

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	25MHz
Connectivity	SCI, SmartCard
Peripherals	PWM, WDT
Number of I/O	35
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/d13008vf25v

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Appe	endix G	Package Dimensions	630
Appe	endix H	Comparison of H8/300H Series Product Specifications	632
		es between H8/3067 and H8/3062 Group, H8/3048 Group,	
	H8/3006	and H8/3007, and H8/3008	632
H.2	Comparis	on of Pin Functions of 100-Pin Package Products (FP-100B, TFP-100B)	635

Section 14 A/D Converter

Table 14.1	A/D Converter Pins	413
Table 14.2	A/D Converter Registers	414
Table 14.3	Analog Input Channels and A/D Data Registers (ADDRA to ADDRD)	415
Table 14.4	A/D Conversion Time (Single Mode)	426
Table 14.5	Analog Input Pin Ratings	429

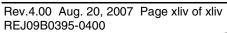
Section 15 D/A Converter

Table 15.1	D/A Converter Pins	437
Table 15.2	D/A Converter Registers	437

Section 16 RAM

Table 16.1	H8/3008 On-Chip RAM Specifications	443
Table 16.2	System Control Register	444

Section 17 Clock Pulse Generator


Table 17.1 (1)	Damping Resistance Value	449
Table 17.1 (2)	External Capacitance Values	450
Table 17.2	Crystal Resonator Parameters	450
Table 17.3	Clock Timing (Preliminary)	452
Table 17.4	Frequency Division Register	454

Section 18 Power-Down State

Table 18.1	Power-Down State and Module Standby Function	458
Table 18.2	Control Register	459
Table 18.3	Clock Frequency and Waiting Time for Clock to Settle	466
Table 18.4	ϕ Pin State in Various Operating States	470

Section 19 Electrical Characteristics

Table 19.1	Absolute Maximum Ratings	471
Table 19.2	DC Characteristics (1)	472
Table 19.2	DC Characteristics (2)	475
Table 19.3	Permissible Output Currents	477
Table 19.4	Clock Timing	479
Table 19.5	Control Signal Timing	480
Table 19.6	Bus Timing	481
Table 19.7	Timing of On-Chip Supporting Modules	483
Table 19.8	A/D Conversion Characteristics	485
Table 19.9	D/A Conversion Characteristics	487

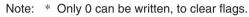


Table 2.4 Arithmetic Operation Instructions

Instruction	Size*	Function
ADD,SUB	B/W/L	$Rd \pm Rs \rightarrow Rd, Rd \pm \#IMM \rightarrow Rd$
		Performs addition or subtraction on data in two general registers, or on immediate data and data in a general register. (Immediate byte data cannot be subtracted from data in a general register. Use the SUBX or ADD instruction.)
ADDX,	В	$Rd \pm Rs \pm C \to Rd, Rd \pm \#IMM \pm C \to Rd$
SUBX		Performs addition or subtraction with carry or borrow on data in two general registers, or on immediate data and data in a general register.
INC,	B/W/L	$Rd \pm 1 \rightarrow Rd, Rd \pm 2 \rightarrow Rd$
DEC		Increments or decrements a general register by 1 or 2. (Byte operands can be incremented or decremented by 1 only.)
ADDS,	L	$Rd \pm 1 \to Rd, Rd \pm 2 \to Rd, Rd \pm 4 \to Rd$
SUBS		Adds or subtracts the value 1, 2, or 4 to or from data in a 32-bit register.
DAA,	В	Rd decimal adjust \rightarrow Rd
DAS		Decimal-adjusts an addition or subtraction result in a general register by referring to CCR to produce 4-bit BCD data.
MULXU	B/W	$Rd \times Rs \to Rd$
		Performs unsigned multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.
MULXS	B/W	$Rd \times Rs \rightarrow Rd$
		Performs signed multiplication on data in two general registers: either 8 bits \times 8 bits \rightarrow 16 bits or 16 bits \times 16 bits \rightarrow 32 bits.

. <u>.</u>... -

Bit	7	6	5	4	3	2	1	0
			IRQ5F	IRQ4F	IRQ3F	IRQ2F	IRQ1F	IRQ0F
Initial value	0	0	0	0	0	0	0	0
Read/Write			R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*
	Reserv	ed bits				RQ₀ flags s indicate equest sta	IRQ ₅ to IF	≀Q ₀ flag

ISR is initialized to H'00 by a reset and in hardware standby mode.

Bits 7 and 6—Reserved: These bits can not be modified and are always read as 0.

Bits 5 to 0—IRQ₅ **to IRQ**₀ **Flags (IRQ5F to IRQ0F):** These bits indicate the status of IRQ₅ to IRQ₀ interrupt requests.

Bits 5 to 0	
IRQ5F to IRQ0F	Description

0	[Clearing conditions] 0 is written in IRQnF after reading the IRQnF flag when IRQnF = 1 IRQnSC = 0, IRQn input is high, and interrupt exception handling is IRQnSC = 1 and IRQn interrupt exception handling is carried out.	
1	[Setting conditions] IRQnSC = 0 and \overline{IRQn} input is low. IRQnSC = 1 and \overline{IRQn} input changes from high to low.	

Note: n = 5 to 0

5.2.4 IRQ Enable Register (IER)

IER is an 8-bit readable/writable register that enables or disables IRQ₅ to IRQ₀ interrupt requests.

Bit	7	6	5	4	3	2	1	0	_	
			IRQ5E	IRQ4E	IRQ3E	IRQ2E	IRQ1E	IRQ0E		
Initial value	0	0	0	0	0	0	0	0	-	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Reserved bits IRQ ₅ to IRQ ₀ enable These bits enable or disable IRQ ₅ to IRQ ₀ interruption									

IER is initialized to H'00 by a reset and in hardware standby mode.

5.4.3 Interrupt Response Time

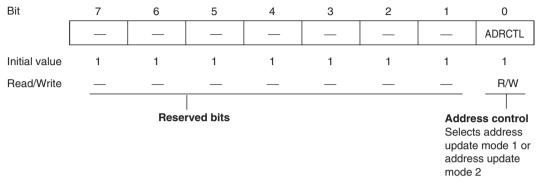
Table 5.5 indicates the interrupt response time from the occurrence of an interrupt request until the first instruction of the interrupt service routine is executed.

Table 5.5 Interrupt Response Time

				Extern	al Memory	
		On-Chip	8-1	Bit Bus	16-	Bit Bus
No.	Item	Memory	2 States	3 States	2 States	3 States
1	Interrupt priority decision	2* ¹	2* ¹	2* ¹	2* ¹	2* ¹
2	Maximum number of states until end of current instruction	1 to 23	1 to 27	1 to 31*4	1 to 23	1 to 25* ⁴
3	Saving PC and CCR to stack	4	8	12* ⁴	4	6* ⁴
4	Vector fetch	4	8	12* ⁴	4	6* ⁴
5	Instruction fetch* ²	4	8	12* ⁴	4	6* ⁴
6	Internal processing*3	4	4	4	4	4
Tota		19 to 41	31 to 57	43 to 73	19 to 41	25 to 49

Notes: 1. 1 state for internal interrupts.

2. Prefetch after the interrupt is accepted and prefetch of the first instruction in the interrupt service routine.


3. Internal processing after the interrupt is accepted and internal processing after vector fetch.

4. The number of states increases if wait states are inserted in external memory access.

6.2.7 Address Control Register (ADRCR)

ADRCR is an 8-bit readable/writable register that selects either address update mode 1 or address update mode 2 as the address output method.

ADRCR is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

Bits 7 to 1—Reserved: Read-only bits, always read as 1.

Bit 0—Address Control (ADRCTL): Selects the address output method.

Bit 0 ADRCTL	Description	
0	Address update mode 2 is selected	
1	Address update mode 1 is selected	(Initial value)

6. Bus Controller

16-Bit, Two-State-Access Areas: Figures 6.14 to 6.16 show the timing of bus control signals for a 16-bit, two-state-access area. In these areas, the upper data bus (D_{15} to D_8) is used in accesses to even addresses and the lower data bus (D_7 to D_0) in accesses to odd addresses. Wait states cannot be inserted.

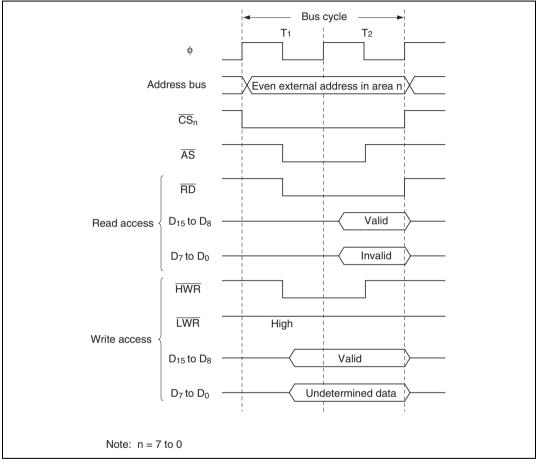


Figure 6.14 Bus Control Signal Timing for 16-Bit, Two-State-Access Area (1) (Byte Access to Even Address)

7.7 Port A

7.7.1 Overview

Port A is an 8-bit input/output port that is also used for output (TP_7 to TP_0) from the programmable timing pattern controller (TPC), input and output (TIOCB₂, TIOCA₂, TIOCB₁, TIOCA₁, TIOCB₀, TIOCA₀, TCLKD, TCLKC, TCLKB, TCLKA) by the 16-bit timer, clock input (TCLKD, TCLKC, TCLKB, TCLKB, TCLKA) to the 8-bit timer, and address output (A_{23} to A_{20}). A reset or hardware standby transition leaves port A as an input port, except that in modes 3 and 4, one pin is always used for A_{20} output. See tables 7.12 to 7.14 for the selection of pin functions.

Usage of pins for TPC, 16-bit timer, and 8-bit timer input and output is described in the sections on those modules. For output of address bits A_{23} to A_{20} in modes 3 and 4, see section 6.2.4, Bus Release Control Register (BRCR). Pins not assigned to any of these functions are available for generic input/output. Figure 7.6 shows the pin configuration of port A.

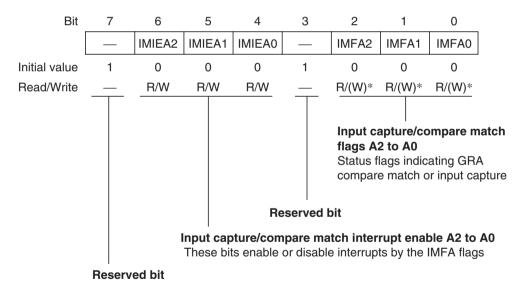
Pins in port A can drive one TTL load and a 30-pF capacitive load. They can also drive a darlington transistor pair. Port A has Schmitt-trigger inputs.

Table 7.13 Port A Pin Functions (Modes 3 and 4)

Pin Pin Functions and Selection Method A₂₀ Always used as A₂₀ output. Pin function A₂₀ output

PA ₆ /TP ₆ / TIOCA ₂ /A ₂₁		Bit PWM2 in TMDR, bits IOA2 to IOA0 in TIOR2, bit NDER6 in NDERA, bit A21E in BRCR, and bit PA ₆ DDR select the pin function as follows.							
	A21E		1				0		
	16-bit timer channel 2 settings	(1) in table below	(2) in table below						
	PA₀DDR		0	1		1			
	NDER6			0		1			
	Pin function	TIOCA ₂ output	PA ₆ input	PA outp	0	TP ₆ output	A ₂₁ output		
			TIOCA ₂ input*						
	Note: * TIOCA ₂ input when IOA2 = 1.								
	16-bit timer channe	(2) (1) (2		(2)	(1)				
	PWM2	0				1			
	IOA2		0		1	—			
	IOA1	0	0	1	_				
	IOA0	0	1	_		—			

When bit PWM1 is set to 1 to select PWM mode, pin $TIOCA_1$ becomes a PWM output pin. The output goes to 1 at compare match with GRA1, and to 0 at compare match with GRB1.


Bit 0—PWM Mode 0 (PWM0): Selects whether channel 0 operates normally or in PWM mode.

Bit 0 PWM0	Description	
0	Channel 0 operates normally	(Initial value)
1	Channel 0 operates in PWM mode	

When bit PWM0 is set to 1 to select PWM mode, pin $TIOCA_0$ becomes a PWM output pin. The output goes to 1 at compare match with GRA0, and to 0 at compare match with GRB0.

8.2.4 Timer Interrupt Status Register A (TISRA)

TISRA is an 8-bit readable/writable register that indicates GRA compare match or input capture and enables or disables GRA compare match and input capture interrupt requests.

Note: * Only 0 can be written, to clear the flag.

TISRA is initialized to H'88 by a reset and in standby mode.

Bit 7—Reserved: This bit cannot be modified and is always read as 1.

10.2.6 Next Data Register B (NDRB)

NDRB is an 8-bit readable/writable register that stores the next output data for TPC output groups 3 and 2 (pins TP_{15} to TP_8). During TPC output, when an 16-bit timer compare match event specified in TPCR occurs, NDRB contents are transferred to the corresponding bits in PBDR. The address of NDRB differs depending on whether TPC output groups 2 and 3 have the same output trigger or different output triggers.

NDRB is initialized to H'00 by a reset and in hardware standby mode. It is not initialized in software standby mode.

Same Trigger for TPC Output Groups 2 and 3: If TPC output groups 2 and 3 are triggered by the same compare match event, the NDRB address is H'FFFA4. The upper 4 bits belong to group 3 and the lower 4 bits to group 2. Address H'FFFA6 consists entirely of reserved bits that cannot be modified and always read 1.

Address H'FFFA4

Bit	7	6	5	4	3	2	1	0
Bit		-	-	-	-			_
	NDR15	NDR14	NDR13	NDR12	NDR11	NDR10	NDR9	NDR8
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
		Next data	15 to 12			Next data	11 to 8	
	These bits store the next output These bits store the next output							
		data for TF	PC output	group 3		data for TI	PC output	group 2
Address H'FFFA	46							
Bit	7	6	5	4	0	0	4	0
DIL	/	0	5	4	3	2	, I	0
	_	—	—	_	_	_	_	_
Initial value	1	1	1	1	1	1	1	1
Read/Write	_	_	_	_	_			_
				Deeer				

Reserved bits

10.3.3 Normal TPC Output

Sample Setup Procedure for Normal TPC Output: Figure 10.4 shows a sample procedure for setting up normal TPC output.

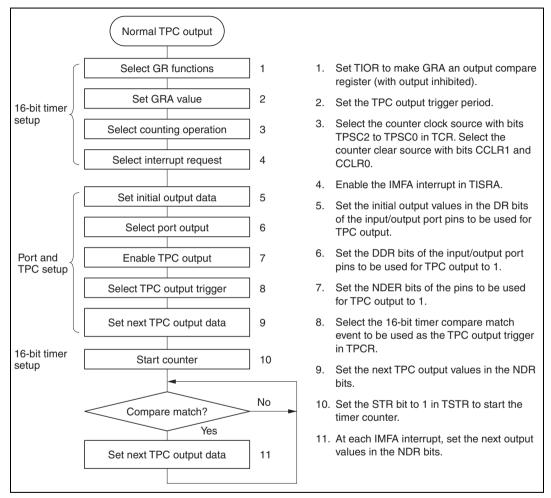
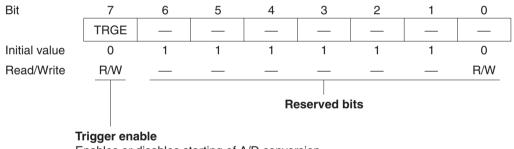


Figure 10.4 Setup Procedure for Normal TPC Output (Example)

12.1.3 Pin Configuration

The SCI has serial pins for each channel as listed in table 12.1.

Table 12.1 SCI Pins


Channel	Name	Abbreviation	I/O	Function
0	Serial clock pin	SCK₀	Input/output	SCI ₀ clock input/output
	Receive data pin	RxD_{0}	Input	SCI_0 receive data input
	Transmit data pin	TxD₀	Output	SCI ₀ transmit data output
1	Serial clock pin	SCK	Input/output	SCI, clock input/output
	Receive data pin	RxD ₁	Input	SCI, receive data input
	Transmit data pin	TxD ₁	Output	SCI, transmit data output

Bits 2 to 0—Channel Select 2 to 0 (CH2 to CH0): These bits and the SCAN bit select the analog input channels. Clear the ADST bit to 0 before changing the channel selection.

Group Selection	Cha	nnel Selection	Description				
CH2	CH1	CH0	Single Mode	Scan Mode			
0	0	0	AN_{o} (Initial value)	AN _o			
		1	AN ₁	AN ₀ , AN ₁			
	1	0	AN ₂	AN ₀ to AN ₂			
		1	AN ₃	AN ₀ to AN ₃			
1	0	0	AN ₄	AN ₄			
		1	AN ₅	AN ₄ , AN ₅			
	1	0	AN ₆	AN ₄ to AN ₆			
		1	AN ₇	AN ₄ to AN ₇			

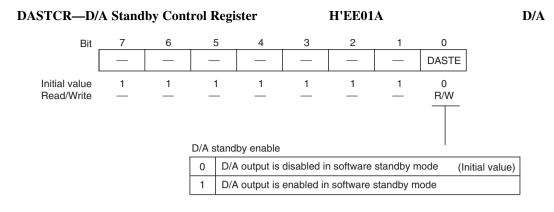
14.2.3 A/D Control Register (ADCR)

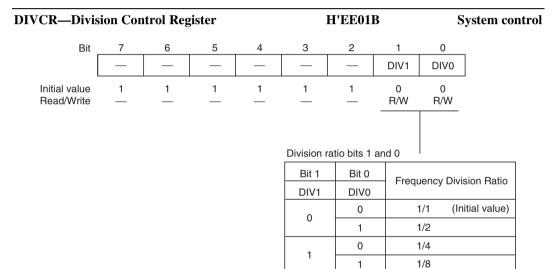
Enables or disables starting of A/D conversion by an external trigger or 8-bit timer compare match

ADCR is an 8-bit readable/writable register that enables or disables starting of A/D conversion by external trigger input or an 8-bit timer compare match signal. ADCR is initialized to H'7F by a reset and in standby mode.

19.4 A/D Conversion Characteristics

Table 19.8 lists the A/D conversion characteristics.


Table 19.8 A/D Conversion Characteristics


Condition: $T_a = -20^{\circ}C$ to +75°C (regular specifications), $T_a = -40^{\circ}C$ to +85°C (wide-range specifications)

Condition A: $V_{cc} = 3.0$ to 3.6 V, $AV_{cc} = 3.0$ to 3.6 V, $V_{REF} = 3.0$ to AV_{cc} , $V_{ss} = AV_{ss} = 0$ V, fmax = 25 MHz

- Condition B: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $AV_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{REF} = 4.5 \text{ to } AV_{cc}$, $V_{ss} = AV_{ss} = 0 \text{ V}$, fmax = 25 MHz
- Condition C: $V_{cc} = 5.0 \text{ V} \pm 10\%$, $AV_{cc} = 5.0 \text{ V} \pm 10\%$, $V_{REF} = 4.5$ to AV_{cc} , $V_{ss} = AV_{ss} = 0 \text{ V}$, fmax = 25 MHz

				Cond	dition			
			Α			B and	С	-
Item		Min	Тур	Max	Min	Тур	Max	Unit
Conversion	Resolution	10	10	10	10	10	10	bits
time: 134 states	Conversion time (single mode)	5.36		_	5.36		—	μS
olaloo	Analog input capacitance		_	20	_	_	20	pF
	$\label{eq:permissible} Permissible \varphi \leq 13 \ MHz$	_	_	10	_	_	10	kΩ
	signal-source $\phi > 13 \text{ MHz}$ impedance	—	—	5	—	—	5	kΩ
	Nonlinearity error		_	±3.5	_	_	±3.5	LSB
	Offset error		_	±3.5		_	±3.5	LSB
	Full-scale error			±3.5		—	±3.5	LSB
	Quantization error			±0.5			±0.5	LSB
	Absolute accuracy	_	_	±4.0	_	_	±4.0	LSB

P4PCR—Port 4 Input Pull-Up MOS Control Register H'EE03E

Bit	7	6	5	4	3	2	1	0
	P47PCR	P46PCR	P4₅PCR	P44PCR	P43PCR	P42PCR	P41PCR	P40PCR
Initial value Read/Write	0 R/W							

Port 4 input pull-up MOS control 7 to 0

0	Input pull-up transistor is off
1	Input pull-up transistor is on

Note: Valid when the corresponding P4DDR bit is cleared to 0 (designating generic input).

C.5 Port 9 Block Diagrams

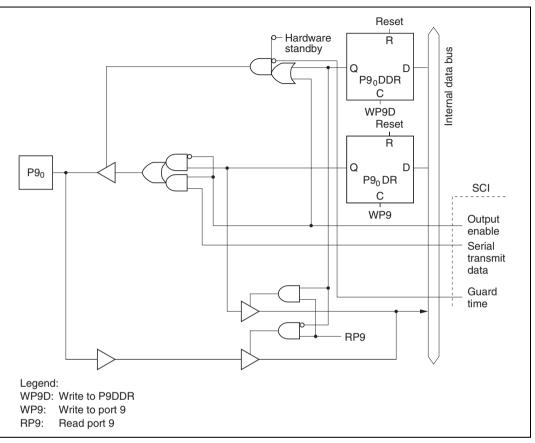


Figure C.5 (a) Port 9 Block Diagram (Pin P9₀)

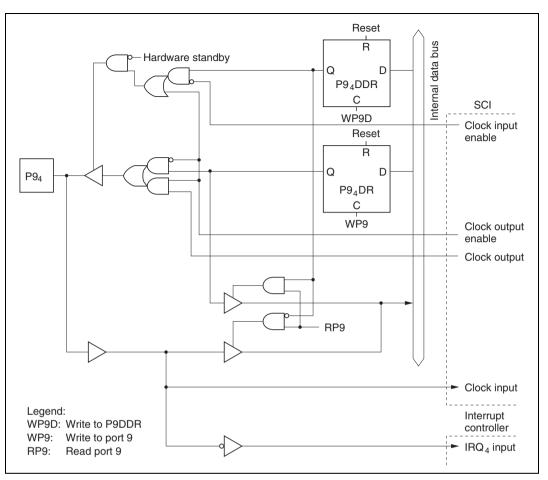


Figure C.5 (e) Port 9 Block Diagram (Pin P9₄)

