Infineon Technologies - CY7C68013A-56BAXC Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

 \mathbf{X} F

Details	
Product Status	Active
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I ² C, USB, USART
Number of I/O	24
Voltage - Supply	3V ~ 3.6V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	56-VFBGA
Supplier Device Package	56-VFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68013a-56baxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the application note AN65209 - Getting Started with FX2LP.

- Overview: USB Portfolio, USB Roadmap
- USB 2.0 Product Selectors: FX2LP, AT2LP, NX2LP-Flex, SX2
- Application notes: Cypress offers a large number of USB application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with FX2LP are:
 - AN65209 Getting Started with FX2LP
 - □ AN15456 Guide to Successful EZ-USB[®] FX2LP[™] and EZ-USB FX1[™] Hardware Design and Debug
 - □ AN50963 EZ-USB[®] FX1[™]/FX2LP[™] Boot Options
 - □ AN66806 EZ-USB[®] FX2LP[™] GPIF Design Guide
 - □ AN61345 Implementing an FX2LPTM- FPGA Interface
 - □ AN57322 Interfacing SRAM with FX2LP over GPIF
 - AN4053 Streaming Data through Isochronous/Bulk Endpoints on EZ-USB[®] FX2 and EZUSB FX2LP
 - □ AN63787 EZ-USB[®] FX2LP[™] GPIF and Slave FIFO Configuration Examples using 8-bit Asynchronous Interface

For complete list of Application notes, click here.

- Code Examples: USB Hi-Speed
- Technical Reference Manual (TRM):
 EZ-USB FX2LP Technical Reference Manual
- Reference Designs:
 - CY4661 External USB Hard Disk Drives (HDD) with Fingerprint Authentication Security
 - FX2LP DMB-T/H TV Dongle reference design
- Models: IBIS

EZ-USB FX2LP Development Kit

The CY3684 EZ-USB FX2LP Development Kit is a complete development resource for FX2LP. It provides a platform to develop and test custom projects using FX2LP. The development kit contains collateral materials for the firmware, hardware, and software aspects of a design using FX2LP.

GPIF™ Designer

FX2LP[™] General Programmable Interface (GPIF) provides an independent hardware unit, which creates the data and control signals required by an external interface. FX2LP GPIF Designer allows users to create and modify GPIF waveform descriptors for EZ-USB FX2/ FX2LP family of chips using a graphical user interface. Extensive discussion of general GPIF discussion and programming using GPIF Designer is included in *FX2LP Technical Reference Manual* and *GPIF Designer User Guide*, distributed with GPIF Designer. *AN66806* - *Getting Started with EZ-USB*[®] *FX2LP*[™] *GPIF* can be a good starting point.

Table 4. Individual FIFO/GPIF Interrupt Sources

Priority	INT4VEC Value	Source	Notes			
1	80	EP2PF	Endpoint 2 programmable flag			
2	84	EP4PF	Endpoint 4 programmable flag			
3	88	EP6PF	Endpoint 6 programmable flag			
4	8C	EP8PF	Endpoint 8 programmable flag			
5	90	EP2EF	Endpoint 2 empty flag ^[3]			
6	94	EP4EF	Endpoint 4 empty flag			
7	98	EP6EF	Endpoint 6 empty flag			
8	9C	EP8EF	Endpoint 8 empty flag			
9	A0	EP2FF	Endpoint 2 full flag			
10	A4	EP4FF	Endpoint 4 full flag			
11	A8	EP6FF	Endpoint 6 full flag			
12	AC	EP8FF	Endpoint 8 full flag			
13	B0	GPIFDONE	GPIF operation complete			
14	B4	GPIFWF	GPIF waveform			

If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP register), the FX 2LP substitutes its INT4VEC byte. Therefore, if the high byte ("page") of a jump-table address is preloaded at location 0x0054, the automatically inserted INT4VEC byte at 0x0055 directs the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX2LP pushes the program counter to its stack then jumps to address 0x0053, where it expects to find a "jump" instruction to the interrupt service routine (ISR).

Note

Errata: In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction. For more information, see the "Errata" on page 65.

Reset and Wakeup

Reset Pin

The input pin, RESET#, resets the FX2LP when asserted. This pin has hysteresis and is active LOW. When a crystal is used with the CY7C680xxA, the reset period must enable stabilization of the crystal and the PLL. This reset period must be approximately 5 ms after VCC reaches 3.0 V. If the crystal input pin is driven by a clock signal, the internal PLL stabilizes in 200 μ s after VCC has reached 3.0 V^[4].

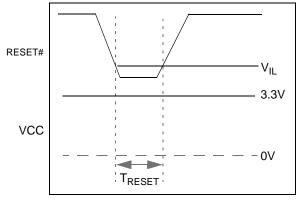

RESET# VCC VCC Power on Reset

Table 5. Reset Timing Values

Condition	T _{RESET}				
Power-on reset with crystal	5 ms				
Power-on reset with external clock	200 μ s + clock stability time				
Powered reset	200 μs				

Figure 2 on page 9 shows a power-on reset condition and a reset applied during operation. A power-on reset is defined as the time reset that is asserted while power is being applied to the circuit. A powered reset is when the FX2LP is powered on and operating and the RESET# pin is asserted.

n is driven by after VCC has Cypress provides an application note which describes and recommends power-on reset implementation. For more information about reset implementation for the FX2 family of products, visit http://www.cypress.com. Figure 2. Reset Timing Plots

Powered Reset

Wakeup Pins

The 8051 puts itself and the rest of the chip into a power-down mode by setting PCON.0 = 1. This stops the oscillator and PLL. When WAKEUP is asserted by external logic, the oscillator restarts after the PLL stabilizes, and the 8051 receives a wakeup interrupt. This applies irrespective of whether FX2LP is connected to the USB.

The FX2LP exits the power-down (USB suspend) state by using one of the following methods:

- USB bus activity (if D+/D- lines are left floating, noise on these lines may indicate activity to the FX2LP and initiate a wakeup)
- External logic asserts the WAKEUP pin
- External logic asserts the PA3/WU2 pin

The second wakeup pin, WU2, can also be configured as a general-purpose I/O pin. This enables a simple external R-C network to be used as a periodic wakeup source. WAKEUP is by default active LOW.

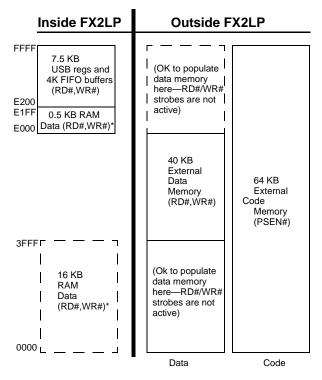


Figure 4. External Code Memory, EA = 1

Register Addresses

FFFF						
	4 KB EP2-EP8					
	buffers					
	(8 x 512)					
	(8 X 512)					
F000 EFFF						
FFFF						
	2 KB RESERVED					
E800						
E7FF						
E7C0	64 BEP1IN					
E7BF						
E780	64 Bytes EP1OUT					
E77F						
E740	64 Bytes EP0 IN/OUT					
E73F						
E700	64 Bytes RESERVED					
E6FF	2051 Addresseeble Degisters					
	8051 Addressable Registers (512)					
E500	(312)					
E4FF	D					
E480	Reserved (128)					
E47F						
E400	128 Bytes GPIF Waveforms					
E3FF	December 1 (540)					
E200	Reserved (512)					
E1FF						
	512 Bytes					
	,					
F 000	8051 xdata RAM					
E000						

In the Slave (S) mode, FX2LP accepts either an internally derived clock or externally supplied clock (IFCLK, max frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock must be present before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit and a Slave FIFO Output Enable signal (SLOE) that enables data of the selected width. External logic must ensure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signal SLCS#.

GPIF and FIFO Clock Rates

An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register inverts the IFCLK signal whether internally or externally sourced.

GPIF

The GPIF is a flexible 8-bit or 16-bit parallel interface driven by a user-programmable finite state machine. It enables the CY7C68013A/15A to perform local bus mastering and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia.

The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that is executed to perform the desired data move between the FX2LP and the external device.

Six Control OUT Signals

The 100-pin and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock).

Six Ready IN Signals

The 100-pin and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1.

Nine GPIF Address OUT Signals

Nine GPIF address lines are available in the 100-pin and 128-pin packages, GPIFADR[8..0]. The GPIF address lines enable indexing through up to a 512-byte block of RAM. If more address lines are needed, then I/O port pins are used.

Long Transfer Mode

In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to 2³² transactions. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction.

ECC Generation^[8]

The EZ-USB can calculate ECCs (Error Correcting Codes) on data that passes across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calculated over 256 bytes (SmartMedia Standard); and one ECC calculated over 512 bytes.

The ECC can correct any one-bit error or detect any two-bit error.

ECC Implementation

The two ECC configurations are selected by the ECCM bit:

ECCM = 0

Two 3-byte ECCs, each calculated over a 256-byte block of data. This configuration conforms to the SmartMedia Standard.

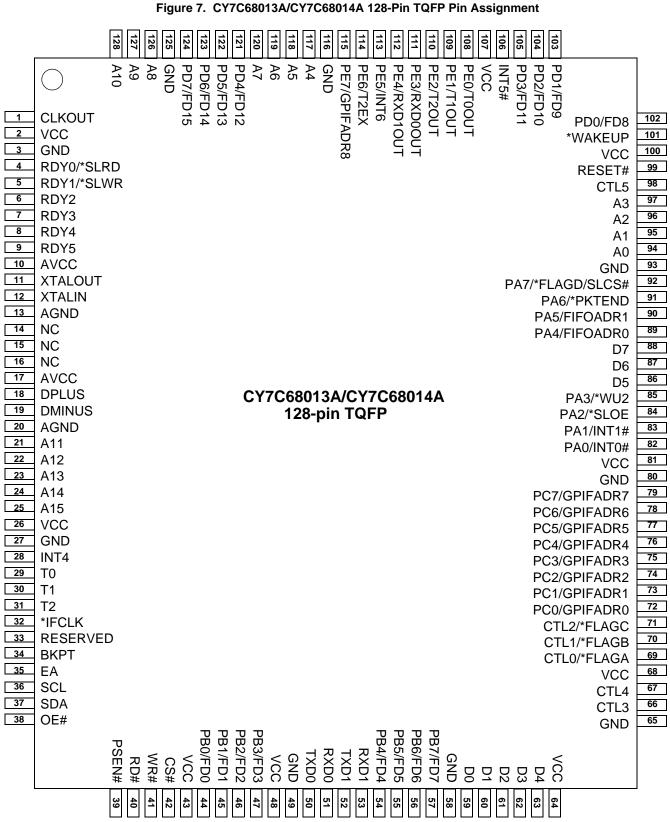
Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 256 bytes of data is calculated and stored in ECC1. The ECC for the next 256 bytes is stored in ECC2. After the second ECC is calculated, the values in the ECCx registers do not change until ECCRESET is written again, even if more data is subsequently passed across the interface.

ECCM = 1

One 3-byte ECC calculated over a 512-byte block of data.

Write any value to ECCRESET then pass data across the GPIF or Slave FIFO interface. The ECC for the first 512 bytes of data is calculated and stored in ECC1; ECC2 is unused. After the ECC is calculated, the values in ECC1 do not change even if more data is subsequently passed across the interface, till ECCRESET is written again.

USB Uploads and Downloads


The core has the ability to directly edit the data contents of the internal 16-KB RAM and of the internal 512-byte scratch pad RAM via a vendor-specific command. This capability is normally used when soft downloading the user code and is available only to and from the internal RAM, only when the 8051 is held in reset. The available RAM spaces are 16 KB from 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad data RAM)^[9].

Notes

8. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.

^{9.} After the data is downloaded from the host, a "loader" can execute from internal RAM to transfer downloaded data to external memory.

* denotes programmable polarity

 Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
84	69	42	35	8F	PA2 or SLOE	I/O/Z	I (PA2)	Z (PA2)	Multiplexed pin whose function is selected by two bits: IFCONFIG[1:0]. PA2 is a bidirectional I/O port pin. SLOE is an input-only output enable with program- mable polarity (FIFOPINPOLAR.4) for the slave FIFOs connected to FD[70] or FD[150].
85	70	43	36	7F	PA3 or WU2	I/O/Z	l (PA3)	Z (PA3)	Multiplexed pin whose function is selected by: WAKEUP.7 and OEA.3 PA3 is a bidirectional I/O port pin. WU2 is an alternate source for USB Wakeup , enabled by WU2EN bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is in suspend and WU2EN = 1, a transition on this pin starts up the oscillator and interrupts the 8051 to enable it to exit the suspend mode. Asserting this pin inhibits the chip from suspending if WU2EN = 1.
89	71	44	37	6F	PA4 or FIFOADR0	I/O/Z	l (PA4)	Z (PA4)	Multiplexed pin whose function is selected by: IFCONFIG[10]. PA4 is a bidirectional I/O port pin. FIFOADR0 is an input-only address select for the slave FIFOs connected to FD[70] or FD[150].
90	72	45	38	8C	PA5 or FIFOADR1	I/O/Z	l (PA5)	Z (PA5)	Multiplexed pin whose function is selected by: IFCONFIG[10]. PA5 is a bidirectional I/O port pin. FIFOADR1 is an input-only address select for the slave FIFOs connected to FD[70] or FD[150].
91	73	46	39	7C	PA6 or PKTEND	I/O/Z	l (PA6)	Z (PA6)	Multiplexed pin whose function is selected by the IFCONFIG[1:0] bits. PA6 is a bidirectional I/O port pin. PKTEND is an input used to commit the FIFO packet data to the endpoint and whose polarity is programmable via FIFOPINPOLAR.5.
92	74	47	40	6C	PA7 or FLAGD or SLCS#	I/O/Z	l (PA7)	Z (PA7)	Multiplexed pin whose function is selected by the IFCONFIG[1:0] and PORTACFG.7 bits. PA7 is a bidirectional I/O port pin. FLAGD is a programmable slave-FIFO output status flag signal. SLCS# gates all other slave FIFO enable/strobes
Port	В								
44	34	25	18	ЗH	PB0 or FD[0]	I/O/Z	І (РВ0)	Z (PB0)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB0 is a bidirectional I/O port pin. FD[0] is the bidirectional FIFO/GPIF data bus.
45	35	26	19	4F	PB1 or FD[1]	I/O/Z	І (РВ1)	Z (PB1)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB1 is a bidirectional I/O port pin. FD[1] is the bidirectional FIFO/GPIF data bus.
46	36	27	20	4H	PB2 or FD[2]	I/O/Z	l (PB2)	Z (PB2)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB2 is a bidirectional I/O port pin. FD[2] is the bidirectional FIFO/GPIF data bus.

 Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
47	37	28	21	4G	PB3 or FD[3]	I/O/Z	І (РВЗ)	Z (PB3)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB3 is a bidirectional I/O port pin. FD[3] is the bidirectional FIFO/GPIF data bus.
54	44	29	22	5H	PB4 or FD[4]	I/O/Z	І (РВ4)	Z (PB4)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB4 is a bidirectional I/O port pin. FD[4] is the bidirectional FIFO/GPIF data bus.
55	45	30	23	5G	PB5 or FD[5]	I/O/Z	l (PB5)	Z (PB5)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB5 is a bidirectional I/O port pin. FD[5] is the bidirectional FIFO/GPIF data bus.
56	46	31	24	5F	PB6 or FD[6]	I/O/Z	І (РВ6)	Z (PB6)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB6 is a bidirectional I/O port pin. FD[6] is the bidirectional FIFO/GPIF data bus.
57	47	32	25	6H	PB7 or FD[7]	I/O/Z	І (РВ7)	Z (PB7)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB7 is a bidirectional I/O port pin. FD[7] is the bidirectional FIFO/GPIF data bus.
POR	ГС								
72	57	_	_	-	PC0 or GPIFADR0	I/O/Z	l (PC0)	Z (PC0)	Multiplexed pin whose function is selected by PORTCCFG.0 PC0 is a bidirectional I/O port pin. GPIFADR0 is a GPIF address output pin.
73	58	_	_	_	PC1 or GPIFADR1	I/O/Z	l (PC1)	Z (PC1)	Multiplexed pin whose function is selected by PORTCCFG.1 PC1 is a bidirectional I/O port pin. GPIFADR1 is a GPIF address output pin.
74	59	-	Ι	-	PC2 or GPIFADR2	I/O/Z	l (PC2)	Z (PC2)	Multiplexed pin whose function is selected by PORTCCFG.2 PC2 is a bidirectional I/O port pin. GPIFADR2 is a GPIF address output pin.
75	60	-	Ι	_	PC3 or GPIFADR3	I/O/Z	l (PC3)	Z (PC3)	Multiplexed pin whose function is selected by PORTCCFG.3 PC3 is a bidirectional I/O port pin. GPIFADR3 is a GPIF address output pin.
76	61	Ι	Ι	Ι	PC4 or GPIFADR4	I/O/Z	l (PC4)	Z (PC4)	Multiplexed pin whose function is selected by PORTCCFG.4 PC4 is a bidirectional I/O port pin. GPIFADR4 is a GPIF address output pin.
77	62	-	_	-	PC5 or GPIFADR5	I/O/Z	l (PC5)	Z (PC5)	Multiplexed pin whose function is selected by PORTCCFG.5 PC5 is a bidirectional I/O port pin. GPIFADR5 is a GPIF address output pin.
78	63	_	_	_	PC6 or GPIFADR6	I/O/Z	l (PC6)	Z (PC6)	Multiplexed pin whose function is selected by PORTCCFG.6 PC6 is a bidirectional I/O port pin. GPIFADR6 is a GPIF address output pin.
79	64	_	_	_	PC7 or GPIFADR7	I/O/Z	l (PC7)	Z (PC7)	Multiplexed pin whose function is selected by PORTCCFG.7 PC7 is a bidirectional I/O port pin. GPIFADR7 is a GPIF address output pin.

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
100	78	50	43	5B	VCC	Power	N/A	N/A	VCC. Connect to the 3.3-V power source.
107	85	-	_	-	VCC	Power	N/A	N/A	VCC. Connect to the 3.3-V power source.
3	2	7	56	4B	GND	Ground	N/A	N/A	Ground
27	21	19	12	1H	GND	Ground	N/A	N/A	Ground
49	39	-	_	_	GND	Ground	N/A	N/A	Ground
58	48	33	26	7D	GND	Ground	N/A	N/A	Ground
65	50	35	28	8D	GND	Ground	N/A	N/A	Ground
80	65	-	_	_	GND	Ground	N/A	N/A	Ground
93	75	48	41	4C	GND	Ground	N/A	N/A	Ground
116	94	-	-	-	GND	Ground	N/A	N/A	Ground
125	99	4	53	4A	GND	Ground	N/A	N/A	Ground
					•				
14	13	-	_	-	NC	N/A	N/A	N/A	No Connect. This pin must be left open.
15	14	-	-	-	NC	N/A	N/A	N/A	No Connect. This pin must be left open.
16	15	-	-	_	NC	N/A	N/A	N/A	No Connect. This pin must be left open.

Table 11. FX2LP Pin Descriptions^[11] (continued)

Table 12. FX2LP Register Summary (continued)

		-											
Hex	Size		Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
E6A0	1	EP0CS	Endpoint 0 Control and Sta- tus	HSNAK	0	0	0	0	0	BUSY	STALL	10000000	bbbbbbrb
E6A1	1	EP1OUTCS	Endpoint 1 OUT Control and Status	0	0	0	0	0	0	BUSY	STALL	00000000	bbbbbbrb
E6A2	1	EP1INCS	Endpoint 1 IN Control and Status	0	0	0	0	0	0	BUSY	STALL	00000000	bbbbbbrb
E6A3	1	EP2CS	Endpoint 2 Control and Sta- tus	0	NPAK2	NPAK1	NPAK0	FULL	EMPTY	0	STALL	00101000	rrrrrb
E6A4	1	EP4CS	Endpoint 4 Control and Sta- tus	0	0	NPAK1	NPAK0	FULL	EMPTY	0	STALL	00101000	rrrrrb
E6A5	1	EP6CS	Endpoint 6 Control and Sta- tus	0	NPAK2	NPAK1	NPAK0	FULL	EMPTY	0	STALL	00000100	rrrrrb
E6A6	1	EP8CS	Endpoint 8 Control and Sta- tus	0	0	NPAK1	NPAK0	FULL	EMPTY	0	STALL	00000100	rrrrrb
E6A7	1	EP2FIFOFLGS	Endpoint 2 slave FIFO Flags	0	0	0	0	0	PF	EF	FF	00000010	R
E6A8	1	EP4FIFOFLGS	Endpoint 4 slave FIFO Flags	0	0	0	0	0	PF	EF	FF	00000010	R
E6A9	1	EP6FIFOFLGS	Endpoint 6 slave FIFO Flags	0	0	0	0	0	PF	EF	FF	00000110	R
E6AA	1	EP8FIFOFLGS	Endpoint 8 slave FIFO Flags	0	0	0	0	0	PF	EF	FF	00000110	R
E6AB	1	EP2FIFOBCH	Endpoint 2 slave FIFO total byte count H	0	0	0	BC12	BC11	BC10	BC9	BC8	00000000	R
E6AC	1	EP2FIFOBCL	Endpoint 2 slave FIFO	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00000000	R
E6AD	1	EP4FIFOBCH	total byte count L Endpoint 4 slave FIFO total byte count H	0	0	0	0	0	BC10	BC9	BC8	00000000	R
E6AE	1	EP4FIFOBCL	Endpoint 4 slave FIFO	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00000000	R
E6AF	1	EP6FIFOBCH	total byte count L Endpoint 6 slave FIFO total byte count H	0	0	0	0	BC11	BC10	BC9	BC8	00000000	R
E6B0	1	EP6FIFOBCL	Endpoint 6 slave FIFO	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00000000	R
E6B1	1	EP8FIFOBCH	total byte count L Endpoint 8 slave FIFO	0	0	0	0	0	BC10	BC9	BC8	00000000	R
E6B2	1	EP8FIFOBCL	total byte count H Endpoint 8 slave FIFO	BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0	00000000	R
E6B3	1	SUDPTRH	total byte count L Setup Data Pointer high	A15	A14	A13	A12	A11	A10	A9	A8	xxxxxxx	RW
E6B4	1	SUDPTRL	address byte Setup Data Pointer low ad-	A7	A6	A5	A4	A3	A2	A1	0	xxxxxx0	bbbbbbbr
E6B5	1	SUDPTRCTL	dress byte Setup Data Pointer Auto	0	0	0	0	0	0	0	SDPAUTO	00000001	RW
			Mode										
E6B8	2	reserved SET-UPDAT	8 bytes of setup data	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxxx	R
EODO	0	SET-OFDAT	SET-UPDAT[0] =	Di	00	D5	D4	03	DZ		DU	******	ĸ
			bmRequestType										
			SET-UPDAT[1] = bmRequest										
			SET-UPDAT[2:3] = wValue										
			SET-UPDAT[4:5] = wIndex										
			SET-UPDAT[6:7] =										
			wLength										
		GPIF							FIFOLUDA	5150004	5150000	44400400	514/
E6C0 E6C1	1 1	GPIFWFSELECT GPIFIDLECS	Waveform Selector GPIF Done, GPIF IDLE	SINGLEWR1 DONE	SINGLEWR0 0	0	SINGLERD0	FIFOWR1	FIFOWR0 0	FIFORD1 0	FIFORD0 IDLEDRV	11100100 10000000	RW RW
			drive mode										
E6C2	1	GPIFIDLECTL	Inactive Bus, CTL states	0	0	CTL5	CTL4	CTL3	CTL2	CTL1	CTL0	11111111	
E6C3	1	GPIFCTLCFG	CTL Drive Type	TRICTL	0	CTL5	CTL4	CTL3	CTL2	CTL1	CTL0	00000000	
E6C4	1	GPIFADRH ^[13]	GPIF Address H	0	0	0	0	0	0	0	GPIFA8	00000000	
E6C5	1		GPIF Address L	GPIFA7	GPIFA6	GPIFA5	GPIFA4	GPIFA3	GPIFA2	GPIFA1	GPIFA0	00000000	RW
E6C6	1	FLOWSTATE FLOWSTATE	Flowstate Enable and	FSE	0	0	0	0	FS2	FS1	FS0	00000000	brrrrbbb
E6C7	1	FLOWLOGIC	Selector Flowstate Logic	LFUNC1	LFUNC0	TERMA2	TERMA1	TERMA0	TERMB2	TERMB1	TERMB0	00000000	RW
E6C8	1	FLOWEQ0CTL	CTL-Pin States in Flowstate	CTL0E3	CTL0E2	CTL0E1/ CTL5	CTL0E0/ CTL4	CTL3	CTL2	CTL1	CTL0	00000000	
E6C9	1	FLOWEQ1CTL	(when Logic = 0) CTL-Pin States in Flow-	CTL0E3	CTL0E2	CTL0E1/ CTL5	CTLOE0/	CTL3	CTL2	CTL1	CTL0	00000000	RW
F	4		state (when Logic = 1)				CTL4					00010010	DW/
E6CA E6CB	1	FLOWHOLDOFF FLOWSTB	Holdoff Configuration Flowstate Strobe	HOPERIOD3 SLAVE	HOPERIOD2 RDYASYNC	HOPERIOD1 CTLTOGL	HOPERIOD0 SUSTAIN		HOCTL2 MSTB2	HOCTL1 MSTB1	HOCTL0 MSTB0	00010010	
-000	Ľ		Configuration		ND ING ING	SILIUGL	SUCIAIN	3				00000	
E6CC		FLOWSTBEDGE	Flowstate Rising/Falling Edge Configuration	0	0	0	0	0	0	FALLING	RISING	00000001	rrrrrbb
E6CD		FLOWSTBPERIOD	Master-Strobe Half-Period		D6	D5	D4	D3	D2	D1	D0	00000010	
E6CE	1	GPIFTCB3 ^[13]	GPIF Transaction Count Byte 3	TC31	TC30	TC29	TC28	TC27	TC26	TC25	TC24	00000000	RW
			5,10 5	1		1	1		1	1	1	I	1

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
BE	1	GPIFSGLDATLX ^[15]	GPIF Data L w/ Trigger	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
BF	1	GPIFSGLDATL- NOX ^[15]	GPIF Data L w/ No Trigger	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxxx	R
C0	1	SCON1 ^[15]	Serial Port 1 Control (bit addressable)	SM0_1	SM1_1	SM2_1	REN_1	TB8_1	RB8_1	TI_1	RI_1	0000000	RW
C1	1	SBUF1 ^[15]	Serial Port 1 Data Buffer	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
C2	6	reserved											
C8	1	T2CON	Timer/Counter 2 Control (bit addressable)	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2	CPRL2	00000000	RW
C9	1	reserved											
CA	1	RCAP2L	Capture for Timer 2, au- to-reload, up-counter	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
СВ	1	RCAP2H	Capture for Timer 2, au- to-reload, up-counter	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
CC	1	TL2	Timer 2 reload L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
CD	1	TH2	Timer 2 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
CE	2	reserved											
D0	1	PSW	Program Status Word (bit addressable)	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000	RW
D1	7	reserved											
D8	1	EICON ^[15]	External Interrupt Control	SMOD1	1	ERESI	RESI	INT6	0	0	0	01000000	RW
D9	7	reserved											
E0	1	ACC	Accumulator (bit address- able)	D7	D6	D5	D4	D3	D2	D1	D0	0000000	RW
E1	7	reserved											
E8	1	EIE ^[15]	External Interrupt En- able(s)	1	1	1	EX6	EX5	EX4	EI ² C	EUSB	11100000	RW
E9	7	reserved											
F0	1	В	B (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
F1	7	reserved											
F8	1	EIP ^[15]	External Interrupt Priority Control	1	1	1	PX6	PX5	PX4	PI ² C	PUSB	11100000	RW
F9	7	reserved								1	1	1	

R = all bits read-only

W = all bits write-only

r = read-only bit

w = write-only bit b = both read/write bit

Document Number: 38-08032 Rev. *Y

Data Memory Read^[21]

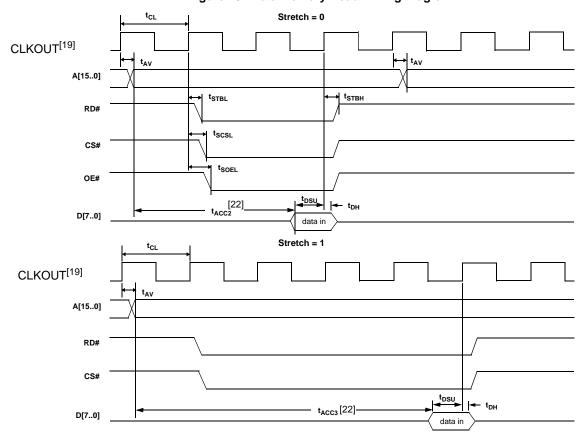


Figure 13. Data Memory Read Timing Diagram

Table 16. Data Memory Read Parameters

Parameter	Description	Min	Тур	Max	Unit	Notes
		-	20.83	-	ns	48 MHz
t _{CL}	1/CLKOUT frequency	_	41.66	-	ns	24 MHz
		_	83.2	-	ns	12 MHz
t _{AV}	Delay from clock to valid address	-	-	10.7	ns	-
t _{STBL}	Clock to RD LOW	-	-	11	ns	-
t _{STBH}	Clock to RD HIGH	-	-	11	ns	-
t _{SCSL}	Clock to CS LOW	-	-	13	ns	-
t _{SOEL}	Clock to OE LOW	-	-	11.1	ns	-
t _{DSU}	Data setup to clock	9.6	-	-	ns	-
t _{DH}	Data hold time	0	-	-	ns	-

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# is active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value.

Notes

21. The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.

22. t_{ACC2} and t_{ACC3} are computed from these parameters as follows: $t_{ACC2}(24 \text{ MHz}) = 3^* t_{CL} - t_{AV} - t_{DSU} = 106 \text{ ns}$ $t_{ACC2}(24 \text{ MHz}) = 3^* t_{CL} - t_{AV} - t_{DSU} = 43 \text{ ns}$ $t_{ACC3}(24 \text{ MHz}) = 5^* t_{CL} - t_{AV} - t_{DSU} = 190 \text{ ns}$ $t_{ACC3}(48 \text{ MHz}) = 5^* t_{CL} - t_{AV} - t_{DSU} = 86 \text{ ns}$

Data Memory Write^[23]

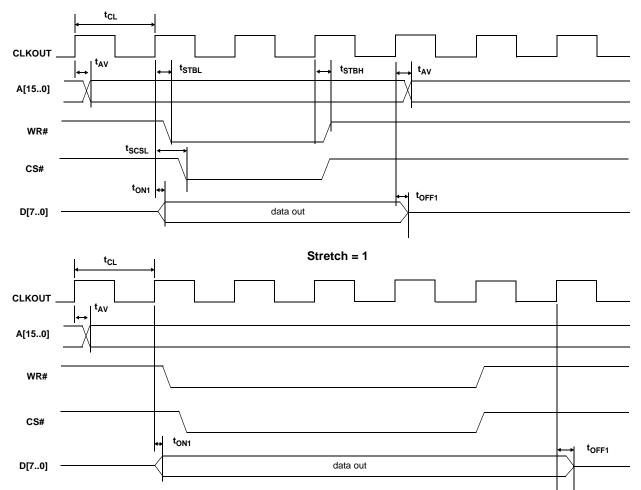


Figure 14. Data Memory Write Timing Diagram

Table 17. Data Memory Write Parameters

Parameter	Description	Min	Max	Unit	Notes
t _{AV}	Delay from clock to valid address	0	10.7	ns	-
t _{STBL}	Clock to WR pulse LOW	0	11.2	ns	-
t _{STBH}	Clock to WR pulse HIGH	0	11.2	ns	-
t _{SCSL}	Clock to CS pulse LOW	-	13.0	ns	-
t _{ON1}	Clock to data turn-on	0	13.1	ns	-
t _{OFF1}	Clock to data hold time	0	13.1	ns	-

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value.

Note

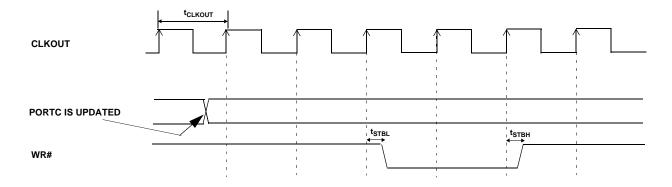
^{23.} The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.

PORTC Strobe Feature Timings

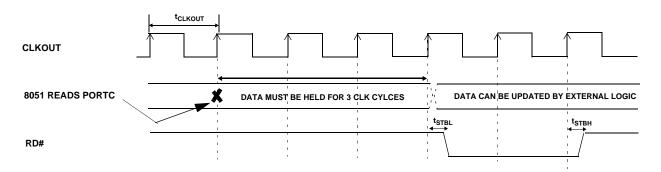
The RD# and WR# are present in the 100-pin version and the 128-pin package. In these 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from or writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register.

The RD# and WR# strobes are asserted for two CLKOUT cycles when PORTC is accessed.

The WR# strobe is asserted two clock cycles after PORTC is updated and is active for two clock cycles after that, as shown in Figure 16.


As for read, the value of PORTC three clock cycles before the assertion of RD# is the value that the 8051 reads in. The RD# is pulsed for two clock cycles after three clock cycles from the point when the 8051 has performed a read function on PORTC.

The RD# signal prompts the external logic to prepare the next data byte. Nothing gets sampled internally on assertion of the RD# signal itself; it is just a prefetch type signal to get the next data byte prepared. So, using it with that in mind easily meets the setup time to the next read.


The purpose of this pulsing of RD# is to allow the external peripheral to know that the 8051 is done reading PORTC and the data was latched into PORTC three CLKOUT cycles before asserting the RD# signal. After the RD# is pulsed, the external logic can update the data on PORTC.

Following is the timing diagram of the read and write strobing function on accessing PORTC. Refer to Data Memory Read^[21] and Data Memory Write^[23] for details on propagation delay of RD# and WR# signals.

Figure 16. WR# Strobe Function when PORTC is Accessed by 8051

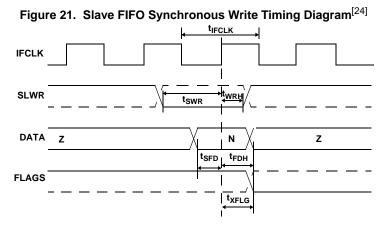


Figure 17. RD# Strobe Function when PORTC is Accessed by 8051

Slave FIFO Synchronous Write

Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK^[25]

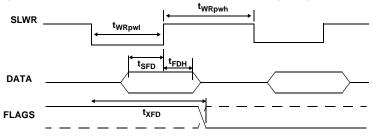
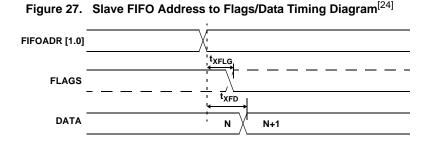

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	-	ns
t _{SWR}	SLWR to clock setup time	10.4	-	ns
t _{WRH}	Clock to SLWR hold time	0	-	ns
t _{SFD}	FIFO data to clock setup time	9.2	-	ns
t _{FDH}	Clock to FIFO data hold time	0	_	ns
t _{XFLG}	Clock to FLAGS output propagation time	_	9.5	ns

Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK Period	20.83	200	ns
t _{SWR}	SLWR to clock setup time	12.1	_	ns
t _{WRH}	Clock to SLWR hold time	3.6	_	ns
t _{SFD}	FIFO data to clock setup time	3.2	_	ns
t _{FDH}	Clock to FIFO data hold time	4.5	_	ns
t _{XFLG}	Clock to FLAGS output propagation time	_	13.5	ns


Slave FIFO Asynchronous Write

Slave FIFO Address to Flags/Data

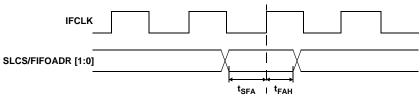


Table 30. Slave FIFO Address to Flags/Data Parameters

Parameter	Description	Min	Max	Unit
t _{XFLG}	FIFOADR[1:0] to FLAGS output propagation delay	-	10.7	ns
t _{XFD}	FIFOADR[1:0] to FIFODATA output propagation delay	_	14.3	ns

Slave FIFO Synchronous Address

Figure 28. Slave FIFO Synchronous Address Timing Diagram^[24]

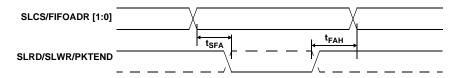


Table 31. Slave FIFO Synchronous Address Parameters^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	Interface clock period	20.83	200	ns
t _{SFA}	FIFOADR[1:0] to clock setup time	25	_	ns
t _{FAH}	Clock to FIFOADR[1:0] hold time	10	-	ns

Slave FIFO Asynchronous Address

Figure 29. Slave FIFO Asynchronous Address Timing Diagram^[24]

Table 32. Slave FIFO Asynchronous Address Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{SFA}	FIFOADR[1:0] to SLRD/SLWR/PKTEND setup time	10	-	ns
t _{FAH}	RD/WR/PKTEND to FIFOADR[1:0] hold time	10	-	ns

Sequence Diagram of a Single and Burst Asynchronous Read

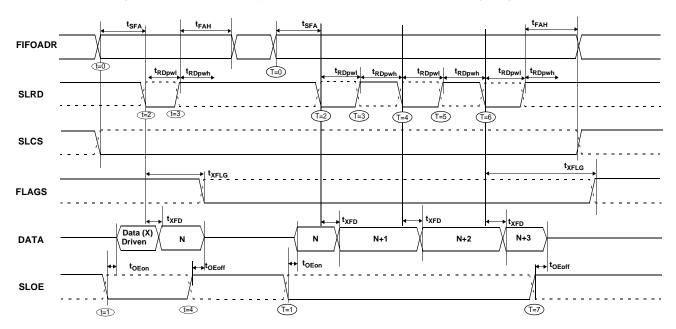


Figure 33. Slave FIFO Asynchronous Read Sequence and Timing Diagram^[24]

Figure 34. Slave FIFO Asynchronous Read Sequence of Events Diagram

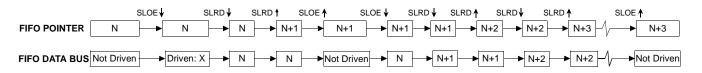


Figure 33 shows the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read.

- At t = 0, the FIFO address is stable and the SLCS signal is asserted.
- At t = 1, SLOE is asserted. This results in the data bus being driven. The data that is driven on to the bus is the previous data, the data that was in the FIFO from an earlier read cycle.
- At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of t_{RDpwl} and minimum de-active pulse width of t_{RDpwh}. If SLCS is used, then SLCS must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition.)
- The data that is driven, after asserting SLRD, is the updated data from the FIFO. This data is valid after a propagation delay of t_{XFD} from the activating edge of SLRD. In Figure 33, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle (SLRD is asserted), SLOE must be in an asserted state. SLRD and SLOE can also be tied together.

The same sequence of events is also shown for a burst read marked with T = 0 through 5.

Note In the burst read mode, during SLOE is asserted, the data bus is in a driven state and outputs the previous data. After SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented.

TOP VIEW BOTTOM VIEW SIDE VIEW -8.00±0.10 56 43 PIN# 1 ID 42 10000000000000000 42 ()1 0.50±0.05 υυυυυυυ PIN 1 DOT 5.20±0.10 8.00±0.10 29 L_{0.25±0.05} 14 29 d14 n n h n n n n n n n h n h-0.05 MAX 15 28 15 -1.00 MAX NOTES: 0.40±0.10 0.08 1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL. 4.50±0.10 2. REFERENCE JEDEC#: MO-220 001-53450 *D 3. PACKAGE WEIGHT: 162 \pm 16 mg 4. ALL DIMENSIONS ARE IN MILLIMETERS

Figure 37. 56-Pin QFN 8 × 8 mm Sawn Version (001-53450)

128 Lead Thin Plastic Quad Flatpack 14 X 20 X 1.4mm - A128 16.00±0.20 1.40±0.05 14.00±0.10 128 0.22±0.05 22.00±0.20 20.00±0.10 12°±1° SEE DETAIL A (8X) 0.50 1 TYP. ſ 0.20 MAX. 1.60 MAX. R 0.08 MIN. ~ 0° MIN. 0.20 MAX 0.08 SEATING PLANE STAND-DFF D 0.05 MIN. 0.15 MAX. NDTE: 0.25 1. JEDEC STD REF MS-026 GAUGE PLANE 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE R 0.08 MIN. 0.20 MAX. BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH **∩**•–7 3. DIMENSIONS IN MILLIMETERS 0.60±0.15 -51-85101 *F DETAILA

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2003-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-08032 Rev. *Y Revise FX2LP is a trademark and EZ-USB is a registered trademark of Cypress Semiconductor Corporation.

Revised June 28, 2016

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.