

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	PWM, WDT
Number of I/O	35
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d13008fbl25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

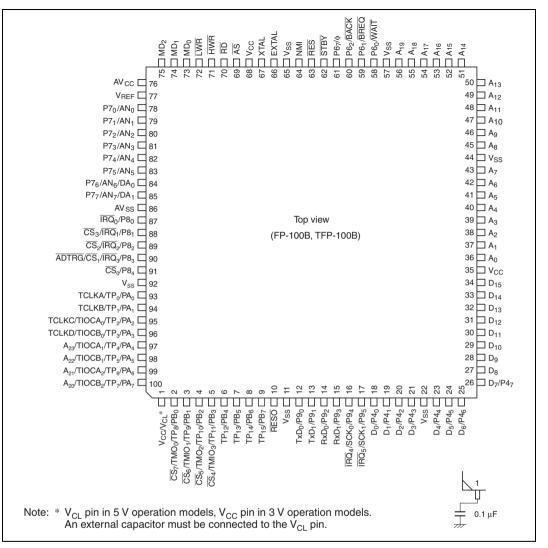


Figure 1.2 Pin Arrangement of H8/3008 (FP-100B or TFP-100B Package, Top View)

	~	
1	()\/@	rview
•••	0,0	101000

Pin No.	Pin Name									
FP-100B TFP-100B	Mode 1	Mode 2	Mode 3	Mode 4						
28	D ₉	D ₉	D ₉	D ₉						
29	D ₁₀	D ₁₀	D ₁₀	D ₁₀						
30	D ₁₁	D ₁₁	D ₁₁	D ₁₁						
31	D ₁₂	D ₁₂	D ₁₂	D ₁₂						
32	D ₁₃	D ₁₃	D ₁₃	D ₁₃						
33	D ₁₄	D ₁₄	D ₁₄	D ₁₄						
34	D ₁₅	D ₁₅	D ₁₅	D ₁₅						
35	V _{cc}	V _{cc}	V _{cc}	V _{cc}						
36	A _o	A _o	A _o	A _o						
37	A ₁	A ₁	A,	A ₁						
38	A ₂	A ₂	A ₂	A ₂						
39	A ₃	A ₃	A ₃	A ₃						
40	A ₄	$A_{_4}$	$A_{_4}$	$A_{_4}$						
41	A ₅	A ₅	A ₅	A ₅						
42	A ₆	A_6	A ₆	A ₆						
43	A ₇	A ₇	A ₇	A ₇						
44	V _{ss}	V _{ss}	V _{ss}	V _{ss}						
45	A ₈	A _s	A _s	A ₈						
46	A ₉	A ₉	A ₉	A ₉						
47	A ₁₀	A ₁₀	A ₁₀	A ₁₀						
48	A ₁₁	A ₁₁	A ₁₁	A ₁₁						
49	A ₁₂	A ₁₂	A ₁₂	A ₁₂						
50	A ₁₃	A ₁₃	A ₁₃	A ₁₃						
51	A ₁₄	A ₁₄	A ₁₄	A ₁₄						
52	A ₁₅	A ₁₅	A ₁₅	A ₁₅						
53	A ₁₆	A ₁₆	A ₁₆	A ₁₆						
54	A ₁₇	A ₁₇	A ₁₇	A ₁₇						
55	A ₁₈	A ₁₈	A ₁₈	A ₁₈						
56	A ₁₉	A ₁₉	A ₁₉	A ₁₉						
57	V _{ss}	V _{ss}	V _{ss}	V _{ss}						
58	P6 ₀ /WAIT	P6 ₀ /WAIT	P6 ₀ /WAIT	P6₀/WAIT						

Pin No.	Pin Name										
FP-100B TFP-100B	Mode 1	Mode 2	Mode 3	Mode 4							
90	$P8_{3}/\overline{IRQ}_{3}/\overline{CS}_{1}/\overline{ADTRG}$	$P8_3/\overline{IRQ}_3/\overline{CS}_1/\overline{ADTRG}$	P8 ₃ /IRQ ₃ /CS ₁ /ADTRG	P8 ₃ /IRQ ₃ /CS ₁ /ADTRG							
91	P8 ₄ / CS ₀	$P8_4/\overline{CS}_0$	P8 ₄ / CS ₀	$P8_4/\overline{CS}_0$							
92	V _{ss}	V _{ss}	V _{ss}	V _{ss}							
93	PA ₀ /TP ₀ /TCLKA	PA ₀ /TP ₀ /TCLKA	PA ₀ /TP ₀ /TCLKA	PA ₀ /TP ₀ /TCLKA							
94	PA ₁ /TP ₁ /TCLKB	PA,/TP,/TCLKB	PA,/TP,/TCLKB	PA,/TP,/TCLKB							
95	PA₂/TP₂/TIOCA₀/ TCLKC	PA/TP/TIOCA/ TCLKC	PA₂/TP₂/TIOCA√ TCLKC	PA₂/TP₂/TIOCA₀/ TCLKC							
96	PA,/TP,/TIOCB,/ TCLKD	PA,/TP,/TIOCB,/ TCLKD	PA,/TP,/TIOCB,/ TCLKD	PA,/TP,/TIOCB,/ TCLKD							
97	PA ₄ /TP ₄ /TIOCA ₁	PA ₄ /TP ₄ /TIOCA ₁	PA4/TP4/TIOCA1/A23	PA ₄ /TP ₄ /TIOCA ₁ /A ₂₃							
98	PA ₅ /TP ₅ /TIOCB ₁	PA ₅ /TP ₅ /TIOCB ₁	PA ₅ /TP ₅ /TIOCB ₁ /A ₂₂	PA ₅ /TP ₅ /TIOCB ₁ /A ₂₂							
99	PA ₆ /TP ₆ /TIOCA ₂	PA ₆ /TP ₆ /TIOCA ₂	PA ₆ /TP ₆ /TIOCA ₂ /A ₂₁	PA ₆ /TP ₆ /TIOCA ₂ /A ₂₁							
100	PA ₇ /TP ₇ /TIOCB ₂	PA ₇ /TP ₇ /TIOCB ₂	A ₂₀	A ₂₀							

Notes: 1. In modes 1 and 3 the P4₀ to P4₇ functions of pins P4₀/D₀ to P4₇/D₇ are selected after a reset, but they can be changed by software.

2. In modes 2 and 4 the D_0 to D_7 functions of pins $P4_0/D_0$ to $P4_7/D_7$ are selected after a reset, but they can be changed by software.

3. This pin functions as V_{cL} in 5 V operation models, and as V_{cc} in 3 V operation models.

Renesas

2.4 Register Configuration

2.4.1 Overview

The H8/300H CPU has the internal registers shown in figure 2.3. There are two types of registers: general registers and control registers.

		Function
BOR	В	$C \lor (of) \to C$
		ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.
BIOR	В	$C \lor [\neg (of)] \to C$
		ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.
BXOR	В	$C \oplus (<\!bit-\!No.\!> of <\!EAd\!>) \to C$
		Exclusive-ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.
BIXOR	В	$C \oplus [\neg (<\!bit-No.\!> of <\!EAd\!>)] \to C$
		Exclusive-ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.
BLD	В	$(\text{stit-No.} \text{ of } \text{}) \rightarrow C$
		Transfers a specified bit in a general register or memory operand to the carry flag.
		The bit number is specified by 3-bit immediate data.
BILD	В	\neg (<bit-no.> of <ead>) \rightarrow C</ead></bit-no.>
		Transfers the inverse of a specified bit in a general register or memory operand to the carry flag.
		The bit number is specified by 3-bit immediate data.
BST	В	$C \rightarrow (\text{ of })$
		Transfers the carry flag value to a specified bit in a general register or memory operand.
		The bit number is specified by 3-bit immediate data.
BIST	В	$C \rightarrow \neg$ (<bit-no.> of <ead>)</ead></bit-no.>
		Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand.
		The bit number is specified by 3-bit immediate data.

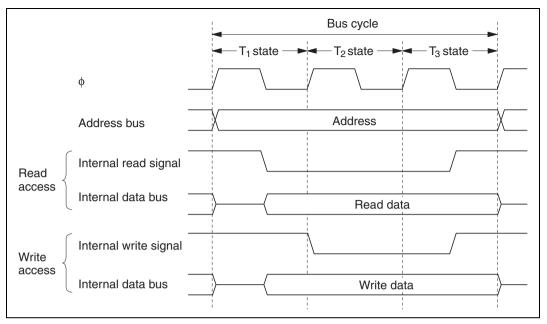


Figure 2.17 Access Cycle for On-Chip Supporting Modules

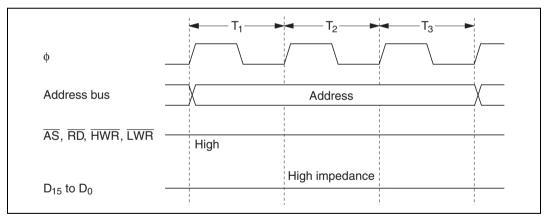
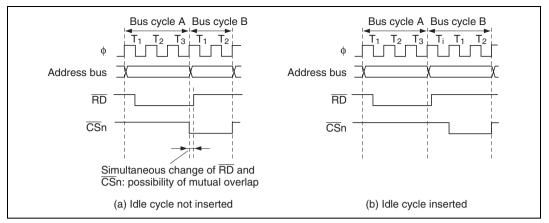
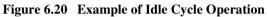




Figure 2.18 Pin States during Access to On-Chip Supporting Modules

2.9.4 Access to External Address Space

The external address space is divided into eight areas (areas 0 to 7). Bus-controller settings determine whether each area is accessed via an 8-bit or 16-bit data bus, and whether it is accessed in two or three states. For details see section 6, Bus Controller.

6.5.2 Pin States in Idle Cycle

Table 6.5 shows the pin states in an idle cycle.

Table 6.5	Pin States in Idle Cycle
-----------	--------------------------

Pins	Pin State
A_{23} to A_{0}	Next cycle address value
$\frac{A_{23} \text{ to } A_{0}}{D_{15} \text{ to } D_{0}}$	High impedance
CSn AS	High
	High
RD	High
HWR	High
LWR	High

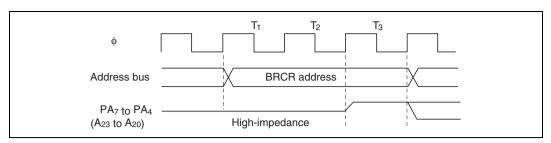
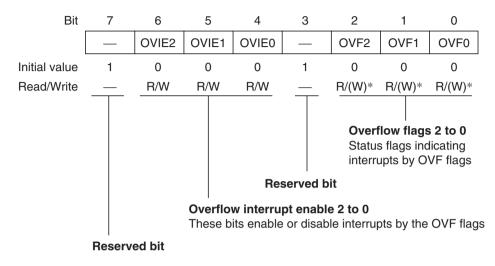
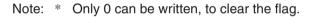


Figure 6.24 BRCR Write Timing

6.7.2 **BREQ** Pin Input Timing


After driving the \overline{BREQ} pin low, hold it low until \overline{BACK} goes low. If \overline{BREQ} returns to the high level before \overline{BACK} goes lows, the bus arbiter may operate incorrectly.


To terminate the external-bus-released state, hold the \overline{BREQ} signal high for at least three states. If \overline{BREQ} is high for too short an interval, the bus arbiter may operate incorrectly.

8.2.6 Timer Interrupt Status Register C (TISRC)

TISRC is an 8-bit readable/writable register that indicates 16TCNT overflow or underflow and enables or disables overflow interrupt requests.

TISRC is initialized to H'88 by a reset and in standby mode.

Bit 7—Reserved: This bit cannot be modified and is always read as 1.

Bit 6—Overflow Interrupt Enable 2 (OVIE2): Enables or disables the interrupt requested by the OVF2 when OVF2 flag is set to 1.

Bit 6 OVIE2	Description	
0	OVI2 interrupt requested by OVF2 flag is disabled	(Initial value)
1	OVI2 interrupt requested by OVF2 flag is enabled	

Renesas

8.3 CPU Interface

8.3.1 16-Bit Accessible Registers

The timer counters (16TCNTs), general registers A and B (GRAs and GRBs) are 16-bit registers, and are linked to the CPU by an internal 16-bit data bus. These registers can be written or read a word at a time, or a byte at a time.

Figures 8.4 and 8.5 show examples of word read/write access to a timer counter (16TCNT). Figures 8.6 to 8.9 show examples of byte read/write access to 16TCNTH and 16TCNTL.

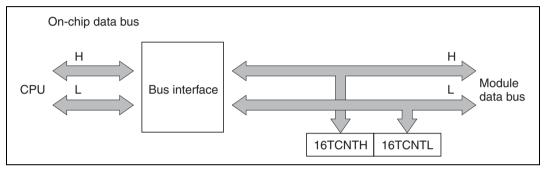


Figure 8.4 16TCNT Access Operation [CPU → 16TCNT (Word)]

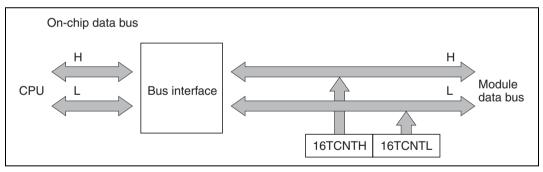
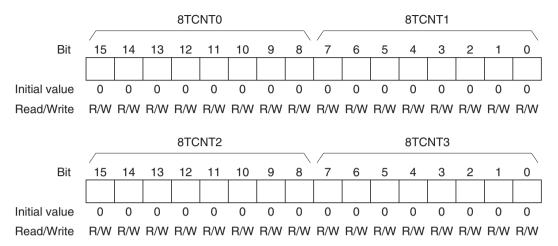



Figure 8.5 Access to Timer Counter (CPU Reads 16TCNT, Word)

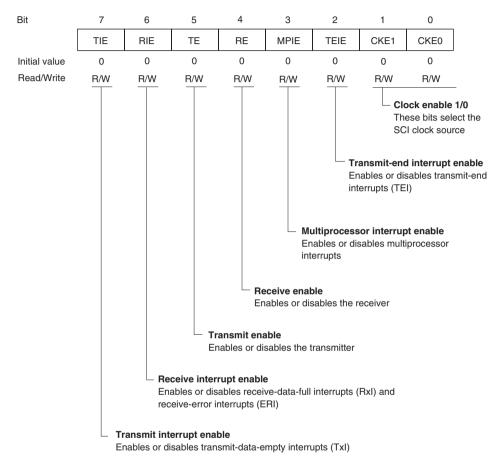
9.2 **Register Descriptions**

9.2.1 Timer Counters (8TCNT)

The timer counters (8TCNT) are 8-bit readable/writable up-counters that increment on pulses generated from an internal or external clock source. The clock source is selected by clock select bits 2 to 0 (CKS2 to CKS0) in the timer control register (8TCR). The CPU can always read or write to the timer counters.

The 8TCNT0 and 8TCNT1 pair, and the 8TCNT2 and 8TCNT3 pair, can each be accessed as a 16-bit register by word access.

8TCNT can be cleared by an input capture signal or compare match signal. Counter clear bits 1 and 0 (CCLR1 and CCLR0) in 8TCR select the method of clearing.


When 8TCNT overflows from H'FF to H'00, the overflow flag (OVF) in the timer control/status register (8TCSR) is set to 1.

Each 8TCNT is initialized to H'00 by a reset and in standby mode.

12.2.6 Serial Control Register (SCR)

SCR register enables or disables the SCI transmitter and receiver, enables or disables serial clock output in asynchronous mode, enables or disables interrupts, and selects the transmit/receive clock source.

The CPU can always read and write SCR. SCR is initialized to H'00 by a reset and in standby mode.

13.4 Usage Notes

The following points should be noted when using the SCI as a smart card interface.

Receive Data Sampling Timing and Receive Margin in Smart Card Interface Mode: In smart card interface mode, the SCI operates on a base clock with a frequency of 372 times the transfer rate. In reception, the SCI synchronizes internally with the fall of the start bit, which it samples on the base clock. Receive data is latched at the rising edge of the 186th base clock pulse. The timing is shown in figure 13.11.

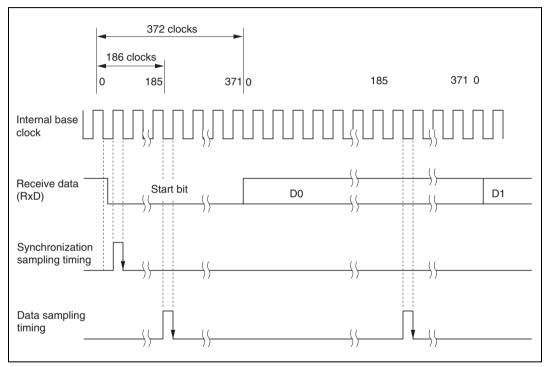


Figure 13.11 Receive Data Sampling Timing in Smart Card Interface Mode

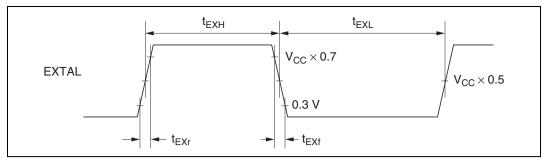


Figure 17.6 External Clock Input Timing

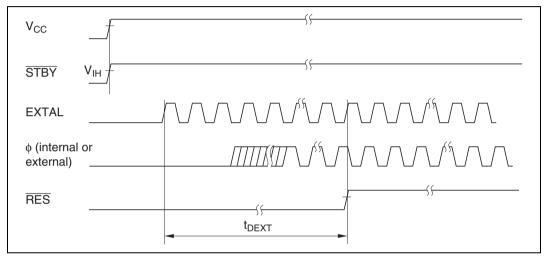
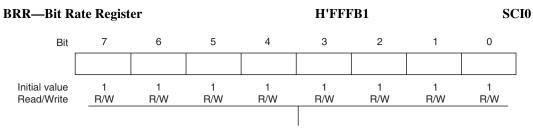


Figure 17.7 External Clock Output Settling Delay Timing

Appendix A Instruction Set

A.1 Instruction List

Operand Notation


Symbol	Description
Rd	General destination register
Rs	General source register
Rn	General register
ERd	General destination register (address register or 32-bit register)
ERs	General source register (address register or 32-bit register)
ERn	General register (32-bit register)
(EAd)	Destination operand
(EAs)	Source operand
PC	Program counter
SP	Stack pointer
CCR	Condition code register
N	N (negative) flag in CCR
Z	Z (zero) flag in CCR
V	V (overflow) flag in CCR
С	C (carry) flag in CCR
disp	Displacement
\rightarrow	Transfer from the operand on the left to the operand on the right, or transition from the state on the left to the state on the right
+	Addition of the operands on both sides
_	Subtraction of the operand on the right from the operand on the left
×	Multiplication of the operands on both sides
÷	Division of the operand on the left by the operand on the right
\wedge	Logical AND of the operands on both sides
\vee	Logical OR of the operands on both sides
\oplus	Exclusive logical OR of the operands on both sides
7	NOT (logical complement)
(), <>	Contents of operand
	neral registers include 8-bit registers (R0H to R7H and R0L to R7L) and 16-bit registers

(R0 to R7 and E0 to E7).

7. System control instructions

					essi tion	-)								No Stat	
	Operand Size	×		@ERn	@(d, ERn)	@-ERn/@ERn+	la	@(d, PC)	@aa		-		Con	ditio	on C	Code	e	Normal	Advanced
Mnemonic	ő	XX#	å	0	0	ø	@ aa	0	ø		Operation	I	н	Ν	z	v	С	Ň	Ad
TRAPA #x:2	-									2	$PC \rightarrow @-SP$ $CCR \rightarrow @-SP$ $ \rightarrow PC$	1						14	16
RTE	-										$CCR \leftarrow @SP+$ $PC \leftarrow @SP+$	\$	\$	\$	\$	\$	\$	1	0
SLEEP	-										Transition to powerdown state	-	-	-	-	-	-	2	2
LDC #xx:8, CCR	В	2									$#xx:8 \rightarrow CCR$	€	\$	\$	\$	\$	\$	2	2
LDC Rs, CCR	В		2								$Rs8 \rightarrow CCR$	\$	\$	\$	\$	\$	\$	2	2
LDC @ERs, CCR	w			4							$@ERs\toCCR$	\$	\$	\$	\$	\$	\$	6	3
LDC @(d:16, ERs), CCR	W				6						@(d:16, ERs) → CCR	\$	\$	\$	\$	\$	\$	8	3
LDC @(d:24, ERs), CCR	W				10						@(d:24, ERs) → CCR	\$	\$	\$	\$	\$	\$	1	2
LDC @ERs+, CCR	W					4					@ERs → CCR ERs32+2 → ERs32	\$	\$	\$	\$	\$	\$	8	3
LDC @aa:16, CCR	W						6				@aa:16 → CCR	\$	\$	\$	\$	\$	\$	8	3
LDC @aa:24, CCR	w						8				@aa:24 → CCR	\$	\$	\$	\$	\$	\$	1	0
STC CCR, Rd	В		2								$CCR \rightarrow Rd8$		—	_		—	_	2	2
STC CCR, @ERd	W			4							$CCR \to @ERd$	—	—	-	_	—	-	6	3
STC CCR, @(d:16, ERd)	W				6						$CCR \rightarrow @(d:16, ERd)$	-	-	-	—	-	-	8	3
STC CCR, @(d:24, ERd)	W				10						$CCR \rightarrow @(d:24, ERd)$	—	—	-	—	—	-	1	2
STC CCR, @-ERd	w					4					$\begin{array}{l} ERd32-2 \rightarrow ERd32\\ CCR \rightarrow @ERd \end{array}$	_	_	_	_	_	-	8	3
STC CCR, @aa:16	W						6				$CCR \rightarrow @aa:16$		-	-	-	-	-	8	}
STC CCR, @aa:24	w						8				$CCR \rightarrow @aa:24$		-	_		-	-	1	0
ANDC #xx:8, CCR	В	2									$CCR \land \#xx:8 \rightarrow CCR$	\$	\$	\$	\$	\$	\$	2	2
ORC #xx:8, CCR	В	2									$CCR \lor \#xx:8 \rightarrow CCR$	\updownarrow	\$	\$	\$	\$	\$	2	2
XORC #xx:8, CCR	В	2									$CCR \oplus \#xx:8 \rightarrow CCR$	\$	\$	\$	\$	\$	\$	2	2
NOP										2	$PC \gets PC+2$	_	_	_		_	_	2	2

Address	Register	Data Bus	Dit Nomeo									
(Low)	Name	Width	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name	
H'EE020	ABWCR	8	ABW7	ABW6	ABW5	ABW4	ABW3	ABW2	ABW1	ABW0	Bus controller	
H'EE021	ASTCR	8	AST7	AST6	AST5	AST4	AST3	AST2	AST1	AST0	_	
H'EE022	WCRH	8	W71	W70	W61	W60	W51	W50	W41	W40	_	
H'EE023	WCRL	8	W31	W30	W21	W20	W11	W10	W01	W00	_	
H'EE024	BCR	8	ICIS1	ICIS0	* ¹	* ¹	* ¹	* ¹	RDEA	WAITE	_	
H'EE025	_		_	_		_	_	_	_	_	_	
H'EE026	Reserved a	area (aco	cess prohi	bited)								
H'EE027												
H'EE028												
H'EE029												
H'EE02A	-											
H'EE02B	-											
H'EE02C	-											
H'EE02D	-											
H'EE02E	-											
H'EE02F	-											
H'EE030	Reserved a	area (aco	cess prohi	bited)								
H'EE031	-											
H'EE032	-											
H'EE033	-											
H'EE034	-											
H'EE035	-											
H'EE036	-											
H'EE037												
H'EE038												
H'EE039												
H'EE03A												
H'EE03B												
H'EE03C	-											
H'EE03D	-											
TELOOD												

Serial communication bit rate setting

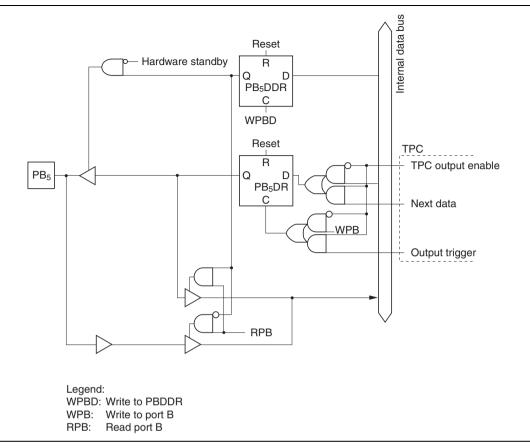


Figure C.7 (d) Port B Block Diagram (Pin PB₅)

Modes 3 and 4: Figure D.2 is a timing diagram for the case in which $\overline{\text{RES}}$ goes low during an external memory access in mode 3 or 4. As soon as $\overline{\text{RES}}$ goes low, all ports are initialized to the input state. $\overline{\text{AS}}$, $\overline{\text{RD}}$, $\overline{\text{HWR}}$, $\overline{\text{LWR}}$, and $\overline{\text{CS}}_0$ go high, and D_{15} to D_0 go to the high-impedance state. The address bus is initialized to the low output level 2.5 ϕ clock cycles after the low level of $\overline{\text{RES}}$ is sampled. However, when PA₄ to PA₆ are used as address bus pins, or when P8₃ to P8₁ and PB₀ to PB₃ are used as CS output pins, they go to the high-impedance state at the same time as $\overline{\text{RES}}$ goes low. Clock pin P6₄/ ϕ goes to the output state at the next rise of ϕ after $\overline{\text{RES}}$ goes low.

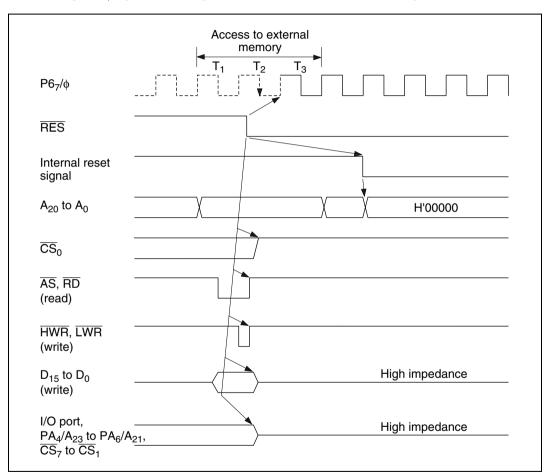


Figure D.2 Reset during Memory Access (Modes 3 and 4)