADDR21/<br>GPO13                                         | General Purpose Output | J28           | 0           | BVDD            | - 1  |
| IFC_ADDR22/<br>GPO14                                         | General Purpose Output | J27           | 0           | BVDD            | - 1  |
| IFC_ADDR23/<br>GPO15                                         | General Purpose Output | J25           | 0           | BVDD            | - 1  |
| IFC_ADDR24/<br>GPO16                                         | General Purpose Output | J24           | 0           | BVDD            | - 1  |
| IFC_ADDR25/<br>GPO17                                         | General Purpose Output | J23           | 0           | BVDD            | - 1  |
| IFC_ADDR26/<br>GPO18                                         | General Purpose Output | J22           | 0           | BVDD            | - 1  |
| ANT1_TXNRX/<br>TSEC_1588_PULSE_OUT2/<br>GPO19                | General Purpose Output | P3            | 0           | X1VDD           | -1   |
| ANT1_TX_FRAME/<br>GPO20                                      | General Purpose Output | R4            | 0           | X1VDD           | - 1  |
| UART_RTS_B00/<br>PPS_LED/<br><b>GPO43</b>                    | General Purpose Output | AB26          | 0           | OVDD            | - 1  |
| UART_RTS_B01/<br>SYS_DMA_DONE/<br><b>GPO45</b> /<br>ANT4_AGC | General Purpose Output | Y27           | 0           | OVDD            | - 1  |
| IFC_CLE/<br>GPO48                                            | General Purpose Output | L25           | 0           | BVDD            | - 1  |
| IFC_OE_B/<br>GPO49                                           | General Purpose Output | K23           | 0           | BVDD            | - 1  |
| IFC_RB_B/<br>GPO50                                           | General Purpose Output | K25           | 0           | BVDD            | - 1  |
| IFC_WE_B/<br>GPO52                                           | General Purpose Output | L26           | 0           | BVDD            | - 1  |
| IFC_AVD/<br>GPO54                                            | General Purpose Output | L28           | 0           | BVDD            | - 1  |
| IFC_CS_B00/<br>GP055                                         | General Purpose Output | K21           | 0           | BVDD            | - 1  |
| UART_SOUT01/<br>GPO56                                        | General Purpose Output | W23           | 0           | OVDD            | - 1  |



| Signal | Signal Description | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |  |
|--------|--------------------|---------------|-------------|-----------------|------|--|
| G1VDD  | DDR Supply         | E11           | _           | G1VDD           | _    |  |
| G1VDD  | DDR Supply         | H9            | —           | G1VDD           | —    |  |
| G1VDD  | DDR Supply         | H10           | —           | G1VDD           | _    |  |
| G1VDD  | DDR Supply         | H11           | —           | G1VDD           | _    |  |
| G1VDD  | DDR Supply         | H12           | —           | G1VDD           | —    |  |
| G1VDD  | DDR Supply         | H13           | —           | G1VDD           | —    |  |
| G1VDD  | DDR Supply         | H14           | —           | G1VDD           | —    |  |
| G1VDD  | DDR Supply         | H15           | —           | G1VDD           | —    |  |
| G1VDD  | DDR Supply         | H16           | —           | G1VDD           | —    |  |
| G1VDD  | DDR Supply         | H17           | —           | G1VDD           | _    |  |
| G1VDD  | DDR Supply         | H18           | —           | G1VDD           | —    |  |
| G1VDD  | DDR Supply         | H19           | —           | G1VDD           | _    |  |
| G1VDD  | DDR Supply         | H20           | —           | G1VDD           | _    |  |
| G1VDD  | DDR Supply         | B18           | —           | G1VDD           | _    |  |
| G1VDD  | DDR Supply         | B23           | —           | G1VDD           | _    |  |
| G1VDD  | DDR Supply         | D20           | —           | G1VDD           | —    |  |
| G1VDD  | DDR Supply         | E15           | —           | G1VDD           | —    |  |
| G2VDD  | DDR Supply         | AC3           | —           | G2VDD           | _    |  |
| G2VDD  | DDR Supply         | AC10          | —           | G2VDD           | _    |  |
| G2VDD  | DDR Supply         | AA8           | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AA9           | —           | G2VDD           | _    |  |
| G2VDD  | DDR Supply         | AA10          | —           | G2VDD           | _    |  |
| G2VDD  | DDR Supply         | AA11          | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AA12          | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AA13          | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AA14          | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AA15          | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AD6           | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AD13          | —           | G2VDD           | _    |  |
| G2VDD  | DDR Supply         | AF2           | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AG4           | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AG9           | —           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AG12          | _           | G2VDD           | —    |  |
| G2VDD  | DDR Supply         | AC15          | -           | G2VDD           | —    |  |
| LVDD   | Ethernet Supply    | Y23           | _           | LVDD            | 1 —  |  |
| LVDD   | Ethernet Supply    | AA25          | —           | LVDD            | —    |  |

## Table 1. BSC9132 Pinout Listing (continued)



| Signal   | Signal Description                               | Pin<br>Number | Pin<br>Type | Power<br>Supply | Note |  |
|----------|--------------------------------------------------|---------------|-------------|-----------------|------|--|
| X2VDD    | eSPI2, USB, TDM1, TDM2, RF Parallel<br>Interface | G2            | —           | X2VDD           | —    |  |
| X2VDD    | eSPI2, USB, TDM1, TDM2, RF Parallel<br>Interface | J4            | —           | X2VDD           | -    |  |
| X2VDD    | eSPI2, USB, TDM1, TDM2, RF Parallel<br>Interface | J8            | —           | X2VDD           | —    |  |
| X2VDD    | eSPI2, USB, TDM1, TDM2, RF Parallel<br>Interface | K6            | _           | X2VDD           | —    |  |
| X2VDD    | eSPI2, USB, TDM1, TDM2, RF Parallel<br>Interface | K8            | —           | X2VDD           | —    |  |
| X2VDD    | eSPI2, USB, TDM1, TDM2, RF Parallel<br>Interface | L8            | —           | X2VDD           | —    |  |
| X2VDD    | eSPI2, USB, TDM1, TDM2, RF Parallel<br>Interface | M8            | —           | X2VDD           | -    |  |
| XCOREVDD | SerDes Core Logic Supply                         | AH19          | —           | XCOREVDD        | —    |  |
| XCOREVDD | SerDes Core Logic Supply                         | AH23          | —           | XCOREVDD        | —    |  |
| XCOREVDD | SerDes Core Logic Supply                         | AH27          | —           | XCOREVDD        | —    |  |
| XCOREVDD | SerDes Core Logic Supply                         | AG25          | _           | XCOREVDD        | —    |  |
| XCOREVDD | SerDes Core Logic Supply                         | AF16          | —           | XCOREVDD        | —    |  |
| XCOREVDD | SerDes Core Logic Supply                         | AG17          | _           | XCOREVDD        | _    |  |
| XCOREVDD | SerDes Core Logic Supply                         | AG21          | _           | XCOREVDD        | _    |  |
| XPADVDD  | SerDes Transceiver Supply                        | AA19          | —           | XPADVDD         | —    |  |
| XPADVDD  | SerDes Transceiver Supply                        | AA20          | —           | XPADVDD         | —    |  |
| XPADVDD  | SerDes Transceiver Supply                        | AF18          | —           | XPADVDD         | —    |  |
| XPADVDD  | SerDes Transceiver Supply                        | AE20          | —           | XPADVDD         | —    |  |
| XPADVDD  | SerDes Transceiver Supply                        | AF22          | —           | XPADVDD         | —    |  |
| XPADVDD  | SerDes Transceiver Supply                        | AF26          | —           | XPADVDD         | —    |  |
| XPADVDD  | SerDes Transceiver Supply                        | AE24          | —           | XPADVDD         | —    |  |
|          | Ground                                           |               |             |                 | •    |  |
| VSS      | Platform and Core Ground                         | A9            | —           | _               |      |  |
| VSS      | Platform and Core Ground                         | A26           | _           |                 | _    |  |
| VSS      | Platform and Core Ground                         | B2            | _           |                 | _    |  |
| VSS      | Platform and Core Ground                         | B8            | —           |                 |      |  |
| VSS      | Platform and Core Ground                         | B11           | _           |                 | _    |  |
| VSS      | Platform and Core Ground                         | B15           | _           | —               | —    |  |
| VSS      | Platform and Core Ground                         | B21           | _           | —               | —    |  |
| VSS      | Platform and Core Ground                         | C27           | —           | —               | —    |  |
| VSS      | Platform and Core Ground                         | D17           | —           | —               | —    |  |

## Table 1. BSC9132 Pinout Listing (continued)



| PS#    | Primary pin name | Pin<br>width | Voltage domain           | Recommended value | Current<br>max | Typical<br>current (A) | Max<br>(A) | Note |
|--------|------------------|--------------|--------------------------|-------------------|----------------|------------------------|------------|------|
| SD     | SVDD             | —            | SerDes Core logic supply | 1.0V              | _              | 0.144                  | 0.144      | _    |
|        | XVDD             | —            | SerDes I/O supply        | 1.5V              | _              | 0.058                  | 0.058      | _    |
|        | AVDD_CORE0       | —            | Core 0 PLL supply        | 1.01/             |                |                        |            | —    |
|        | AVDD_CORE1       | —            | Core 1 PLL supply        |                   | _              |                        |            | _    |
|        | AVDD_DSP         | _            | DSP PLL supply           |                   | _              |                        |            | _    |
| Analog | AVDD_PLAT        | —            | Platform PLL supply      |                   | _              | 0.005                  | 0.015      | _    |
| Analog | AVDD_D1_DDR      | —            | DDR PLL supply           | 1.0 V             | _              | 0.005                  | 0.015      | _    |
|        | AVDD_D2_DDR      | _            | DDR PLL supply           |                   | _              |                        |            | _    |
|        | SDAVDD1          | _            | SerDes PLL supply        |                   | _              |                        |            |      |
|        | SDAVDD2          | _            | SerDes PLL supply        |                   | —              |                        |            | _    |

#### Table 10. I/O Power (continued)

### Note:

<sup>1</sup> For DDR typical, it is 40% DIMM utilization.

<sup>2</sup> For DDR max, it is 75% DIMM utilization.

<sup>3</sup> For I/O with different possible voltages, the currents listed above are for the higher voltage.

## 2.7 Input Clocks

This section provides information about the system clock specifications, spread spectrum sources, real time clock specifications, TDM clock specifications, and other input sources.

## 2.7.1 System Clock and DDR Clock Specifications

This table provides the system clock (SYSCLK) and DDR clock (DDRCLK) 3.3 V DC specifications.

### Table 11. SYSCLK/DDRCLK DC Electrical Characteristics

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  = 3.3 V  $\pm$  165 mV

| Parameter                                                | Symbol          | Min | Typical | Мах | Unit | Note |
|----------------------------------------------------------|-----------------|-----|---------|-----|------|------|
| Input high voltage                                       | V <sub>IH</sub> | 2.0 | _       | —   | V    | 1    |
| Input low voltage                                        | V <sub>IL</sub> | —   | _       | 0.8 | V    | 1    |
| Input capacitance                                        | C <sub>IN</sub> | —   | 7       | 15  | pf   | -    |
| Input current ( $V_{IN}$ = 0 V or $V_{IN}$ = $V_{DDC}$ ) | I <sub>IN</sub> | —   | _       | ±50 | μA   | 2    |

#### Note:

1. Note that the min  $V_{IL}$  and max  $V_{IH}$  values are based on the respective min and max  $OV_{IN}$  values found in Table 3.

2. The symbol V<sub>IN</sub>, in this case, represents the OV<sub>IN</sub> symbol referenced in Table 3.

This table provides the system clock (SYSCLK) and DDR clock (DDRCLK) AC timing specifications.

## Table 12. SYSCLK/DDRCLK AC Timing Specifications

#### At recommended operating conditions with $OV_{DD} = 3.3 \text{ V} \pm 165 \text{ mV}$

| Parameter/Condition | Symbol              | Min | Тур | Мах | Unit | Note |
|---------------------|---------------------|-----|-----|-----|------|------|
| SYSCLK frequency    | f <sub>SYSCLK</sub> | 66  | —   | 100 | MHz  | 1, 2 |



## Table 12. SYSCLK/DDRCLK AC Timing Specifications (continued)

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  = 3.3 V  $\pm$  165 mV

| Parameter/Condition                         | Symbol                                            | Min | Тур | Мах   | Unit | Note |
|---------------------------------------------|---------------------------------------------------|-----|-----|-------|------|------|
| SYSCLK cycle time                           | t <sub>SYSCLK</sub>                               | 7.5 | —   | 10    | ns   | 1, 2 |
| DDRCLK frequency                            | f <sub>DDRCLK</sub>                               | 66  | —   | 166   | MHz  | 1    |
| DDRCLK cycle time                           | t <sub>DDRCLK</sub>                               | 6.0 | —   | 15.15 | ns   |      |
| SYSCLK/DDRCLK duty cycle                    | t <sub>KHK</sub> /<br>t <sub>SYSCLK</sub> /DDRCLK | 40  | —   | 60    | %    | 2    |
| SYSCLK/DDRCLK slew rate                     | —                                                 | 1   | —   | 4     | V/ns | 3    |
| SYSCLK/DDRCLK peak period jitter            | —                                                 | —   | —   | ± 150 | ps   | _    |
| SYSCLK/DDRCLK jitter phase noise at –56 dBc | —                                                 | —   | —   | 500   | kHz  | 4    |
| AC Input Swing Limits at 3.3 V $OV_{DD}$    | ΔV <sub>AC</sub>                                  | 1.9 | —   | —     | V    | —    |

#### Note:

1. **Caution:** The relevant clock ratio settings must be chosen such that the resulting SYSCLK frequency do not exceed their respective maximum or minimum operating frequencies.

2. Measured at the rising edge and/or the falling edge at  $OV_{DD}/2$ .

3. Slew rate as measured from ±0.3  $\Delta V_{AC}$  at the center of peak to peak voltage at clock input.

4. Phase noise is calculated as FFT of TIE jitter.

## 2.7.2 DSP Clock (DSPCLKIN) Specifications

This table provides the DSP clock (DSPCLKIN) 3.3 V DC specifications.

## Table 13. DSPCLKIN DC Electrical Characteristics

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  = 3.3 V  $\pm$  165 mV

| Parameter                                                | Symbol          | Min | Typical | Мах | Unit | Note |
|----------------------------------------------------------|-----------------|-----|---------|-----|------|------|
| Input high voltage                                       | V <sub>IH</sub> | 2.0 | _       | —   | V    | 1    |
| Input low voltage                                        | V <sub>IL</sub> | —   | _       | 0.8 | V    | 1    |
| Input capacitance                                        | C <sub>IN</sub> | —   | 7       | 15  | pf   |      |
| Input current ( $V_{IN}$ = 0 V or $V_{IN}$ = $V_{DDC}$ ) | I <sub>IN</sub> | —   | _       | ±50 | μA   | 2    |

Note:

1. Note that the min  $V_{IL}$  and max  $V_{IH}$  values are based on the respective min and max  $OV_{IN}$  values found in Table 3.

2. The symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 3.

This table provides the DSP clock (DSPCLKIN) AC timing specifications.

## Table 14. DSPCLKIN AC Timing Specifications

At recommended operating conditions with  $\text{OV}_{\text{DD}}$  = 3.3 V  $\pm$  165 mV

| Parameter/Condition | Symbol                                 | Min | Typical | Мах | Unit | Note |
|---------------------|----------------------------------------|-----|---------|-----|------|------|
| DSPCLKIN frequency  | fsysclk                                | 66  | —       | 133 | MHz  | 1, 2 |
| DSPCLKIN cycle time | t <sub>SYSCLK</sub>                    | 7.5 | —       | 10  | ns   | 1, 2 |
| DSPCLKIN duty cycle | t <sub>KHK</sub> / t <sub>SYSCLK</sub> | 40  | —       | 60  | %    | 2    |
| DSPCLKIN slew rate  |                                        | 1   | —       | 4   | V/ns | 3    |



## 2.8.1 DDR3 and DDR3L SDRAM Interface DC Electrical Characteristics

This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3 SDRAM.

#### Table 18. DDR3 SDRAM Interface DC Electrical Characteristics

At recommended operating condition with  $GV_{DD} = 1.5 V^1$ 

| Parameter             | Symbol          | Min                    | Мах                    | Unit | Note    |
|-----------------------|-----------------|------------------------|------------------------|------|---------|
| I/O reference voltage | MVREF <i>n</i>  | $0.49 	imes GV_{DD}$   | $0.51 	imes GV_{DD}$   | V    | 2, 3, 4 |
| Input high voltage    | V <sub>IH</sub> | MVREF <i>n</i> + 0.100 | GV <sub>DD</sub>       | V    | 5       |
| Input low voltage     | V <sub>IL</sub> | GND                    | MVREF <i>n</i> - 0.100 | V    | 5       |
| I/O leakage current   | I <sub>OZ</sub> | -50                    | 50                     | μA   | 6       |

Note:

1. GV<sub>DD</sub> is expected to be within 50 mV of the DRAM's voltage supply at all times. The DRAM's and memory controller's voltage supply may or may not be from the same source.

2. MVREF*n* is expected to be equal to 0.5 × GV<sub>DD</sub> and to track GV<sub>DD</sub> DC variations as measured at the receiver. Peak-to-peak noise on MVREF*n* may not exceed ±1% of the DC value.

- 3.  $V_{TT}$  is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be equal to MVREF*n* with a min value of MVREF*n* 0.04 and a max value of MVREF*n* + 0.04.  $V_{TT}$  should track variations in the DC level of MVREF*n*.
- 4. The voltage regulator for MVREF *n* must be able to supply up to 125  $\mu$ A current.
- 5. Input capacitance load for DQ, DQS, and DQS\_B are available in the IBIS models.
- 6. Output leakage is measured with all outputs disabled, 0 V  $\leq$  V<sub>OUT</sub>  $\leq$  GV<sub>DD</sub>.

This table provides the recommended operating conditions for the DDR SDRAM controller when interfacing to DDR3L SDRAM.

## Table 19. DDR3L SDRAM Interface DC Electrical Characteristics

At recommended operating condition with  $GV_{DD} = 1.35 V^1$ 

| Parameter                                        | Symbol          | Min                    | Мах                    | Unit | Note    |
|--------------------------------------------------|-----------------|------------------------|------------------------|------|---------|
| I/O reference voltage                            | MVREF <i>n</i>  | $0.49 	imes GV_{DD}$   | $0.51 	imes GV_{DD}$   | V    | 2, 3, 4 |
| Input high voltage                               | V <sub>IH</sub> | MVREF <i>n</i> + 0.090 | GV <sub>DD</sub>       | V    | 5       |
| Input low voltage                                | V <sub>IL</sub> | GND                    | MVREF <i>n</i> - 0.090 | V    | 5       |
| Output high current (V <sub>OUT</sub> = 0.641 V) | I <sub>ОН</sub> | —                      | -23.3                  | mA   | 6, 7    |
| Output low current (V <sub>OUT</sub> = 0.641 V)  | I <sub>OL</sub> | 23.3                   | —                      | mA   | 6, 7    |
| I/O leakage current                              | I <sub>OZ</sub> | -50                    | 50                     | μA   | 8       |



### Table 19. DDR3L SDRAM Interface DC Electrical Characteristics (continued)

At recommended operating condition with  $GV_{DD} = 1.35 V^1$ 

| Parameter Symbol Min Max Unit No. |
|-----------------------------------|
|-----------------------------------|

#### Note:

- 1. GV<sub>DD</sub> is expected to be within 50 mV of the DRAM's voltage supply at all times. The DRAM's and memory controller's voltage supply may or may not be from the same source.
- 2. MVREF*n* is expected to be equal to  $0.5 \times \text{GV}_{\text{DD}}$  and to track  $\text{GV}_{\text{DD}}$  DC variations as measured at the receiver.Peak-to-peak noise on MVREFn may not exceed the MVREFn DC level by more than ±1% of  $\text{GV}_{\text{DD}}$  (i.e. ±13.5 mV).
- 3.  $V_{TT}$  is not applied directly to the device. It is the supply to which far end signal termination is made, and it is expected to be equal to MVREF*n* with a min value of MVREF*n* 0.04 and a max value of MVREF*n* + 0.04.  $V_{TT}$  should track variations in the DC level of MVREF*n*.
- 4. The voltage regulator for MVREF *n* must be able to supply up to 125  $\mu$ A current.
- 5. Input capacitance load for DQ, DQS, and DQS\_B are available in the IBIS models.
- 6. IOH and IOL are measured at GV<sub>DD</sub> = 1.282 V
- 7. See the IBIS model for the complete output IV curve characteristics.
- 8. Output leakage is measured with all outputs disabled, 0 V  $\leq$  V\_{OUT}  $\leq$  GV\_{DD}

This table provides the DDR controller interface capacitance for DDR3.

### Table 20. DDR3 SDRAM Capacitance

At recommended operating conditions with GV\_DD of 1.5 V  $\pm$  5% for DDR3 or 1.35 V  $\pm$  5% for DDR3L.

| Parameter                                      | Symbol           | Min | Мах | Unit | Note |
|------------------------------------------------|------------------|-----|-----|------|------|
| Input/output capacitance: DQ, DQS, DQS_B       | C <sub>IO</sub>  | 6   | 8   | pF   | _    |
| Delta input/output capacitance: DQ, DQS, DQS_B | C <sub>DIO</sub> |     | 0.5 | pF   |      |

This table provides the current draw characteristics for MVREFn.

### Table 21. Current Draw Characteristics for MVREFn

For recommended operating conditions, seeTable 3.

| Parameter                               | Symbol               | Min | Мах | Unit | Note |
|-----------------------------------------|----------------------|-----|-----|------|------|
| Current draw for DDR3 SDRAM for MVREFn  | I <sub>MVREF</sub> n | —   | 700 | μΑ   | —    |
| Current draw for DDR3L SDRAM for MVREFn | I <sub>MVREF</sub> n | —   | 700 | μΑ   | —    |



## Table 25. DDR3 and DDR3L SDRAM Interface Output AC Timing Specifications (continued)

At recommended operating conditions with  $GV_{DD}$  of 1.5 V ± 5% for DDR3 or 1.35 V ± 5% for DDR3L.

| Parameter                                      | Symbol <sup>1</sup>                         | Min                 | Max                  | Unit | Note |
|------------------------------------------------|---------------------------------------------|---------------------|----------------------|------|------|
| MDQ/MECC/MDM output setup with respect to MDQS | <sup>t</sup> DDKHDS,<br>t <sub>DDKLDS</sub> |                     |                      | ps   | 5    |
| 1333 MHz data rate                             |                                             | 250                 | —                    |      |      |
| 1200 MHz data rate                             |                                             | 275                 | —                    |      |      |
| 1066 MHz data rate                             |                                             | 300                 | —                    |      |      |
| 800 MHz data rate                              |                                             | 375                 | —                    |      |      |
| 667 MHz data rate                              |                                             | 450                 | —                    |      |      |
| MDQ/MECC/MDM output hold with respect to MDQS  | <sup>t</sup> DDKHDX,<br>t <sub>DDKLDX</sub> |                     |                      | ps   | 5    |
| 1333 MHz data rate                             |                                             | 250                 | —                    |      |      |
| 1200 MHz data rate                             |                                             | 275                 | —                    |      |      |
| 1066 MHz data rate                             |                                             | 300                 | —                    |      |      |
| 800 MHz data rate                              |                                             | 375                 | —                    |      |      |
| 667 MHz data rate                              |                                             | 450                 | —                    |      |      |
| MDQS preamble                                  | t <sub>DDKHMP</sub>                         | $0.9 	imes t_{MCK}$ | —                    | ns   | —    |
| MDQS postamble                                 | t <sub>DDKHME</sub>                         | $0.4 	imes t_{MCK}$ | $0.6 \times t_{MCK}$ | ns   | —    |

Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t<sub>DDKHAS</sub> symbolizes DDR timing (DD) for the time t<sub>MCK</sub> memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t<sub>DDKLDX</sub> symbolizes DDR timing (DD) for the time t<sub>MCK</sub> memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
</sub>

- 2. All MCK/MCK\_B and MDQS/MDQS\_B referenced measurements are made from the crossing of the two signals.
- 3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK\_B, MCS\_B, and MDQ/MECC/MDM/MDQS.
- 4. Note that t<sub>DDKHMH</sub> follows the symbol conventions described in note 1. For example, t<sub>DDKHMH</sub> describes the DDR timing (DD) from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). t<sub>DDKHMH</sub> can be modified through control of the MDQS override bits (called WR\_DATA\_DELAY) in the TIMING\_CFG\_2 register. This is typically set to the same delay as in DDR\_SDRAM\_CLK\_CNTL[CLK\_ADJUST]. The timing parameters listed in the table assume that these two parameters have been set to the same adjustment value. See the BSC9132 QorlQ Qonverge Multicore Baseband Processor Reference Manual for a description and explanation of the timing modifications enabled by use of these bits.
- 5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.

## NOTE

For the ADDR/CMD setup and hold specifications in Table 25, it is assumed that the clock control register is set to adjust the memory clocks by ½ applied cycle.



### **Table 35. MII Management DC Electrical Characteristics**

At recommended operating conditions with  $LV_{DD} = 2.5$  V.

| Parameter                                                                | Symbol          | Min       | Max                    | Unit | Note |
|--------------------------------------------------------------------------|-----------------|-----------|------------------------|------|------|
| Input high voltage                                                       | V <sub>IH</sub> | 1.70      | LV <sub>DD</sub> + 0.3 | V    | _    |
| Input low voltage                                                        | V <sub>IL</sub> | -0.3      | 0.70                   | V    |      |
| Input high current (V <sub>IN</sub> = LV <sub>DD</sub> ,)                | I <sub>IH</sub> | _         | 10                     | μA   | 1, 2 |
| Input low current (V <sub>IN</sub> = GND)                                | ۱ <sub>IL</sub> | -15       | -                      | μA   |      |
| Output high voltage<br>( $LV_{DD} = Min, IOH = -1.0 mA$ )                | V <sub>OH</sub> | 2.00      | LV <sub>DD</sub> + 0.3 | V    |      |
| Output low voltage<br>(LV <sub>DD</sub> = Min, I <sub>OL</sub> = 1.0 mA) | V <sub>OL</sub> | GND – 0.3 | 0.40                   | V    |      |

Note:

1. EC1\_MDC and EC1\_MDIO operate on LV<sub>DD</sub>.

2. Note that the symbol V<sub>IN</sub>, in this case, represents the LV<sub>IN</sub> and TV<sub>IN</sub> symbols referenced in Table 3.

## 2.11.2.2 MII Management AC Electrical Specifications

This table provides the MII management AC timing specifications.

### Table 36. MII Management AC Timing Specifications

| Parameter                  | Symbol <sup>1</sup> | Min                            | Тур | Мах                            | Unit | Note |
|----------------------------|---------------------|--------------------------------|-----|--------------------------------|------|------|
| MDC frequency              | f <sub>MDC</sub>    | —                              | 2.5 | _                              | MHz  | 2    |
| MDC period                 | t <sub>MDC</sub>    | —                              | 400 | —                              | ns   | —    |
| MDC clock pulse width high | t <sub>MDCH</sub>   | 32                             | -   | —                              | ns   | —    |
| MDC to MDIO delay          | t <sub>MDKHDX</sub> | (16*t <sub>plb_clk</sub> ) – 3 |     | (16*t <sub>plb_clk</sub> ) + 3 | ns   | 3, 4 |
| MDIO to MDC setup time     | t <sub>MDDVKH</sub> | 5                              |     | _                              | ns   | _    |
| MDIO to MDC hold time      | t <sub>MDDXKH</sub> | 0                              |     |                                | ns   | _    |

#### Note:

The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>MDKHDX</sub> symbolizes management data timing (MD) for the time t<sub>MDC</sub> from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t<sub>MDDVKH</sub> symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MDC</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

- 2. This parameter is dependent on the platform clock frequency (MIIMCFG [MgmtClk] field determines the clock frequency of the MgmtClk Clock EC\_MDC).
- 3. This parameter is dependent on the platform clock frequency. The delay is equal to 16 platform clock periods  $\pm 3$  ns. For example, with a platform clock of 333 MHz, the min/max delay is 48 ns  $\pm 3$  ns. Similarly, if the platform clock is 400 MHz, the min/max delay is 40 ns  $\pm 3$  ns.
- 4. t<sub>plb clk</sub> is the platform (CCB) clock.



## Table 42. USB General Timing Parameters (ULPI Mode) (continued)

For recommended operating conditions, see Table 3.

| Farameter Symbol Will Wax Ont Note | Parameter | Symbol <sup>1</sup> | Min | Мах | Unit | Note |
|------------------------------------|-----------|---------------------|-----|-----|------|------|
|------------------------------------|-----------|---------------------|-----|-----|------|------|

#### Note:

The symbols for timing specifications follow the pattern of t<sub>(First two letters of functional block)(signal)(state) (reference)(state) for inputs and t<sub>(First two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>USIXKH</sub> symbolizes USB timing (US) for the input (I) to go invalid (X) with respect to the time the USB clock reference (K) goes high (H). Also, t<sub>USKHOX</sub> symbolizes USB timing (US) for the USB timing (US) for the USB clock reference (K) to go high (H) with respect to the output (O) going invalid (X) or output hold time.
</sub>

- 2. All timings are in reference to USB clock.
- 3. All signals are measured from  $BV_{DD}/2$  of the rising edge of the USB clock to  $0.4 \times OV_{DD}$  of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. For active/float timing measurements, the high impedance or off state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

Figure 19 and Figure 20 provide the USB AC test load and signals, respectively.





Figure 19. USB AC Test Load



## Table 50. PIC DC Electrical Characteristics (3.3 V) (continued)

For recommended operating conditions, see Table 3.

| Parameter                                                                                           | Symbol          | Min | Мах | Unit | Note |
|-----------------------------------------------------------------------------------------------------|-----------------|-----|-----|------|------|
| Output low voltage ( $CV_{DD}/OV_{DD}/BV_{DD}/X1V_{DD}/X2V_{DD} = min$ ,<br>I <sub>OL</sub> = 2 mA) | V <sub>OL</sub> |     | 0.4 | V    | —    |

#### Note:

1. Note that the min  $V_{IL}$  and max  $V_{IH}$  values are based on the respective min and max  $CV_{IN}/OV_{IN}/BV_{IN}/X1V_{IN}/X2V_{IN}$  values found in Table 3.

2. Note that the symbol  $CV_{IN}/OV_{IN}/BV_{IN}/X1V_{IN}/X2V_{IN}$  represents the input voltage of the supply. See Table 3.

This table provides the DC electrical characteristics for the PIC interface when operating at  $LV_{DD}/OV_{DD}/BV_{DD}/CV_{DD} = 2.5 V$ .

#### Table 51. PIC DC Electrical Characteristics (2.5 V)

For recommended operating conditions, see Table 3.

| Parameter                                                                                                                                                          | Symbol          | Min | Max | Unit | Note |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|-----|------|------|
| Input high voltage                                                                                                                                                 | V <sub>IH</sub> | 1.7 | _   | V    | 1    |
| Input low voltage                                                                                                                                                  | V <sub>IL</sub> | _   | 0.7 | V    | 1    |
| Input current $(CV_{IN}/OV_{IN}/BV_{IN}/X1V_{IN}/X2V_{IN} = 0V \text{ or } CV_{IN}/OV_{IN}/BV_{IN}/X1V_{IN}/X2V_{IN} = CV_{DD}/OV_{DD}/BV_{DD}/X1V_{DD}/X2V_{DD})$ | I <sub>IN</sub> |     | ±40 | μA   | 2    |
| Output high voltage ( $CV_{DD}/OV_{DD}/BV_{DD}/X1V_{DD}/X2V_{DD}$ = min, $I_{OH}$ = -2 mA)                                                                         | V <sub>OH</sub> | 2.0 | —   | V    | _    |
| Output low voltage (CV <sub>DD</sub> /OV <sub>DD</sub> /BV <sub>DD</sub> /X1V <sub>DD</sub> /X2V <sub>DD</sub> = min, $I_{OL} = 2 \text{ mA}$ )                    | V <sub>OL</sub> |     | 0.4 | V    |      |

Note:

1. Note that the min  $V_{IL}$  and max  $V_{IH}$  values are based on the respective min and max  $CV_{IN}/OV_{IN}/BV_{IN}/X1V_{IN}/X2V_{IN}$  values found in Table 3.

2. Note that the symbol  $CV_{IN}/OV_{IN}/BV_{IN}/X1V_{IN}/X2V_{IN}$  represents the input voltage of the supply. See Table 3.

This table provides the DC electrical characteristics for the PIC interface when operating at  $LV_{DD}/OV_{DD}/BV_{DD}/CV_{DD} = 1.8 V$ .

Table 52. PIC DC Electrical Characteristics (1.8 V)

For recommended operating conditions, see Table 3.

| Parameter                                                                                                                                                          | Symbol          | Min  | Max | Unit | Note |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-----|------|------|
| Input high voltage                                                                                                                                                 | V <sub>IH</sub> | 1.25 | _   | V    | 1    |
| Input low voltage                                                                                                                                                  | V <sub>IL</sub> | _    | 0.6 | V    | 1    |
| Input current $(CV_{IN}/OV_{IN}/BV_{IN}/X1V_{IN}/X2V_{IN} = 0V \text{ or } CV_{IN}/OV_{IN}/BV_{IN}/X1V_{IN}/X2V_{IN} = CV_{DD}/OV_{DD}/BV_{DD}/X1V_{DD}/X2V_{DD})$ | I <sub>IN</sub> |      | ±40 | μΑ   | 2    |
| Output high voltage ( $CV_{DD}/OV_{DD}/BV_{DD}/X1V_{DD}/X2V_{DD} = min$ , $I_{OH} = -2 mA$ )                                                                       | V <sub>OH</sub> | 1.35 | _   | V    | _    |



## Table 58. I<sup>2</sup>C AC Electrical Specifications (continued)

For recommended operating conditions see Table 3. All values refer to V<sub>IH</sub> (min) and V<sub>IL</sub> (max) levels (see Table 56)

| Parameter Sym | nbol <sup>1</sup> Min | Max | Unit | Note |
|---------------|-----------------------|-----|------|------|
|---------------|-----------------------|-----|------|------|

#### Note:

- 1. The symbols used for timing specifications herein follow the pattern t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)</sub> for outputs. For example, t<sub>I2DVKH</sub> symbolizes I<sup>2</sup>C timing (I2) with respect to the time data input signals (D) reaching the valid state (V) relative to the t<sub>I2C</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>I2SXKL</sub> symbolizes I<sup>2</sup>C timing (I2) for the time that the data with respect to the START condition (S) went invalid (X) relative to the t<sub>I2C</sub> clock reference (K) going to the low (L) state or hold time. Also, t<sub>I2PVKH</sub> symbolizes I<sup>2</sup>C timing (I2) for the time that the data with respect to the STOP condition (P) reaches the valid state (V) relative to the t<sub>I2C</sub> clock reference (K) going to the high (H) state or setup time.</sub>
- The requirements for I<sup>2</sup>C frequency calculation must be followed. See Freescale application note AN2919, "Determining the I2C Frequency Divider Ratio for SCL."
- 3. As a transmitter, the device provides a delay time of at least 300 ns for the SDA signal (referred to as the V<sub>IHmin</sub> of the SCL signal) to bridge the undefined region of the falling edge of SCL to avoid unintended generation of a START or STOP condition. When the device acts as the I<sup>2</sup>C bus master while transmitting, it drives both SCL and SDA. As long as the load on SCL and SDA are balanced, the device does not generate an unintended START or STOP condition. Therefore, the 300 ns SDA output delay time is not a concern. If under some rare condition, the 300 ns SDA output delay time is required for the device as transmitter, application note AN2919 referred to in note 4 below is recommended.
- 4. The maximum t<sub>I2OVKL</sub> has only to be met if the device does not stretch the LOW period (t<sub>I2CL</sub>) of the SCL signal.

This figure provides the AC test load for the  $I^2C$ .



Figure 30. I<sup>2</sup>C AC Test Load

This figure shows the AC timing diagram for the I<sup>2</sup>C bus.



Figure 31. I<sup>2</sup>C Bus AC Timing Diagram

## 2.18 GPIO

This section describes the DC and AC electrical specifications for the GPIO interface.

To meet the input amplitude requirement, the reference clock inputs may need to be DC- or AC-coupled externally. For the best noise performance, the reference of the clock could be DC- or AC-coupled into the unused phase (SD\_REF\_CLK[1–2]\_B) through the same source impedance as the clock input (SD\_REF\_CLK[1–2]) in use.



## Figure 41. Single-Ended Reference Clock Input DC Requirements

## 2.20.2.2 DC-Level Requirements for PCI Express Configurations

The DC-level requirements for PCI Express implementations have separate requirements for the Tx and Rx lines. The BSC9132 supports a 2.5 Gbps and a 5 Gbps PCI Express interface defined by the *PCI Express Base Specification, Revision 2.0*. The transmitter specifications for 2.5 Gbps are defined in Table 67 and the receiver specifications are defined in Table 68. For 5 Gbps, the transmitter specifications are defined in Table 69 and the receiver specifications are defined in Table 1.

Note that specifications are valid at the recommended operating conditions listed in Table 3.

| Parameter                                            | Symbol                       | Min | Nom  | Max  | Unit | Condition                                                                                                                                                                                                                                              |
|------------------------------------------------------|------------------------------|-----|------|------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Differential peak-to-peak output voltage swing       | V <sub>TX-DIFFp-p</sub>      | 800 | 1000 | 1200 | mV   | $V_{TX-DIFFp-p} = 2 \times IV_{TX-D+} - V_{TX-D-}I$ ,<br>Measured at the package pins with a<br>test load of 50 $\Omega$ to GND on each pin.                                                                                                           |
| De-emphasized differential<br>output voltage (ratio) | V <sub>TX-DE-RATI</sub><br>O | 3.0 | 3.5  | 4.0  | dB   | Ratio of the $V_{TX-DIFFp-p}$ of the second<br>and following bits after a transition<br>divided by the $V_{TX-DIFFp-p}$ of the first<br>bit after a transition.<br>Measured at the package pins with a<br>test load of 50 $\Omega$ to GND on each pin. |
| DC differential Tx impedance                         | Z <sub>TX-DIFF-DC</sub>      | 80  | 100  | 120  | Ω    | Tx DC differential mode low<br>Impedance                                                                                                                                                                                                               |
| DC single-ended TX impedance                         | Z <sub>TX-DC</sub>           | 40  | 50   | 60   | Ω    | Required Tx D+ as well as D– DC<br>Impedance during all states                                                                                                                                                                                         |

Table 67. PCI Express (2.5 Gbps) Differential Transmitter (Tx) Output DC Specifications

### Table 68. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input DC Specifications

| Parameter                               | Symbol                           | Min | Nom  | Max  | Unit | Note |
|-----------------------------------------|----------------------------------|-----|------|------|------|------|
| Differential input peak-to-peak voltage | V <sub>RX-DIFFp-p</sub>          | 120 | 1000 | 1200 | mV   | 1    |
| DC differential Input Impedance         | Z <sub>RX-DIFF-DC</sub>          | 80  | 100  | 120  | Ω    | 2    |
| DC input impedance                      | Z <sub>RX-DC</sub>               | 40  | 50   | 60   | Ω    | 3    |
| Powered down DC input impedance         | Z <sub>RX-HIGH-IMP-DC</sub>      | 50  | _    | _    | KΩ   | 4    |
| Electrical idle detect threshold        | V <sub>RX-IDLE-DET-DIFFp-p</sub> | 65  | _    | 175  | mV   | 5    |



## Table 77. PCI Express 2.0 (2.5 Gbps) Differential Transmitter (Tx) Output AC Specifications (continued)

For recommended operating conditions, see Table 3.

| Parameter                                                                      | Symbol                                        | Min  | Nom | Max   | Unit | Comments                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------|-----------------------------------------------|------|-----|-------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tx eye width                                                                   | T <sub>TX-EYE</sub>                           | 0.75 | _   | _     | UI   | The maximum transmitter jitter can be<br>derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} =$<br>0.25 UI. This does not include spread<br>spectrum or REF_CLK jitter. It includes<br>device random jitter at 10 <sup>-12</sup> . See notes 2<br>and 3.                                                                                                                                         |
| Time between the jitter<br>median and maximum<br>deviation from the<br>median. | T <sub>TX</sub> -EYE-MEDIAN-<br>to-MAX-JITTER |      |     | 0.125 | UI   | Jitter is defined as the measurement<br>variation of the crossing points ( $V_{TX-DIFFp-p}$<br>= 0 V) in relation to a recovered Tx UI. A<br>recovered Tx UI is calculated over 3500<br>consecutive unit intervals of sample data.<br>Jitter is measured using all edges of the 250<br>consecutive UI in the center of the 3500 UI<br>used for calculating the Tx UI. See notes 2<br>and 3. |
| AC coupling capacitor                                                          | C <sub>TX</sub>                               | 75   | _   | 200   | nF   | All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4.                                                                                                                                                                                                                                           |

## Note:

- <sup>1</sup> No test load is necessarily associated with this value.
- <sup>2</sup> Specified at the measurement point into a timing and voltage test load as shown in Figure 47 and measured over any 250 consecutive Tx UIs.
- <sup>3</sup> A  $T_{TX-EYE} = 0.75$  UI provides for a total sum of deterministic and random jitter budget of  $T_{TX-NAX-JITTER} = 0.25$  UI for the transmitter collected over any 250 consecutive Tx UIs. The  $T_{TX-EYE-MEDIAN-to-MAX-JITTER}$  median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.
- <sup>4</sup> The DSP device SerDes transmitter does not have a built-in C<sub>TX</sub>. An external AC coupling capacitor is required.

### Table 78. PCI Express 2.0 (2.5 Gbps) Differential Receiver (Rx) Input AC Specifications

| Parameter                                                                              | Symbol                                       | Min    | Nom    | Max    | Unit | Comments                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------------------------|----------------------------------------------|--------|--------|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit Interval                                                                          | UI                                           | 399.88 | 400.00 | 400.12 | ps   | Each UI is 400 ps $\pm$ 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1.                                                                                                                                                                                                                                                                              |
| Minimum receiver eye<br>width                                                          | T <sub>RX-EYE</sub>                          | 0.4    | _      | _      | UI   | The maximum interconnect media and Transmitter jitter that can be tolerated by the Receiver can be derived as $T_{RX-MAX-JITTER} = 1 - T_{RX-EYE} = 0.6$ UI. See notes 2 and 3.                                                                                                                                                                                                              |
| Maximum time between<br>the jitter median and<br>maximum deviation from<br>the median. | T <sub>RX-EYE-MEDIAN-</sub><br>to-MAX-JITTER |        |        | 0.3    | UI   | Jitter is defined as the measurement variation of<br>the crossing points ( $V_{RX-DIFFp-p} = 0$ V) in relation to<br>a recovered Tx UI. A recovered Tx UI is calculated<br>over 3500 consecutive unit intervals of sample<br>data. Jitter is measured using all edges of the 250<br>consecutive UI in the center of the 3500 UI used for<br>calculating the Tx UI.<br>See notes 2, 3, and 4. |



## Table 78. PCI Express 2.0 (2.5 Gbps) Differential Receiver (Rx) Input AC Specifications (continued)

| Parameter | Symbol | Min | Nom | Мах | Unit | Comments |
|-----------|--------|-----|-----|-----|------|----------|
|-----------|--------|-----|-----|-----|------|----------|

#### Note:

<sup>1</sup> No test load is necessarily associated with this value.

- <sup>2</sup> Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 47 should be used as the Rx device when taking measurements. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as a reference for the eye diagram.
- <sup>3</sup> A T<sub>RX-EYE</sub> = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks to the Rx and Tx are not derived from the same reference clock, the Tx UI recovered from 3500 consecutive UI must be used as the reference for the eye diagram.
- <sup>4</sup> It is recommended that the recovered Tx UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated data.

#### Unit Parameter Symbol Min Nom Max Comments Unit Interval UI 200.06 Each UI is 400 ps ± 300 ppm. UI does not 199.94 200.00 ps account for spread spectrum clock dictated variations. See note 1. UI The maximum Transmitter jitter can be Minimum Tx eye width T<sub>TX-FYF</sub> 0.75 derived as: $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} = 0.25$ UI. See notes 2 and 3. Tx RMS deterministic T<sub>TX-HF-DJ-DD</sub> 0.15 ps jitter > 1.5 MHz Tx RMS deterministic T<sub>TX-LF-RMS</sub> Reference input clock RMS jitter 3.0 ps jitter < 1.5 MHz (< 1.5 MHz) at pin < 1 ps $C_{\mathsf{TX}}$ All transmitters must be AC coupled. The AC AC coupling capacitor 75 200 nF coupling is required either within the media or within the transmitting component itself. See note 4.

## Table 79. PCI Express 2.0 (5.0 Gbps) Differential Transmitter (Tx) Output AC Specifications

#### Note:

<sup>1</sup> No test load is necessarily associated with this value.

- <sup>2</sup> Specified at the measurement point into a timing and voltage test load as shown in Figure 47 and measured over any 250 consecutive Tx UIs.
- <sup>3</sup> A  $T_{TX-EYE} = 0.75$  UI provides for a total sum of deterministic and random jitter budget of  $T_{TX-MAX-JITTER} = 0.25$  UI for the Transmitter collected over any 250 consecutive Tx UIs. The  $T_{TX-EYE-MEDIAN-to-MAX-JITTER}$  median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.

<sup>4</sup> The DSP device SerDes transmitter does not have a built-in C<sub>TX</sub>. An external AC coupling capacitor is required.





## 3.13.2 Temperature Diode

The chip has a temperature diode on the microprocessor that can be used in conjunction with other system temperature monitoring devices (such as Analog Devices, ADT7461A<sup>TM</sup>). These devices use the negative temperature coefficient of a diode operated at a constant current to determine the temperature of the microprocessor and its environment.

The following are the specifications of the chip's on-board temperature diode:

Operating range: 10-230µA

Ideality factor over  $13.5 - 220 \ \mu A$ :  $n = 1.007 \pm 0.008$ 

## 3.14 Security Fuse Processor

This device implements the QorIQ platform's Trust Architecture, supporting capabilities such as secure boot. Use of the Trust Architecture features is dependent on programming fuses in the Security Fuse Processor (SFP). The details of the Trust Architecture and SFP can be found in the *BSC9132 QorIQ Qonverge Multicore Baseband Processor Reference Manual*.

In order to program SFP fuses, the user is required to supply 1.5 V to the  $POV_{DD1}$  pin per Section 2.2, "Power Sequencing."  $POV_{DD1}$  should only be powered for the duration of the fuse programming cycle, with a per device limit of one fuse programming cycle. All other times  $POV_{DD1}$  should be connected to GND. The sequencing requirements for raising and lowering  $POV_{DD1}$  are shown in Figure 8. To ensure device reliability, fuse programming must be performed within the recommended fuse programming temperature range per Table 3.

Users not implementing the QorIQ platform's Trust Architecture features are not required to program fuses and should connect  $POV_{DD1}$  to GND.

# 4 Package Information

The following section describes the detailed content and mechanical description of the package.

## 4.1 Package Parameters

The package parameters are provided in the following list. The package type is plastic ball grid array (FC-PBGA).

| Package outline         | 23 mm × 23 mm |
|-------------------------|---------------|
| Interconnects           | 780           |
| Pitch                   | 0.8 mm        |
| Ball diameter (typical) | 0.4 mm        |