Renesas - D13008F25V Datasheet

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	PWM, WDT
Number of I/O	35
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b SAR; D/A 2x8b
Oscillator Type	External, Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d13008f25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	De	escription	1					
Operating modes	Four MCU operating modes							
		ode	Address Space	Ac Pi	ldress ns	Initia Widt	l Bus h	Max. Bus Width
	M	ode 1	1 Mbyte	A ₁₉	, to A _o	8 bits	;	16 bits
	M	ode 2	1 Mbyte	A ₁₉	, to A ₀	16 bi	ts	16 bits
	M	ode 3	16 Mbytes	A ₂₃	to A ₀	8 bits	;	16 bits
	M	ode 4	16 Mbytes	A ₂₃	to A ₀	16 bi	ts	16 bits
	•	On-chip	ROM is disable	d in	modes 1 to 4			
Power-down	Sleep mode							
state	Software standby mode							
	Hardware standby mode							
	Module standby function							
	Programmable system clock frequency division							
Other features	•	On-chip	clock pulse ger	nera	tor			
Product lineup	Pr	roduct Ty	ре		Model		Package	(Package Code)
	H	8/3008	5 V operat	ion	HD6413008F		100-pin Q	FP (FP-100B)
					HD6413008T	E	100-pin T	QFP (TFP-100B)
			3 V operat	ion	HD6413008V	′F	100-pin Q	FP (FP-100B)
					HD6413008V	ΤE	100-pin T	QFP (TFP-100B)

1. Overview

 $-32 \div 16$ -bit register-register divide:

880 ns@25 MHz

- Two CPU operating modes
 - Normal mode
 - Advanced mode
- Low-power mode

Transition to power-down state by SLEEP instruction

2.1.2 Differences from H8/300 CPU

In comparison to the H8/300 CPU, the H8/300H CPU has the following enhancements.

• More general registers

Eight 16-bit registers have been added.

- Expanded address space
 - Advanced mode supports a maximum 16-Mbyte address space.
 - Normal mode supports the same 64-kbyte address space as the H8/300 CPU.
- Enhanced addressing

The addressing modes have been enhanced to make effective use of the 16-Mbyte address space.

- Enhanced instructions
 - Data transfer, arithmetic, and logic instructions can operate on 32-bit data.
 - Signed multiply/divide instructions and other instructions have been added.

2.2 CPU Operating Modes

The H8/300H CPU has two operating modes: normal and advanced. Normal mode supports a maximum 64-kbyte address space. Advanced mode supports up to 16 Mbytes.

Figure 2.1 CPU Operating Modes

Figure 2.8 Memory Data Formats

When ER7 (SP) is used as an address register to access the stack, the operand size should be word size or longword size.

2.7 Addressing Modes and Effective Address Calculation

2.7.1 Addressing Modes

The H8/300H CPU supports the eight addressing modes listed in table 2.11. Each instruction uses a subset of these addressing modes. Arithmetic and logic instructions can use the register direct and immediate modes. Data transfer instructions can use all addressing modes except programcounter relative and memory indirect. Bit manipulation instructions use register direct, register indirect, or absolute (@aa:8) addressing mode to specify an operand, and register direct (BSET, BCLR, BNOT, and BTST instructions) or immediate (3-bit) addressing mode to specify a bit number in the operand.

No.	Addressing Mode	Symbol
1	Register direct	Rn
2	Register indirect	@ERn
3	Register indirect with displacement	@(d:16, ERn)/@(d:24, ERn)
4	Register indirect with post-increment Register indirect with pre-decrement	@ERn+ @-ERn
5	Absolute address	@aa:8/@aa:16/@aa:24
6	Immediate	#xx:8/#xx:16/#xx:32
7	Program-counter relative	@(d:8, PC)/@(d:16, PC)
8	Memory indirect	@@aa:8

Table 2.11 Addressing Modes

Register Direct—Rn: The register field of the instruction code specifies an 8-, 16-, or 32-bit register containing the operand. R0H to R7H and R0L to R7L can be specified as 8-bit registers. R0 to R7 and E0 to E7 can be specified as 16-bit registers. ER0 to ER7 can be specified as 32-bit registers.

Register Indirect—@**ERn:** The register field of the instruction code specifies an address register (ERn), the lower 24 bits of which contain the address of the operand.

Register Indirect with Displacement—@(**d:16**, **ERn**) or @(**d:24**, **ERn**): A 16-bit or 24-bit displacement contained in the instruction code is added to the contents of an address register (ERn) specified by the register field of the instruction, and the lower 24 bits of the sum specify the address of a memory operand. A 16-bit displacement is sign-extended when added.

Renesas

5.4.3 Interrupt Response Time

Table 5.5 indicates the interrupt response time from the occurrence of an interrupt request until the first instruction of the interrupt service routine is executed.

Table 5.5 Interrupt Response Time

				External Memory			
		On-Chip	8-1	Bit Bus	16-	Bit Bus	
No.	Item	Memory	2 States	3 States	2 States	3 States	
1	Interrupt priority decision	2* ¹	2* ¹	2* ¹	2* ¹	2* ¹	
2	Maximum number of states until end of current instruction	1 to 23	1 to 27	1 to 31*4	1 to 23	1 to 25*4	
3	Saving PC and CCR to stack	4	8	12 * ⁴	4	6* ⁴	
4	Vector fetch	4	8	12* ⁴	4	6* ⁴	
5	Instruction fetch* ²	4	8	12* ⁴	4	6* ⁴	
6	Internal processing*3	4	4	4	4	4	
Total		19 to 41	31 to 57	43 to 73	19 to 41	25 to 49	

Notes: 1. 1 state for internal interrupts.

2. Prefetch after the interrupt is accepted and prefetch of the first instruction in the interrupt service routine.

3. Internal processing after the interrupt is accepted and internal processing after vector fetch.

4. The number of states increases if wait states are inserted in external memory access.

Bits 3 and 2—Area 1 Wait Control 1 and 0 (W11, W10): These bits select the number of program wait states when area 1 in external space is accessed while the AST1 bit in ASTCR is set to 1.

Bit 3 W11	Bit 2 W10	Description
0	0	Program wait not inserted when external space area 1 is accessed
	1	1 program wait state inserted when external space area 1 is accessed
1	0	2 program wait states inserted when external space area 1 is accessed
	1	3 program wait states inserted when external space area 1 is accessed (Initial value)

Bits 1 and 0—Area 0 Wait Control 1 and 0 (W01, W00): These bits select the number of program wait states when area 0 in external space is accessed while the AST0 bit in ASTCR is set to 1.

Bit 1 W01	Bit 0 W00	Description
0	0	Program wait not inserted when external space area 0 is accessed
	1	1 program wait state inserted when external space area 0 is accessed
1	0	2 program wait states inserted when external space area 0 is accessed
	1	3 program wait states inserted when external space area 0 is accessed (Initial value)

6.2.4 Bus Release Control Register (BRCR)

BRCR is an 8-bit readable/writable register that enables address output on bus lines A_{23} to A_{20} and enables or disables release of the bus to an external device.

BRCR is initialized to H'FE in modes 1 and 2, and to H'EE in modes 3 and 4, by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bit 7—Address 23 Enable (A23E): Enables PA_4 to be used as the A_{23} address output pin. Writing 0 in this bit enables A_{23} output from PA_4 . In modes other than 3 and 4, this bit cannot be modified and PA_4 has its ordinary port functions.

Bit 7 A23E	Description	
0	PA_4 is the A_{23} address output pin	
1	PA₄ is an input/output pin	(Initial value)

Bit 6—Address 22 Enable (A22E): Enables PA_5 to be used as the A_{22} address output pin. Writing 0 in this bit enables A_{22} output from PA_5 . In modes other than 3 and 4, this bit cannot be modified and PA_5 has its ordinary port functions.

Bit 6 A22E	Description	
0	PA_{s} is the A_{22} address output pin	
1	PA_{s} is an input/output pin	(Initial value)

			Expanded Modes				
Port	Description	Pins	Mode 1	Mode 2	Mode 3	Mode 4	
Port B • 8-bit I/O port		PB ₇ /TP ₁₅	TPC output (TP $_{15}$ to TP $_{12}$) and generic input/output				
		PB ₆ /TP ₁₄					
		PB₅/TP ₁₃					
		PB ₄ /TP ₁₂					
		PB ₃ /TP ₁₁ /TMIO ₃ /CS ₄	TPC output (TP ₁₁ to TP ₈), 8-b	oit timer input a	and output (TMIO ₃ ,	
		$PB_2/TP_{10}/TMO_2/\overline{CS}_5$	TMO_2 , $TMIO_1$, TMO_0), \overline{CS}_7 to \overline{CS}_4 output, and generic	nd generic			
		PB ₁ /TP ₉ /TMIO ₁ / CS ₆	input/output				
		$PB_0/TP_8/TMO_0/\overline{CS}_7$					
Leger	nd.						

Legend:

Serial communication interface channel 0 SCI0:

SCI1: Serial communication interface channel 1

TPC: Programmable timing pattern controller

16TIM: 16-bit timer

8TIM: 8-bit timer

Section 8 16-Bit Timer

8.1 Overview

The H8/3008 has built-in 16-bit timer module with three 16-bit counter channels.

8.1.1 Features

16-bit timer features are listed below.

- Capability to process up to 6 pulse outputs or 6 pulse inputs
- Six general registers (GRs, two per channel) with independently-assignable output compare or input capture functions
- Selection of eight counter clock sources for each channel: Internal clocks: φ, φ/2, φ/4, φ/8 External clocks: TCLKA, TCLKB, TCLKC, TCLKD
- Five operating modes selectable in all channels:
 - Waveform output by compare match
 - Selection of 0 output, 1 output, or toggle output (only 0 or 1 output in channel 2)
 - Input capture function
 - Rising edge, falling edge, or both edges (selectable)
 - Counter clearing function

Counters can be cleared by compare match or input capture

- Synchronization

Two or more timer counters (16TCNTs) can be preset simultaneously, or cleared simultaneously by compare match or input capture. Counter synchronization enables synchronous register input and output.

- PWM mode

PWM output can be provided with an arbitrary duty cycle. With synchronization, up to three-phase PWM output is possible

• Phase counting mode selectable in channel 2

Two-phase encoder output can be counted automatically.

- High-speed access via internal 16-bit bus The 16TCNTs and GRs can be accessed at high speed via a 16-bit bus.
- Any initial timer output value can be set
- Nine interrupt sources

Renesas

Bit 5—Input Capture/Compare Match Interrupt Enable B1 (IMIEB1): Enables or disables the interrupt requested by the IMFB1 when IMFB1 flag is set to 1.

Bit 5 IMIEB1	Description	
0	IMIB1 interrupt requested by IMFB1 flag is disabled	(Initial value)
1	IMIB1 interrupt requested by IMFB1 flag is enabled	

Bit 4—Input Capture/Compare Match Interrupt Enable B0 (IMIEB0): Enables or disables the interrupt requested by the IMFB0 when IMFB0 flag is set to 1.

Bit 4 IMIEB0	Description	
0	IMIB0 interrupt requested by IMFB0 flag is disabled	(Initial value)
1	IMIB0 interrupt requested by IMFB0 flag is enabled	

Bit 3—Reserved: This bit cannot be modified and is always read as 1.

Bit 2—Input Capture/Compare Match Flag B2 (IMFB2): This status flag indicates GRB2 compare match or input capture events.

Bit 2 IMFB2	Description				
0	[Clearing condition] (Initial value				
	Read IMFB2 flag when IMFB2 = 1, then write 0 in IMFB2 flag				
1	[Setting conditions]				
	 16TCNT2 = GRB2 when GRB2 functions as an output compare register 				
	16TCNT2 value is transferred to GRB2 by an input capture signal when GRB2				
	functions as an input capture register				

Renesas

Bits 3 and 2—Output/Input Capture Edge Select B3 and B2 (OIS3, OIS2): In combination with the ICE bit in 8TCSR1 (8TCSR3), these bits select the compare match B output level or the input capture input detected edge.

The function of TCORB1 (TCORB3) depends on the setting of bit 4 of 8TCSR1 (8TCSR3).

ICE Bit in 8TCSR1	Bit 3	Bit 2	Description
(8105R3)	0153	0152	Description
0	0	0	No change when compare match B occurs (Initial value)
		1	0 is output when compare match B occurs
	1	0	1 is output when compare match B occurs
		1	Output is inverted when compare match B occurs (toggle output)
1	0	0	TCORB input capture on rising edge
		1	TCORB input capture on falling edge
	1	0	TCORB input capture on both rising and falling edges
		1	-

- When the compare match register function is used, the timer output priority order is: toggle output > 1 output > 0 output.
- If compare match A and B occur simultaneously, the output changes in accordance with the higher-priority compare match.
- When bits OIS3, OIS2, OS1, and OS0 are all cleared to 0, timer output is disabled.

Bits 1 and 0—Output Select A1 and A0 (OS1, OS0): These bits select the compare match A output level.

Bit 1	Bit 0		
OS1	OS0	Description	
0	0	No change when compare match A occurs	(Initial value)
	1	0 is output when compare match A occurs	
1	0	1 is output when compare match A occurs	
	1	Output is inverted when compare match A occurs (toggle output)	

- When the compare match register function is used, the timer output priority order is: toggle output > 1 output > 0 output.
- If compare match A and B occur simultaneously, the output changes in accordance with the higher-priority compare match.
- When bits OIS3, OIS2, OS1, and OS0 are all cleared to 0, timer output is disabled.

10. Programmable Timing Pattern Controller (TPC)

Different Triggers for TPC Output Groups 2 and 3: If TPC output groups 2 and 3 are triggered by different compare match events, the address of the upper 4 bits of NDRB (group 3) is H'FFFA4 and the address of the lower 4 bits (group 2) is H'FFFA6. Bits 3 to 0 of address H'FFFA4 and bits 7 to 4 of address H'FFFA6 are reserved bits that cannot be modified and always read 1.

Address H'FFFA4

Bit									φ (MHz)								
Rate	2		4		8		10		13		16		18		20		25	
(bit/s)	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν
110	3	70			_	_	_		_		_		_	_	_		_	_
250	2	124	2	249	3	124	_		3	202	3	249			_	_	_	_
500	1	249	2	124	2	249	_		3	101	3	124	3	140	3	155	_	_
1k	1	124	1	249	2	124	_		2	202	2	249	3	69	3	77	3	97
2.5k	0	199	1	99	1	199	1	249	2	80	2	99	2	112	2	124	2	155
5k	0	99	0	199	1	99	1	124	1	162	1	199	1	224	1	249	2	77
10k	0	49	0	99	0	199	0	249	1	80	1	99	1	112	1	124	1	155
25k	0	19	0	39	0	79	0	99	0	129	0	159	0	179	0	199	0	249
50k	0	9	0	19	0	39	0	49	0	64	0	79	0	89	0	99	0	124
100k	0	4	0	9	0	19	0	24			0	39	0	44	0	49	0	62
250k	0	1	0	3	0	7	0	9	0	12	0	15	0	17	0	19	0	24
500k	0	0*	0	1	0	3	0	4	_	_	0	7	0	8	0	9	—	_
1M			0	0*	0	1	_	_	_	_	0	3	0	4	0	4	—	_
2M					0	0*	—	_	—	_	0	1	—	_	—	_	—	_
2.5M					_		0	0*	_	_	_		_		_	_	—	_
4M											0	0*	_		_	_	—	_

Table 12.4	Examples of Bit R	ates and BRR Setti	ngs in Synchrono	us Mode
-------------------	-------------------	--------------------	------------------	---------

Legend:

Blank: No setting available

--: Setting possible, but error occurs

*: Continuous transmission/reception not possible

Note: Settings with an error of 1% or less are recommended.

φ (MHz)	External Input Clock (MHz)	Maximum Bit Rate (bit/s)
2	0.3333	333333.3
4	0.6667	666666.7
6	1.0000	100000.0
8	1.3333	1333333.3
10	1.6667	1666666.7
12	2.0000	200000.0
14	2.3333	2333333.3
16	2.6667	2666666.7
18	3.0000	300000.0
20	3.3333	333333.3
25	4.1667	4166666.7

 Table 12.7
 Maximum Bit Rates with External Clock Input (Synchronous Mode)

12.3 Operation

12.3.1 Overview

The SCI can carry out serial communication in two modes: asynchronous mode in which synchronization is achieved character by character, and synchronous mode in which synchronization is achieved with clock pulses. A smart card interface is also supported as a serial communication function for an IC card interface.

Selection of asynchronous or synchronous mode and the transmission format for the normal serial communication interface is made in SMR, as shown in table 12.8. The SCI clock source is selected by the C/\overline{A} bit in SMR and the CKE1 and CKE0 bits in SCR, as shown in table 12.9.

For details of the procedures for switching between LSB-first and MSB-first mode and inverting the data logic level, see section 13.2.1, Smart Card Mode Register (SCMR).

For selection of the smart card interface format, see section 13.3.3, Data Format.

14.1.4 Register Configuration

Table 14.2 summarizes the A/D converter's registers.

Table 14.2 A/D Converter Registers

Address* ¹	Name	Abbreviation	R/W	Initial Value
H'FFFE0	A/D data register A H	ADDRAH	R	H'00
H'FFFE1	A/D data register A L	ADDRAL	R	H'00
H'FFFE2	A/D data register B H	ADDRBH	R	H'00
H'FFFE3	A/D data register B L	ADDRBL	R	H'00
H'FFFE4	A/D data register C H	ADDRCH	R	H'00
H'FFFE5	A/D data register C L	ADDRCL	R	H'00
H'FFFE6	A/D data register D H	ADDRDH	R	H'00
H'FFFE7	A/D data register D L	ADDRDL	R	H'00
H'FFFE8	A/D control/status register	ADCSR	R/(W)* ²	H'00
H'FFFE9	A/D control register	ADCR	R/W	H'7E

Notes: 1. Lower 20 bits of the address in advanced mode.

2. Only 0 can be written in bit 7, to clear the flag.

16.3 Operation

When the RAME bit is set to 1, the on-chip RAM is enabled. Accesses to the addresses shown in table 16.1 are directed to the on-chip RAM. In modes 1 to 4 (expanded modes), when the RAME bit is cleared to 0, the off-chip address space is accessed.

Since the on-chip RAM is connected to the CPU by an internal 16-bit data bus, it can be written and read by word access. It can also be written and read by byte access. Byte data is accessed in two states using the upper 8 bits of the data bus. Word data starting at an even address is accessed in two states using all 16 bits of the data bus.

Figure 17.4 Oscillator Circuit Block Board Design Precautions

17.2.2 External Clock Input

Circuit Configuration: An external clock signal can be input as shown in the examples in figure 17.5. If the XTAL pin is left open, the stray capacitance should not exceed 10 pF. If the stray capacitance at the XTAL pin exceeds 10 pF in configuration a, use the connection shown in configuration b instead, and hold the external clock high in standby mode.

Figure 17.5 External Clock Input (Examples)

Renesas

Bit 3—Module Standby L3 (MSTPL3): Selects whether to place 8-bit timer channels 0 and 1 in standby.

Bit 3 MSTPL3	Description	
0	8-bit timer channels 0 and 1 operate normally	(Initial value)
1	8-bit timer channels 0 and 1 are in standby state	

Bit 2—Module Standby L2 (MSTPL2): Selects whether to place 8-bit timer channels 2 and 3 in standby.

Bit 2
MSTPL2Description08-bit timer channels 2 and 3 operate normally(Initial value)18-bit timer channels 2 and 3 are in standby state

Bit 1—Reserved: This bit can be written and read.

Bit 0—Module Standby L0 (MSTPL0): Selects whether to place the A/D converter in standby.

Bit 0 MSTPL0	Description	
0	A/D converter operates normally	(Initial value)
1	A/D converter is in standby state	

			Instruction Fetch	Branch Addr. Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction	Mnemonic		I	J	К	L	М	Ν
RTS	RTS	Normal	2		1			2
		Advanced	2		2			2
SHAL	SHAL.B Rd		1					
	SHAL.W Rd		1					
	SHAL.L ERd		1					
SHAR	SHAR.B Rd		1					
	SHAR.W Rd		1					
	SHAR.L ERd		1					
SHLL	SHLL.B Rd		1					
	SHLL.W Rd		1					
	SHLL.L ERd		1					
SHLR	SHLR.B Rd		1					
	SHLR.W Rd		1					
	SHLR.L ERd		1					
SLEEP	SLEEP		1					
STC	STC CCR, Ro	ł	1					
	STC CCR, @	ERd	2				1	
	SIC CCR, @	(d:16, ERd)	3				1	
	SIC CCR, @((d:24, ERd)	5				1	•
	STC CCR, @	-ERd	2				1	2
	STC CCR, @	aa:16	3				1	
	SIC CCR, @	aa:24	4					
SUB	SUB.B Rs, Ro		1					
	SUB.W #XX:10	ь, Н0 Л	2					
			2					
	SUB L FRs F	-Rd	1					
SUBS	SUBS #1/2/4	FBd	1					
SUBY	SUBX #vv:8	Ed.	1					
SODY	SUBX Rs, Rd	nu	1					
TRAPA	TRAPA #x:2	Normal	2	1	2			4
		Advanced	2	2	2			4
XOR	XOR.B #xx:8,	Rd	1					
	XOR.B Rs, R	d	1					
	XOR.W #xx:1	6, Rd	2					
	XOR.W Rs, R	ld	1					
	XOR.L #xx:32	2, ERd	3					
	XOR.L ERs, E	ERd	2					
XORC	XORC #xx:8,	CCR	1					
Notos: 1	n is the valu	o sot in re	aistor B/L	or B4 Thos	ource and	destination	are acces	odn 1

Notes: 1. n is the value set in register R4L or R4. The source and destination are accessed n + 1 times each.

2. Not available in the H8/3008.

Appendix D Pin States

D.1 Port States in Each Mode

Table D.1Port States

Pin Name	Mode	Reset	Hardware Standby Mode	software Standby Mode	Bus- Released Mode	Program Execution Mode
A_7 to A_0		L	Т	(SSOE = 0) T	Т	A_7 to A_0
				(SSOE = 1) Keep		
\overline{A}_{15} to A_{8}		L	Т	(SSOE = 0) T (SSOE = 1) Keep	Т	A_{15} to A_8
D ₁₅ to D ₈		Т	Т	Т	Т	D ₁₅ to D ₈
P4 ₇ to P4 ₀	1, 3	Т	Т	Keep	Keep	I/O port
	2, 4	Т	Т	Т	Т	$D_{_7}$ to $D_{_0}$
A_{19} to A_{16}	_	L	Т	(SSOE = 0) T (SSOE = 1) Keep	Т	$A_{_{19}}$ to $A_{_{16}}$
P6 ₀		Т	Т	Кеер	Кеер	I/O port WAIT
P6,		Т	Т	(BRLE = 0) Keep (BRLE = 1) T	Т	I/O port BREQ
P6 ₂		Т	Т	(BRLE = 0) Keep (BRLE = 1) H	L	(BRLE = 0) I/O port (BRLE = 1) BACK
AS, RD, HWR, LWF	 ₹	Н	Т	(SSOE = 0) T (SSOE = 1) H	Т	AS, RD, HWR, LWR
P6 ₇		Clock output	Т	(PSTOP = 0) H (PSTOP = 1) Keep	(PSTOP = 0) ∲ (PSTOP = 1) Keep	(PSTOP = 0) φ (PSTOP = 1) Input port