
E·XF kenesas Electronics America Inc - <u>UPD78F9212FH-2A2-E1-A Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f9212fh-2a2-e1-a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ELIMINARY PRODUCT INFORMATION

MOS INTEGRATED CIRCUIT μ PD78F9210FH, 78F9211FH, 78F9212FH

8-BIT SINGLE-CHIP MICROCONTROLLER

The μ78F9210FH, 78F9211FH, and 78F9212FH are products of the 78K0S/KY1+ in the 78K/0S series. These microcontrollers feature Single-voltage and Self-programming Flash memory and peripherals that is suitable for your application.

The functions of these microcontrollers are described in the following user's manuals. Refer to these manuals when designing a system based on any of these microcontrollers.

78K0S/KY1+ User's Manual

: U16994E

78K/0S Series User's Manual, Instruction : U11047E

FEATURES

- 78K/0S CPU core, 8-bit CISC architecture
- ROM and RAM capacities

Item	Program memory	Data memory
Product name	(Flash EEPROM)	(High-speed RAM)
μPD78F9210FH	1 Kbytes	128 bytes
μPD78F9211FH	2 Kbytes	128 bytes
μPD78F9212FH	4 Kbytes	128 bytes

• Minimum instruction execution time

Minimum instruction execution time selectable from high speed (0.2 μ s) to low speed (3.2 μ s) (with CPU clock of 10 MHz)

System clock

High-speed internal oscillator: 8 MHz (TYP.) Ceramic/crystal oscillator: 1 MHz to 10 MHz

WDT clock

Low-speed internal oscillator: 240 kHz (TYP.)

Interrupt

External: 2 sources Internal: 5 sources

• I/O port: 14

CMOS I/O: 13

CMOS Input: 1 • On-chip A/D Converter

10-bit resolution A/D converter: 4 ch (2.7 to 5.5 V)

- Timer/Counter
 16-bit Timer: 1 ch
 8-bit Timer: 1 ch
- Watchdog Timer: 1 ch
- Operation Voltage: 2.0 V to 5.5 V
- Package: 16-pin WLCSP (1.93 x 2.24 x thickness of 0.4 mm, 0.5 mm pitch)

APPLICATION FIELDS

Household electrical appliances, Toys, Mobile device

The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production or NEC Electronics Corporation, at its own discretion, may withdraw the product prior to its production. Not all products and/or types are available in every country. Please check with an NEC Electronics sales representative for availability and additional information.

OVERVIEW OF FUNCTIONS

	Item	μPD78F9210FH	μPD78F9211FH	μPD78F9212FH			
Internal memory	Flash memory	1 KB	2 KB	4 KB			
	High-speed RAM ^{Note 1}	128 bytes					
Memory space		64 KB					
X1 input clock (oscillation frequency)		Crystal/ceramic oscillation	n, external system clock in 5.5 V	put			
Internal oscillation	High-speed	Internal oscillation: 8 MH	z (TYP.)				
clock	Low-speed	Internal oscillation: 240 kHz (TYP.)					
General-purpose re	gisters	8 bits \times 8 registers					
Instruction execution	n time	0.2 µs/0.4 µs/0.8 µs/1.6	<i>u</i> s/3.2 μ s/ (X1 input clock:	@ fx = 10 MHz operation)			
I/O ports		Total: CMOS I/O: CMOS Input	CMOS I/O: 13				
Timers		 16-bit timer/event court 8-bit timer(Timer H1): Watchdog timer: 					
	Timer outputs	2 (PWM output: 1)					
A/D converter		10-bit resolution \times 4 channels					
Vectored interrupt	External	2					
sources	Internal	5					
Reset		 Reset using RESET pin Internal reset by watchdog timer Internal reset by power-on-clear Internal reset by low-voltage detector 					
Power supply voltage	ge	$V_{\text{DD}} = 2.0 \text{ to } 5.5 \text{ V}^{\text{Note}}$					
Operating ambient	temperature	$T_A = -40 \text{ to } +85^{\circ}\text{C}$	$T_{A} = -40 \text{ to } +85^{\circ}\text{C}$				
Package		16-pin WLCSP	16-pin WLCSP				

Note Use this product in a voltage range of 2.2 to 5.5 V because the detection voltage (V_{POC}) of the power-onclear(POC) circuit is 2.1 V \pm 0.1 V.

3. PIN FUNCTIONS

3.1 Port Pins

Pin Name	I/O		After Reset	Alternate-Function Pin		
P20	I/O	Port 2.		Input	ANI0/TI000/TOH1	
P21		4-bit I/O port. Can be set to input or output mode in 1-bit units.			ANI1/TI010/ TO00/INTP0	
P22 ^{Note}		software.	tor can be connected by setting		X2/ANI2 ^{Note}	
P23 ^{Note}					X1/ANI3 ^{Note}	
P32	I/O	Port 3	Can be set to input or output mode in 1-bit units. An on-chip pull-up resistor can be connected by setting software.	Input	INTP1	
P34 ^{Note}	Input		Input only	Input	RESET	
P40 to P47	I/O	Port 4. 8-bit I/O port. Can be set to input or output mode in 1-bit units. An on-chip pull-up resistor can be connected by setting software.		Input	-	

Note For the setting method for pin functions, see **5. OPTION BYTE**.

Caution The P22/X2/ANI2 and P23/X1/ANI3 pins are pulled down during reset.

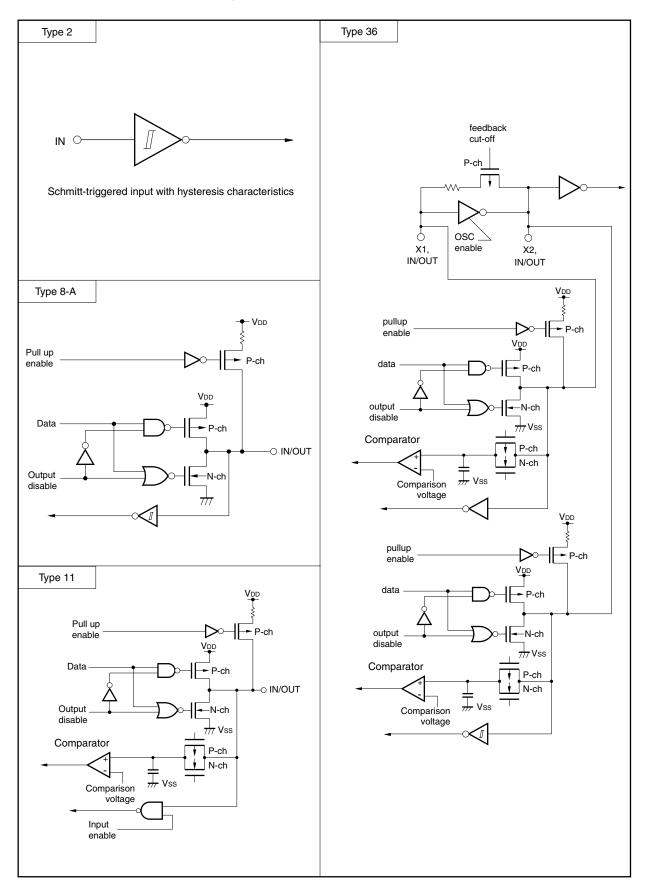
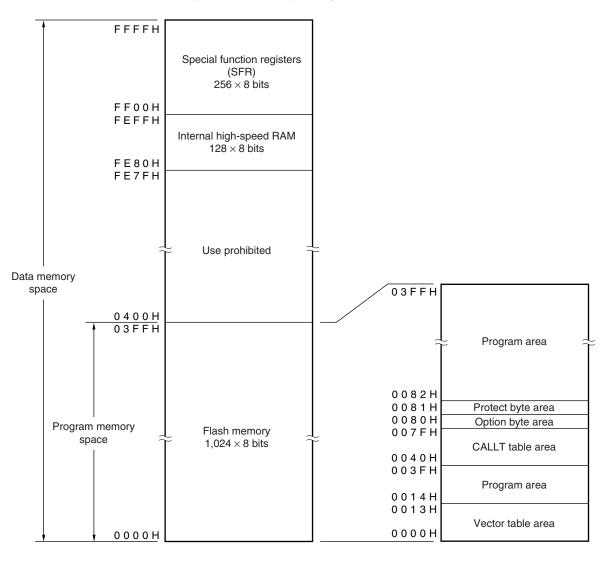



Figure 3-1. Pin Input/Output Circuits

4. MEMORY SPACE

4.1 Memory Space

Products in the μ PD78F9210FH, 78F9211FH, and 78F9212FH can access up to 64 Kbytes of memory space. Figures 4-1 to 4-3 show the memory maps.

Figure 4-1. Memory Map (µPD78F9210FH)

Remark The option byte and protect byte are 1 byte each.

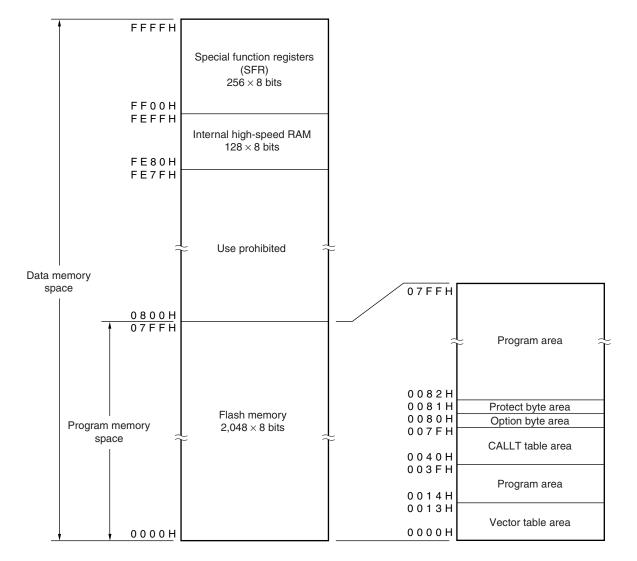
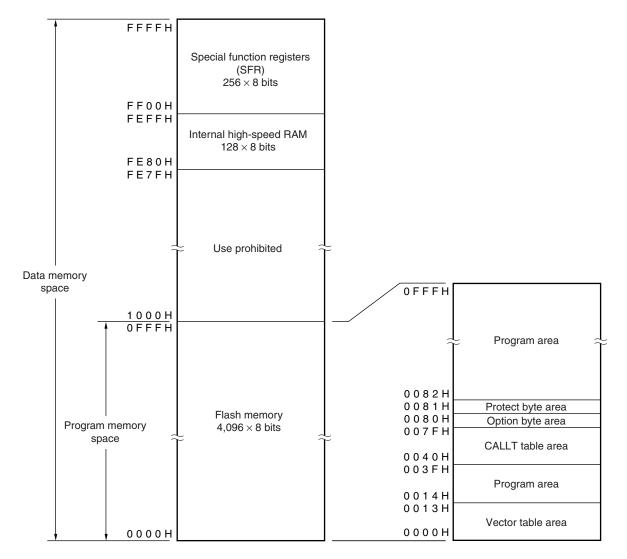



Figure 4-2. Memory Map (µPD78F9211FH)

Remark The option byte and protect byte are 1 byte each.

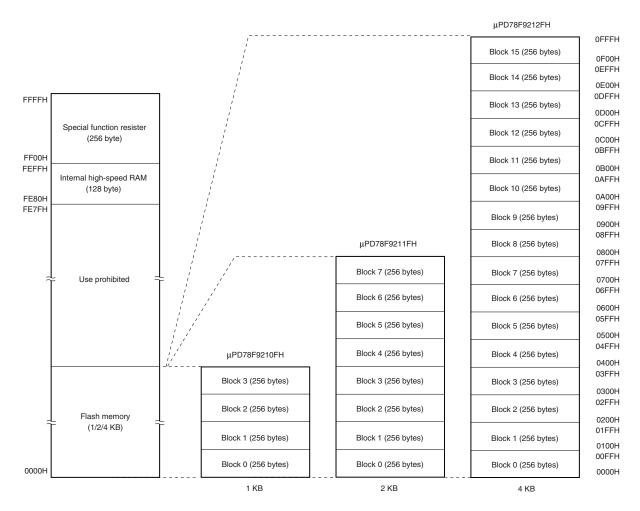


Figure 4-3. Memory Map (µPD78F9212FH)

Remark The option byte and protect byte are 1 byte each.

4.2 Memory Configuration

The 1/2/4 KB internal flash memory area is divided into 4/8/16 blocks and can be programmed/erased in block units. All the blocks can also be erased at once, by using a dedicated flash programmer.

Figure 4-4. Flash Memory Mapping

Figure 5-2. Format of Option Byte (2/2)

LIOCP	Low-speed internal oscillates
1	Cannot be stopped (oscillation does not stop even if 1 is written to the LSRSTOP bit)
0	Can be stopped by software (oscillation stops when 1 is written to the LSRSTOP bit)

Cautions 1. If it is selected that low-speed internal oscillator cannot be stopped, the count clock to the watchdog timer (WDT) is fixed to low-speed internal oscillation clock.

2. If it is selected that low-speed internal oscillator can be stopped by software, supply of the count clock to WDT is stopped in the HALT/STOP mode, regardless of the setting of bit 0 (LSRSTOP) of the low-speed internal oscillation mode register (LSRCM). Similarly, clock supply is also stopped when a clock other than the low-speed internal oscillation clock is selected as a count clock to WDT.

While the low-speed internal oscillator is operating (LSRSTOP = 0), the clock can be supplied to the 8-bit timer H1 even in the STOP mode.

Remarks 1. (): fx = 10 MHz

2. For the oscillation stabilization time of the resonator, refer to the characteristics of the resonator to be used.

3. An example of software c OPB CSEG AT 0080H	oding for setting the option bytes is shown below.
DB 10010001B	; Set to option byte
	; Low-speed internal oscillator cannot be stopped
	; The system clock is a crystal or ceramic resonator.
	; The $\overline{\text{RESET}}$ pin is used as an input-only port pin (P34). ; Minimum oscillation stabilization time (2 ¹⁰ /fx)
4. For details on the timing	at which the option byte is referenced, see the chapter of the reset

function 78K0S/KY1+ User's Manual (U16994E)

6. SOURCE CLOCK OF EACH TIMER

- (1) Count clock selection by 16-bit timer/event counter 00 (TM00)
 - fxp (10 MHz) fxp/22 (2.5 MHz) fxp/28 (39.06 kHz) T1000 pin valid edge^{Note}

Note The external clock requires a pulse longer than two cycles of the internal count clock (fxp).

Remarks 1. fxp: Oscillation frequency of clock supplied to peripheral hardware

2. (): fxp = 10 MHz

(2) Count clock selection by 8-bit timer/event counter H1 (TMH1)

fxp(10 MHz) fxp/22(2.5 MHz) fxp/24(625 kHz) fxp/26(156.25 kHz) fxp/212(2.44 kHz) fRL/27(1.88 kHz (TYP.))

Remarks 1. fxp: Oscillation frequency of clock to peripheral hardware

- 2. fr.L: Low-speed internal oscillation clock oscillation frequency
- **3.** Figures in parentheses apply to operation at $f_{XP} = 10$ MHz, $f_{RL} = 240$ kHz (TYP.).

(3) Overflow time setting by watchdog timer

Overflow ti	ime setting
During Low-Speed Internal oscillation Clock Operation	During System Clock Operation
2 ¹¹ /f _{RL} (4.27 ms)	2 ¹³ /fx (819.2 <i>µ</i> s)
2 ¹² /f _{RL} (8.53 ms)	2 ¹⁴ /fx (1.64 ms)
2 ¹³ /f _{RL} (17.07 ms)	2 ¹⁵ /fx (3.28 ms)
2 ¹⁴ /f _{RL} (34.13 ms)	2 ¹⁶ /fx (6.55 ms)
2 ¹⁵ /f _{RL} (68.27 ms)	2 ¹⁷ /fx (13.11 ms)
2 ¹⁶ /f _{RL} (136.53 ms)	2 ¹⁸ /fx (26.21 ms)
2 ¹⁷ /f _{RL} (273.07 ms)	2 ¹⁹ /fx (52.43 ms)
2 ¹⁸ /f _{RL} (546.13 ms)	2 ²⁰ /fx (104.86 ms)

Remarks 1. fr.: Low-speed internal oscillation clock oscillation frequency

- 2. fx: System clock oscillation frequency
- 3. Figures in parentheses apply to operation at f_{RL} = 480 kHz (MAX.), fx = 10 MHz.

7. ELECTRICAL SPECIFICATIONS (TARGET VALUES)

Caution These specifications show target values, which may change after device evaluation. The operating voltage range may also change.

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VDD		–0.3 to +6.5	V
	Vss		-0.3 to +0.3	V
Input voltage	Vi	P20 to P23, P32, P34, P40 to P47	-0.3 to V _{DD} + 0.3^{Note}	V
Output voltage	Vo		-0.3 to VDD + 0.3^{Note}	V
Analog input voltage	Van		-0.3 to VDD + 0.3^{Note}	V
Output current, high	Іон	Per pin	-10.0	mA
		Total of P20 to P23, P32, P40 to P47	-44.0	mA
Output current, low	lo∟	Per pin	20.0	mA
		Total of P20 to P23, P32, P40 to P47	44.0	mA
Operating ambient	TA	In normal operation mode	-40 to +85	°C
temperature		During flash memory programming		°C
Storage temperature	Tstg	Flash memory blank status	-65 to +150	°C
		Flash memory programming already performed	-40 to +125	°C

Absolute Maximum Ratings (TA = 25°C)

Note Must be 6.5 V or lower

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

Parameter	Symbol		Conditi	ons	MIN.	TYP.	MAX.	Unit
Output current, high	Іон	Per pin		$2.0~V \leq V_{\text{DD}} \leq 5.5~V$			-5	mA
		Total of all pins		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-25	mA
				$2.0~V \leq V_{\text{DD}} < 4.0~V$			-15	mA
Output current, low	lo∟	Per pin		$2.0~V \leq V_{\text{DD}} \leq 5.5~V$			10	mA
		Total of all pins		$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			30	mA
				$2.0~V \leq V_{\text{DD}} < 4.0~V$			15	mA
Input voltage, high	VIH1	P23 in external clo P20 and P21	ock mode	e and pins other than	0.8Vdd		Vdd	V
	VIH2	P23 in other than external clock mode, P20 and P21			0.7Vdd		Vdd	V
Input voltage, low	VIL1	P23 in external clock mode and pins other than P20 and P21		0		0.2Vdd	V	
	VIL2	P23 in other than external clock mode, P20 and P21			0		0.3Vdd	V
Output voltage, high	Vон	Total of output pin Іон = –15 mA	S	4.0 V ≤ V _{DD} ≤ 5.5 V Іон = –5 mA	Vdd - 1.0			V
				10H = -5 IIIA 2.0 V \leq VDD < 4.0 V	V _{DD} – 0.5			V
Output voltage, low	Vol	Iон = $-100 \mu A$	•	$2.0 V \le V DD < 4.0 V$ $4.0 V \le V DD \le 5.5 V$	VDD-0.5		1.3	v
Output voltage, low	VOL	Total of output pins lo∟ = 30 mA		4.0 v ≤ vbb ≤ 5.5 v lo∟ = 10 mA			1.5	v
		10L = 30 MA $10L = 10 MA2.0 V \leq VDD < 4.0 V$				0.4	V	
		$I_{OL} = 400 \ \mu A$	•				0.4	v
Input leakage current, high	Іцн	$V_{I} = V_{DD}$	Pins ot	her than X1			3	μA
Input leakage current, low	Ilil	Vi = 0 V		her than X1			-3	μA
Output leakage current, high	Ігон	Vo = VDD					3	, μA
Output leakage current, low	Ilol	$V_0 = 0 V$ Pins other than X2				-3	μA	
Pull-up resistance value	Rpu	V1 = 0 V			10	30	100	kΩ
Pull-down resistance value	RPD	P22, P23, reset st	atus		10	30	100	kΩ

DC Characteristics (T_A = -40 to $+85^{\circ}$ C, V_{DD} = 2.0 to 5.5 V^{Note}, V_{SS} = 0 V) (1/2)

Note Use this product in a voltage range of 2.2 to 5.5 V because the detection voltage (VPOC) of the power-on clear (POC) circuit is 2.1 V ±0.1 V.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

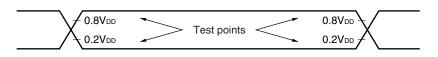
Parameter	Symbol Conditions					TYP.	MAX.	Unit
Supply	DD1 Note 3	Crystal/ceramic	fx = 10 MHz	When A/D converter is stopped		6.1	12.2	mA
current ^{Note 2}		oscillation,	$V_{\text{DD}}=5.0~V\pm10\%^{\text{Note 4}}$	When A/D converter is operating		7.6	15.2	
		external clock input oscillation	fx = 6 MHz	When A/D converter is stopped		5.5	11.0	mA
		operating	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is operating			14.0	
		mode ^{Note 6}	fx = 5 MHz	When A/D converter is stopped		3.0	6.0	mA
			$V_{\text{DD}} = 3.0 \ V \pm 10\%^{\text{Note 5}}$	When A/D converter is operating		4.5	9.0	
	DD2	Crystal/ceramic	fx = 10 MHz	When peripheral functions are stopped		1.7	3.8	mA
	external clock	$V_{DD} = 5.0 \text{ V} \pm 10\%^{Note 4}$	When peripheral functions are operating			6.7		
		input HALT	-	When peripheral functions are stopped		1.3	3.0	mA
	mode ^{Note 6}	$V_{DD} = 5.0 \text{ V} \pm 10\%^{Note 4}$	When peripheral functions are operating			6.0		
			fx = 5 MHz	When peripheral functions are stopped		0.48	1	mA
		$V_{\text{DD}}=3.0~V\pm10\%^{\text{Note 5}}$	When peripheral functions are operating			2.1		
	IDD3 ^{Note 3} High-speed		When A/D converter is stopped		5.0	10.0	mA	
		internal oscillation operating mode ^{Note 7}	$V_{\text{DD}} = 5.0 \text{ V} \pm 10\%^{\text{Note 4}}$	When A/D converter is operating		6.5	13.0	
	IDD4	High-speed	fx = 8 MHz	When peripheral functions are stopped		1.4	3.2	mA
		internal oscillation HALT mode ^{Note 7}	$V_{DD} = 5.0 \text{ V} \pm 10\%^{Note 4}$	When peripheral functions are operating			5.9	
IDD5	STOP mode	$V_{DD} = 5.0 \text{ V} \pm 10\%$	When low-speed internal oscillation is stopped		3.5	35.5	μA	
				When low-speed internal oscillation is operating		17.5	63.5	
			$V_{DD} = 3.0 \text{ V} \pm 10\%$	When low-speed internal oscillation is stopped		3.5	15.5	μA
				When low-speed internal oscillation is operating		11.0	30.5	

DC Characteristics (TA = -	-40 to +85°C, VDD = 2.0 to 5.5	$5 V^{Note 1}, V_{SS} = 0 V) (2/2)$
----------------------------	--------------------------------	-------------------------------------

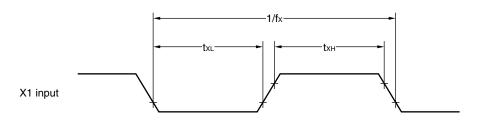
Notes 1. Use this product in a voltage range of 2.2 to 5.5 V because the detection voltage (VPoc) of the power-on clear (POC) circuit is 2.1 V ±0.1 V.

- 2. Total current flowing through the internal power supply (VDD). However, the current that flows through the pull-up resistors of ports is not included.
- 3. IDD1 and IDD3 includ peripheral operation current.
- 4. When the processor clock control register (PCC) is set to 00H.
- 5. When the processor clock control register (PCC) is set to 02H.
- 6. When crystal/ceramic oscillation clock, external clock input is selected as the system clock source using the option byte.
- 7. When high-speed internal oscillation clock is selected as the system clock source using the option byte.

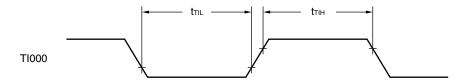
AC Characteristics

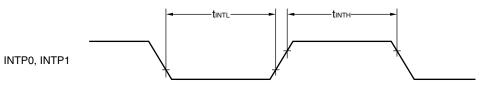

Basic operation (TA = -40 to +85°C, VDD = 2.0 to 5.5 V^{Note 1}, VSS = 0 V)

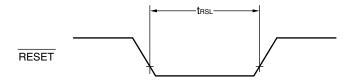
Parameter	Symbol	Conditior	าร	MIN.	TYP.	MAX.	Unit
Cycle time (minimum	Тсү	Crystal/ceramic oscillation	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0.2		16	μs
instruction execution time)		clock, external clock input	$3.0~V \leq V_{\text{DD}} < 4.0~V$	0.33		16	μs
			$2.7~V \leq V_{\text{DD}} < 3.0~V$	0.4		16	μs
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	1		16	μs
	High-speed internal oscillation clock	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0.23		4.22	μs	
		$2.7~V \leq V_{\text{DD}} < 4.0~V$	0.47		4.22	μs	
			$2.0~V \leq V_{\text{DD}} < 2.7~V$	0.95		4.22	μs
TI000/TI010 input high-level width, low-level width	tт⊮, tт⊾	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		2/fsam+ 0.1 ^{Note 2}			μs
		$2.0 \text{ V} \leq \text{V}_{\text{DD}} < 4.0 \text{ V}$		2/fsam+ 0.2 ^{Note 2}			μs
Interrupt input high-level	tinth,			1			μs
width, low-level width	t INTL						
RESET input low-level width	tRSL			2			μs


Notes 1. Use this product in a voltage range of 2.2 to 5.5 V because the detection voltage (VPOC) of the power-on clear (POC) circuit is 2.1 V ±0.1 V.

2. Selection of fsam = fxp, fxp/4, or fxp/256 is possible using bits 0 and 1 (PRM000, PRM001) of prescaler mode register 00 (PRM00). Note that when selecting the TI000/TI010 valid edge as the count clock, fsam = fxp.

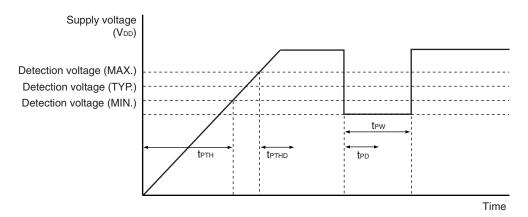

AC Timing Test Points (Excluding X1 Input)


Clock Timing


TI000 Timing

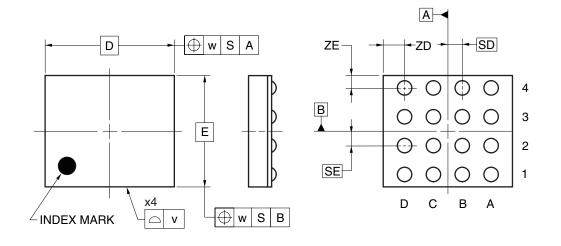
Interrupt Input Timing

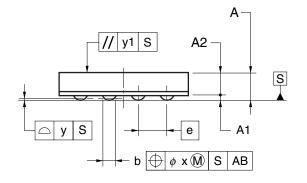
RESET Input Timing


POC Circuit Characteristics	(T _A = -40 to +85°C)
------------------------------------	---------------------------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		2.0	2.1	2.2	V
Power supply rise time	tртн	VDD: 0 V \rightarrow 2.1 V	1.5			μs
Response delay time 1 ^{Note 1}	tртно	When power supply rises, after reaching detection voltage (MAX.)			3.0	ms
Response delay time 2 ^{Note 2}	t PD	When power supply falls			1.0	ms
Minimum pulse width	tew		0.2			ms

Notes 1. Time required from voltage detection to internal reset release.


2. Time required from voltage detection to internal reset signal generation.


POC Circuit Timing

8. PACKAGE DRAWING (PRELIMINARY)

16-PIN FBGA (WAFER LEVEL CSP) (1.93x2.24)

	(UNIT:mm)
ITEM	DIMENSIONS
D	2.24
E	1.93
v	0.15
w	0.20
Α	0.48±0.04
A1	0.08±0.02
A2	0.40
е	0.50
SD	0.25
SE	0.25
b	0.25±0.05
х	0.05
У	0.08
y1	0.20
ZD	0.37
ZE	0.215
	P16FH-50-2A2

© NEC Electronics Corporation 2005

APPENDIX A. RELATED DOCUMENTS

The related document indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Documents Related to Devices

Document Name	Document No.
μ PD78F9210FH, 78F9211FH, 78F9212FH Preliminary Product Information	This manual
78K0S/KY1+ User's Manual	U16994E
78K/0S Series Instructions User's Manual	U12326E

Documents Related to Development Tools (Software) (User's Manuals)

Document Name		Document No.
RA78K0S Ver. 1.50 Assembler Package	Operation	U17391E
	Language	U17390E
	Structured Assembly Language	U17389E
CC78K0S Ver. 1.60 C Compiler	Operation	U17416E
	Language	U17415E
SM+ System Simulator	Operation	U17246E
	External Part User Open Interface Specifications	U17247E
ID78K0S-QB Ver. 2.81 Integrated Debugger	Operation	U17287E
PM+ Ver. 5.20		U16934E

Documents Related to Development Tools (Hardware) (User's Manuals)

Document Name	Document No.	
IE-78K0S-NS In-Circuit Emulator	U13549E	
IE-78K0S-NS-A In-Circuit Emulator	U15207E	
QB-78K0SKX1H In-Circuit Emulator	U17272E	

Documents Related to Flash Memory Programming

Document Name	Document No.	
PG-FP4 Flash Memory Programmer User's Manual	U15260E	
PG-FPL2 Flash Memory Programmer User's Manual	U17307E	

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

NOTES FOR CMOS DEVICES -

1 VOLTAGE APPLICATION WAVEFORM AT INPUT PIN

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (MAX) and V_{IH} (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (MAX) and V_{IH} (MIN).

(2) HANDLING OF UNUSED INPUT PINS

Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.

③ PRECAUTION AGAINST ESD

A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.

④ STATUS BEFORE INITIALIZATION

Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.

5 POWER ON/OFF SEQUENCE

In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current.

The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE

Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

NEC

For further information, please contact:

NEC Electronics Corporation

1753, Shimonumabe, Nakahara-ku, Kawasaki, Kanagawa 211-8668, Japan Tel: 044-435-5111 http://www.necel.com/

[America]

NEC Electronics America, Inc. 2880 Scott Blvd.

Santa Clara, CA 95050-2554, U.S.A. Tel: 408-588-6000 800-366-9782 http://www.am.necel.com/

[Europe]

NEC Electronics (Europe) GmbH

Arcadiastrasse 10 40472 Düsseldorf, Germany Tel: 0211-65030 http://www.eu.necel.com/

Hanover Office

Podbielskistrasse 164 30177 Hannover Tel: 0 511 33 40 2-0

Munich Office

Werner-Eckert-Strasse 9 81829 München Tel: 0 89 92 10 03-0

Stuttgart Office

Industriestrasse 3 70565 Stuttgart Tel: 0 711 99 01 0-0

United Kingdom Branch

Cygnus House, Sunrise Parkway Linford Wood, Milton Keynes MK14 6NP, U.K. Tel: 01908-691-133

Succursale Française

9, rue Paul Dautier, B.P. 52180 78142 Velizy-Villacoublay Cédex France Tel: 01-3067-5800

Sucursal en España

Juan Esplandiu, 15 28007 Madrid, Spain Tel: 091-504-2787

Tyskland Filial

Täby Centrum Entrance S (7th floor) 18322 Täby, Sweden Tel: 08 638 72 00

Filiale Italiana

Via Fabio Filzi, 25/A 20124 Milano, Italy Tel: 02-667541

Branch The Netherlands

Limburglaan 5 5616 HR Eindhoven The Netherlands Tel: 040 265 40 10

[Asia & Oceania]

NEC Electronics (China) Co., Ltd

7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian District, Beijing 100083, P.R.China TEL: 010-8235-1155 http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.

Room 2509-2510, Bank of China Tower, 200 Yincheng Road Central, Pudong New Area, Shanghai P.R. China P.C:200120 Tel: 021-5888-5400 http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.

12/F., Cityplaza 4, 12 Taikoo Wan Road, Hong Kong Tel: 2886-9318 http://www.hk.necel.com/

Seoul Branch

11F., Samik Lavied'or Bldg., 720-2, Yeoksam-Dong, Kangnam-Ku, Seoul, 135-080, Korea Tel: 02-558-3737

NEC Electronics Taiwan Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwan, R. O. C. Tel: 02-2719-2377

NEC Electronics Singapore Pte. Ltd.

238A Thomson Road, #12-08 Novena Square, Singapore 307684 Tel: 6253-8311 http://www.sg.necel.com/

G05.11-1A