E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are applicated to

Details

Dectano	
Product Status	Obsolete
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I²C, USB, USART
Number of I/O	24
Voltage - Supply	3V ~ 3.6V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68013a-56lfxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Contents

Applications	5
Functional Overview	5
USB Signaling Speed	5
8051 Microprocessor	5
I ² C Bus	5
Buses	5
Reset and Wakeup	9
Program/Data RAM	10
External FIFO Interface	
GPIF	14
ECC Generation ^[8]	14
USB Uploads and Downloads	14
Autopointer Access	15
I ² C Controller	
CY7C68013A/14A and CY7C68015A/	
16A Differences	15
Register Summary	32
Absolute Maximum Ratings	39
Operating Conditions	39
Thermal Characteristics	
DC Characteristics	40

AC Electrical Characteristics	41
USB Transceiver	41
Program Memory Read	41
Data Memory Read	42
Data Memory Write	43
PORTC Strobe Feature Timings	
Slave FIFO Synchronous Read	
Slave FIFO Synchronous Write	
Ordering Information	
Ordering Code Definitions	56
Package Diagrams	
Quad Flat Package No Leads (QFN)	
Package Design Notes	63
Acronyms	64
Document Conventions	64
Units of Measure	64
Errata	65
Document History Page	66
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	69
Products	
PSoC® Solutions	69
Cypress Developer Community	69
Technical Support	

Default Full-Speed Alternate Settings

Table 6. Default Full Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	64 bulk	64 int	64 int
ep1in	0	64 bulk	64 int	64 int
ep2	0	64 bulk out (2x)	64 int out (2×)	64 iso out (2×)
ep4	0	64 bulk out (2x)	64 bulk out (2x)	64 bulk out (2x)
ep6	0	64 bulk in (2×)	64 int in (2x)	64 iso in (2x)
ep8	0	64 bulk in (2×)	64 bulk in (2×)	64 bulk in (2×)

Default High Speed Alternate Settings

Table 7. Default Hi-Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	512 bulk ^[7]	64 int	64 int
ep1in	0	512 bulk ^[7]	64 int	64 int
ep2	0	512 bulk out (2x)	512 int out (2x)	512 iso out (2x)
ep4	0	512 bulk out (2x)	512 bulk out (2x)	512 bulk out (2x)
ep6	0	512 bulk in (2x)	512 int in (2x)	512 iso in (2x)
ep8	0	512 bulk in (2x)	512 bulk in (2×)	512 bulk in (2×)

External FIFO Interface

Architecture

The FX2LP slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).

In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms: the GPIF for internally generated control signals and the slave FIFO interface for externally controlled transfers.

Master/Slave Control Signals

The FX2LP endpoint FIFOs are implemented as eight physically distinct 256×16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between

"USB FIFOs" and "Slave FIFOs." Because they are physically the same memory, no bytes are actually transferred between buffers.

At any time, some RAM blocks are filling/emptying with the USB data under SIE control, while other RAM blocks are available to the 8051, the I/O control unit, or both. The RAM blocks operates as single-port in the USB domain, and dual-port in the 8051-I/O domain. The blocks can be configured as single-, double-, triple-, or quad-buffered as previously shown.

The I/O control unit implements either an internal master (M for Master) or external master (S for Slave) interface.

In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 MBytes/s (48

Notes

5. "0" means "not implemented."

6. "2x" means "double buffered."

^{7.} Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.

Autopointer Access

FX2LP provides two identical autopointers. They are similar to the internal 8051 data pointers but with an additional feature: they can optionally increment after every memory access. This capability is available to and from both internal and external RAM. Autopointers are available in external FX2LP registers under the control of a mode bit (AUTOPTRSET-UP.0). Using the external FX2LP autopointer access (at 0xE67B – 0xE67C) enables the autopointer to access all internal and external RAM to the part.

Also, autopointers can point to any FX2LP register or endpoint buffer space. When the autopointer access to external memory is enabled, locations 0xE67B and 0xE67C in XDATA and code space cannot be used.

I²C Controller

FX2LP has one I²C port that is driven by two internal controllers, the one that automatically operates at boot time to load VID/PID/DID and configuration information, and another that the 8051 uses when running to control external I²C devices. The I²C port operates in master mode only.

²C Port Pins

The I²C pins SCL and SDA must have external 2.2-k Ω pull-up resistors even if no EEPROM is connected to the FX2LP. External EEPROM device address pins must be configured properly. See Table 8 for configuring the device address pins.

Table 8. Strap Boot EEPROM Address Lines to These Values

Bytes	Example EEPROM	A2	A1	A0
16	24LC00 ^[10]	N/A	N/A	N/A
128	24LC01	0	0	0
256	24LC02	0	0	0
4K	24LC32	0	0	1
8K	24LC64	0	0	1
16K	24LC128	0	0	1

P^2C Interface Boot Load Access

At power-on reset, the I^2C interface boot loader loads the VID/PID/DID configuration bytes and up to 16 KB of program/data. The available RAM spaces are 16 KB from 0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051 is in reset. I^2C interface boot loads only occur after power-on reset.

PC Interface General-Purpose Access

The 8051 can control peripherals connected to the I^2C bus using the I2CTL and I2DAT registers. FX2LP provides I^2C master control only; it is never an I^2C slave.

Compatible with Previous Generation EZ-USB FX2

The EZ-USB FX2LP is form-, fit-, and with minor exceptions, functionally-compatible with its predecessor, the EZ-USB FX2.

This makes for an easy transition for designers wanting to upgrade their systems from the FX2 to the FX2LP. The pinout and package selection are identical and a vast majority of firmware previously developed for the FX2 functions in the FX2LP.

For designers migrating from the FX2 to the FX2LP, a change in the bill of material and review of the memory allocation (due to increased internal memory) is required. For more information about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the application note titled *Migrating from EZ-USB FX2 to EZ-USB FX2 to EZ-USB FX2LP* available in the Cypress web site.

Table 9. Part Number Conversion Table

EZ-USB FX2 Part Number	EZ-USB FX2LP Part Number	Package Description
CY7C68013-56PVC	CY7C68013A-56PVXC or CY7C68014A-56PVXC	56-pin SSOP
CY7C68013-56PVCT	CY7C68013A-56PVXCT or CY7C68014A-56PVXCT	56-pin SSOP – Tape and Reel
CY7C68013-56LFC	CY7C68013A-56LFXC or CY7C68014A-56LFXC	56-pin QFN
CY7C68013-100AC	CY7C68013A-100AXC or CY7C68014A-100AXC	100-pin TQFP
CY7C68013-128AC	CY7C68013A-128AXC or CY7C68014A-128AXC	128-pin TQFP

CY7C68013A/14A and CY7C68015A/16A Differences

CY7C68013A is identical to CY7C68014A in form, fit, and functionality. CY7C68015A is identical to CY7C68016A in form, fit, and functionality. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively and are ideal for power-sensitive battery applications.

CY7C68015A and CY7C68016A are available in 56-pin QFN package only. Two additional GPIO signals are available on the CY7C68015A and CY7C68016A to provide more flexibility when neither IFCLK or CLKOUT are needed in the 56-pin package.

USB developers wanting to convert their FX2 56-pin application to a bus-powered system directly benefit from these additional signals. The two GPIOs give developers the signals they need for the power-control circuitry of their bus-powered application without pushing them to a high-pincount version of FX2LP.

The CY7C68015A is only available in the 56-pin QFN package

Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Differences

CY7C68013A/CY7C68014A	CY7C68015A/CY7C68016A
IFCLK	PE0
CLKOUT	PE1

Figure 9. CY7C68013A/CY7C68014A 56-Pin SSOP Pin Assignment

CY7C68013A/CY7C68014A 56-pin SSOP

			1
1	PD5/FD13	PD4/FD12	56
2	PD6/FD14	PD3/FD11	55
3	PD7/FD15	PD2/FD10	54
4	GND	PD1/FD9	53
5	CLKOUT	PD0/FD8	52
6	VCC	*WAKEUP	51
7	GND	VCC	50
8	RDY0/*SLRD	RESET#	49
9	RDY1/*SLWR	GND	48
10	AVCC	PA7/*FLAGD/SLCS#	47
11	XTALOUT	PA6/PKTEND	46
12	XTALIN	PA5/FIFOADR1	45
13	AGND	PA4/FIFOADR0	44
14	AVCC	PA3/*WU2	43
15	DPLUS	PA2/*SLOE	42
16	DMINUS	PA1/INT1#	41
17	AGND	PA0/INT0#	40
18	VCC	VCC	39
19	GND	CTL2/*FLAGC	38
20	*IFCLK	CTL1/*FLAGB	37
21	RESERVED	CTL0/*FLAGA	36
22	SCL	GND	35
23	SDA	VCC	34
24	VCC	GND	33
25	PB0/FD0	PB7/FD7	32
26	PB1/FD1	PB6/FD6	31
27	PB2/FD2	PB5/FD5	30
28	PB3/FD3	PB4/FD4	29
			J

* denotes programmable polarity

Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
7	6	-	-	-	RDY3	Input	N/A	N/A	RDY3 is a GPIF input signal.
8	7	-	-	—	RDY4	Input	N/A	N/A	RDY4 is a GPIF input signal.
9	8	-		-	RDY5	Input	N/A	N/A	RDY5 is a GPIF input signal.
69	54	36	29	7H	CTL0 or FLAGA	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL0 is a GPIF control output. FLAGA is a programmable slave-FIFO output status flag signal. Defaults to programmable for the FIFO selected by the FIFOADR[1:0] pins.
70	55	37	30	7G	CTL1 or FLAGB	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL1 is a GPIF control output. FLAGB is a programmable slave-FIFO output status flag signal. Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.
71	56	38	31	8H	CTL2 or FLAGC	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL2 is a GPIF control output. FLAGC is a programmable slave-FIFO output status flag signal. Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins.
66	51	-	_	—	CTL3	O/Z	Н	L	CTL3 is a GPIF control output.
67	52	-	-	—	CTL4	Output	Н	L	CTL4 is a GPIF control output.
98	76	-	Ι	-	CTL5	Output	Н	L	CTL5 is a GPIF control output.
32	26	20	13	2G	IFCLK on CY7C68013A and CY7C68014A	I/O/Z	Z	Z	Interface Clock, used for synchronously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocking is used (IFCONFIG.7 = 1) the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally sourced, by setting the bit IFCONFIG.4 =1.
					PE0 on CY7C68015A and CY7C68016A	- I/O/Z	 I	Z	PE0 is a bidirectional I/O port pin.
28	22	_	_	_	INT4	Input	N/A	N/A	INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin is edge-sensitive, active HIGH.
106	84	_	_	_	INT5#	Input	N/A	N/A	INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin is edge-sensitive, active LOW.
31	25	-	_	_	T2	Input	N/A	N/A	T2 is the active HIGH T2 input signal to 8051 Timer2, which provides the input to Timer2 when C/T2 = 1. When $C/T2 = 0$, Timer2 does not use this pin.

Table 12. FX2LP Register Summary (continued)

Hex Size Name Description b7 b60 P30 AD b30 b70 B70 B00A 6505 I USBR/ST USBR/ST SUSBR SUSBR <th></th> <th></th>		
END EPRIC Endpoint Internant EPR		
EREF 1 EPROP III EPROP IIII EPROP IIIIIIIIII EPROP IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	0xxxxxxx r 00000000 F	
FR00 I OPPIE(1 ¹³) GPF Interrug Request 0	0 1	RW
End 1 CPPIFRONT CPPIFAR CPPIFAR <t< td=""><td></td><td></td></t<>		
EGR2 1 USBERRIE USBERR		
I Image Enables Image Enables ENDEP SOEP SOEP <thsoep< th=""> SOEP</thsoep<>		
Image: Not service in the service intermine intermine intermine intermine intermine interm intermine interm intermine interm intermine interm intermine interm intermine interm intermine intermi	0000000 F	RW
Eines 1 CLREBRONT Class Enro Counter EC30 x x k x	0000000x k	bbbbrrri
E666 1 NT2/VEC Itterrupt 2 (198) 0 EV4 2V3 2V2 2V1 2V0 0 0 E667 1 NT4VEC Itterrupt 4 (198) 1 0 IV3 V/2 IV1 IV0 <	xxxx0100 r	
Autoroctor Autoroc	XXXXXXXX \	
CPIE CPIE Autorector C <thc< th=""> <thc< th=""> C <</thc<></thc<>	00000000 F	
E669 7 Insurved Insurved <thinsurved< th=""> <thinsurved< th=""> <th< td=""><td>1000000 F</td><td>R</td></th<></thinsurved<></thinsurved<>	1000000 F	R
INPUT OUTPUT PORTACFG UOPRTA Alternate FLAGD SLC8 0 0 0 INT1 INT0 E670 1 PORTACFG UOPRTC JERRATE GPIFA3 GPICA3 GPICA3	0000000 F	RW
E670 PORTACEG UO PORTA Alternate FLAGD SLCS 0 0 0 NT1 INT0 E671 1 PORTCCFG UO PORTA Alternate GPIFA7 GPIFA8 GPIFA3 GPIFA2 GPIFA1 GPIFA3 TX1 TROT TROT TROT TROT TROT GPIFA3 TX1 TROT GPIFA3 GPIFA3 <td></td> <td></td>		
Image: Configuration Configuration Configuration Configuration Configuration CE71 PORTECFG ICOPRITO Allerse GPIFA0 GPIFA3 GPIFA3 GPIFA3 GPIFA3 GPIFA3 GPIFA3 GPIFA3 GPIFA3 GPIFA3 GPIFA4 GPIFA4 </td <td></td> <td></td>		
L Configuration GPIRAB TEX INT6 RXD10UT RXD0UT T2UT T0UT T0UT E677 1 PORTECFG ILO PORTE Altinuate GPIRAB TEX INT6 RXD10UT RXD0UT T2UT T0UT T0UT E677 1 reserved IC I	0000000 F	RW
E672 PORTECFG IO PORTE Atternate Configuration CPL Atternate Provided A T2EX INTE RXD0UT RXD0UT T2UT T1OUT T0UT T0UT <td>00000000 F</td> <td>RW</td>	00000000 F	RW
E673 4 reserved Image: Control & Status START STOP LASTRD ID1 ID0 BERR ACK DONE 6771 1 FCS Control & Status START STOP LASTRD ID1 ID0 BERR ACK DONE 6771 1 FC Bus 0	00000000 F	RW
EF77 I reserved c x <th< td=""><td></td><td><u> </u></td></th<>		<u> </u>
E676 1 2 ² CS PC Bus Data START STOP LASTRD ID1 ID0 BERR ACK DONE E679 1 12DAT PC Bus Data d7 d6 d5 d4 d3 d2 d1 d0 E67A 1 I ² CTL PC Bus Control 0		
E679 1 IZDAT IC Bus Data d7 d6 d5 d4 d3 d2 d1 d0 E67A 1 I*CTL I*C Bus Control 0	000xx000 k	bbbrrrr
E67A I PCTL CBus Control 0	XXXXXXXX F	RW
E67B I AUTODAT1 AUtopt1 MOVX access, by Autopt2 MOVX access, by Autopt2 MOVX access, by Antopt2 MOVX	0000000 F	RW
E67C 1 XAUTODAT2 Autopriz MCVX access, when APTREN=1 D6 D5 D4 D3 D2 D1 D0 E67D 1 UDMA CRC P <td>XXXXXXXX F</td> <td>RW</td>	XXXXXXXX F	RW
UDMA CRC UDMA CRC MSB CRC15 CRC14 CRC13 CRC11 CRC10 CRC10 CRC20 CRC3 E671 UDMACRCL ¹¹³¹ UDMA CRC LSB CRC7 CRC6 CRC5 CRC4 CRC3 CRC11 CRC10 CRC9 CRC8 E677 UDMACRC ¹¹³¹ UDMA CRC Qualifier GENABLE 0 0 QSTATE QSIGNAL1 QSIGNAL1 <td>XXXXXXXX F</td> <td>RW</td>	XXXXXXXX F	RW
E67D I UDMACRCH ^{T31} UDMA CRC MSB CRC15 CRC14 CRC13 CRC12 CRC11 CRC10 CRC9 CRC9 E67F I UDMACRC1 ^{T31} UDMACRC LSB CRC7 CRC6 CRC5 CRC3 CRC2 CRC1 CRC0 E67F I UDMACRC- UDMACRC- UDMACRC- QUALIFEIR QUALIFUNCION QUENALI QUENALI QUENALI QUENALIT QUENALIT QUENALIT QUENALIT QUENALIT QUENALIT QUENALIT QUENALIT QUENALIT<		<u> </u>
E67E I UDMACRCL ¹³¹ UDMA CRC LISB CRC7 CRC6 CRC5 CRC4 CRC3 CRC2 CRC1 CRC0 E67F I UDMACRC- UUBACRC- UUSB CONTROL UDMA CRC Qualifier QENABLE 0 0 QSTATE QSIGNAL2 QSIGNAL1 QSIGNAL2 QSIGNAL1 QSIGNAL2 QSIGNAL1 QSIGNAL2 QSIGNAL1 QSIGNAL1 QSIGNAL1 QSIGNAL1 QSIGN	01001010 F	RW/
E67F I UDMACRC. QUALIFIER UDMACRC Qualifier QENABLE 0 0 QSTATE QSIGNAL2 QSIGNAL1 QSIGNAL4 E680 1 USB CONTROL USB Control & Status HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUM E680 1 USBCS USB Control & Status HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUM E681 1 USBCS Wakeup Control & Status WU2 WU WU2POL 0 DPEN WU2EN WUEN E681 1 USBFRAMEH USB Frame count L FC7 FC6 FC3 FC4 FC3 FC2 FC1 FC0 FC8 I MICROFRAME MISB Frame count L FC7 FC6 FC4 FC3 FC4 FA3 FA4 FA3 FA4 FA3 FA4 FA3 FA4 FA3 FA2 FA1 FA0 FA4 FA3 FA4 FA3 FA4 FA3	10111010	
USB CONTROL USB Control & Status HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUM E680 1 USB Control & Status HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUM E681 1 SUSPEND Put chip into suspend x		
E680 1 USBCS USB Control & Status HSM 0 0 0 DISCON NOSYNSOF RENUM SIGRSUM E681 1 SUSPEND Put chip into suspend x		-
E681 1 SUSPEND Put chip into suspend x <th< td=""><td>x0000000 r</td><td>rrrbbbr</td></th<>	x0000000 r	rrrbbbr
E682 1 WAKEUPCS Wakeup Control & Status WU2 WU WU2POL WUPOL 0 DPEN WU2N WUEN E683 1 TOGCTL Toggle Control Q S R I/O EP3 EP2 EP1 EP0 E684 1 USBFRAMEL USB Frame count L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 E685 1 USBFRAMEL USB Frame count L FC7 FC6 FC5 FC4 FC3 FA2 FA1 FA0 E687 1 FNADDR USB Function address 0 FA6 FA5 FA4 FA3 FA2 FA1 FA0 E688 1 EPDPOINTS		W
E683 1 TOGCTL Toggle Control Q S R I/O EP3 EP2 EP1 EP0 E684 1 USBFRAMEH USB Frame count H 0 0 0 0 FC10 FC3 FC4 FC3 FC2 FC1 FC6 E685 1 USBFRAMEL USB Frame count L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 E686 1 MICROFRAME MIGROFRAME USB Francion address 0 FA6 FA5 FA4 FA3 FA2 FA1 FA0 E688 1 EP0BCII ¹¹³ Endpoint 0 Byte Count H (BC15) (BC14) (BC13) (BC11) (BC10) (BC9) (BC8) E688 1 reserved E06 (BC11) (BC11) (BC10) (BC9) (BC3) BC2	xx000101 b	bbbbrbł
E684 1 USBFRAMEH USB Frame count H 0	x0000000 r	
E686 1 USBFRAMEL USB Frame count L FC7 FC6 FC5 FC4 FC3 FC2 FC1 FC0 E686 1 MICROFRAME Microframe count, 0-7 0 0 0 0 MF2 MF1 MF0 E687 1 FNADDR USB Function address 0 FA6 FA5 FA4 FA3 FA2 FA1 FA0 E688 1 ENDPOINTS Image: count H (BC13) (BC13) (BC14) (BC14) (BC13) (BC11) (BC11) <td< td=""><td>000000xxx F</td><td></td></td<>	000000xxx F	
E686 1 MICROFRAME Microframe count, 0-7 0 0 0 0 0 MF2 MF1 MF0 E687 1 FNADDR USB Function address 0 FA6 FA5 FA4 FA3 FA2 FA1 FA0 E688 2 reserved FA1 FA3 FA2 FA1 FA0		R
E687 1 FNADDR USB Function address 0 FA6 FA5 FA4 FA3 FA2 FA1 FA0 E688 2 reserved		R
E688 2 reserved Image: constraint of the system of the		
E68A 1 EP0BCH ^[13] Endpoint 0 Byte Count H (BC15) (BC14) (BC13) (BC12) (BC11) (BC10) (BC9) (BC8) E68B 1 EP0BCL ^[13] Endpoint 0 Byte Count L (BC7) BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68D 1 EP10UTBC Endpoint 1 OUT Byte Count 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68E 1 reserved 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68E 1 reserved 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68E 1 reserved 0 0 0 0 0 0 BC3 BC2 BC1 BC0 E691 EP2BCL ^[13] Endpoint 2 Byte Count H 0 0 0 0 0 BC3 BC2 BC1 BC0 E692 reser	Choose of the	
E68A 1 EP0BCH ^[13] Endpoint 0 Byte Count H (BC15) (BC14) (BC13) (BC12) (BC11) (BC10) (BC9) (BC8) E68B 1 EP0BCL ^[13] Endpoint 0 Byte Count L (BC7) BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68D 1 EP1OUTBC Endpoint 1 OUT Byte Count 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68E 1 reserved 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68E 1 reserved 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68E 1 reserved 0 0 0 0 0 0 BC3 BC2 BC1 BC0 E68F 1 EP1INBC Endpoint 1 IN Byte Count H 0 0 0 0 0 BC3 BC2 BC1 BC0 E691		
E68B 1 EPOBCL ^[13] Endpoint 0 Byte Count L (BC7) BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68C 1 reserved <td< td=""><td>XXXXXXXX F</td><td>RW</td></td<>	XXXXXXXX F	RW
E68C 1 reserved Image: constraint of the system of the		
E68D 1 EP10UTBC Endpoint 1 OUT Byte Count 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 E68E 1 reserved		
E68E 1 reserved Image: constraint of the system of the	Oxxxxxx F	RW
E690 1 EP2BCH ^[13] Endpoint 2 Byte Count H 0		
E691 1 EP2BCL ^[13] Endpoint 2 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 E692 2 reserved	Oxxxxxx F	
E692 2 reserved Image: constraint of the system of the	00000xxx F	
E694 1 EP4BCH ^[13] Endpoint 4 Byte Count H 0	XXXXXXXX F	RW
E695 1 EP4BCL ^[13] Endpoint 4 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 E696 2 reserved	000000xx F	RW
E696 2 reserved Image: constraint of a state of		RW
E699 1 EP6BCL ^[13] Endpoint 6 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 E69A 2 reserved		
E69A 2 reserved Image: constraint of the state o	00000xxx F	
E69C 1 EP8BCH ^[13] Endpoint 8 Byte Count H 0 0 0 0 0 0 BC9 BC8 E69D 1 EP8BCL ^[13] Endpoint 8 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0	XXXXXXXX F	RW
E69D 1 EP8BCL ^[13] Endpoint 8 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0		\square
	000000xx F	
	XXXXXXX	RW
E69E 2 reserved		L

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
xxxx		I ² C Configuration Byte		0	DISCON	0	0	0	0	0	400KHZ	XXXXXXXXX [16]	n/a
		On a sight Franchism, Datai			-	-	-		-			[10]	
		Special Function Regis		D-7	D 0	25	D (D 0	D 0	D .1			D14/
80	1	IOA ^[15]	Port A (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	
81	1	SP	Stack Pointer	D7	D6	D5	D4	D3	D2	D1	D0	00000111	
82	1	DPL0	Data Pointer 0 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	
83	1	DPH0	Data Pointer 0 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	
84	1	DPL1 ^[15]	Data Pointer 1 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	
85	1	DPH1 ^[15]	Data Pointer 1 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	
86	1	DPS ^[15]	Data Pointer 0/1 select	0	0	0	0	0	0	0	SEL	00000000	
87	1	PCON	Power Control	SMOD0	x	1	1	x	х	х	IDLE	00110000	
88	1	TCON	Timer/Counter Control (bit addressable)	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0000000	RW
89	1	TMOD	Timer/Counter Mode Control	GATE	СТ	M1	MO	GATE	СТ	M1	MO	0000000	RW
3A	1	TL0	Timer 0 reload L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
8B	1	TL1	Timer 1 reload L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
BC	1	TH0	Timer 0 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8D	1	TH1	Timer 1 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
BE	1	CKCON ^[15]	Clock Control	х	x	T2M	T1M	TOM	MD2	MD1	MD0	00000001	RW
3F	1	reserved							-	1			
90	1	IOB ^[15]	Port B (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
90 91	1	EXIF ^[15]	External Interrupt Flag(s)	IE5	IE4	I ² CINT	USBNT	1	0	0	0	00001000	
92	1	MPAGE ^[15]	Upper Addr Byte of MOVX using @R0 / @R1		A14	A13	A12	A11	A10	A9	A8	00000000	
93	5	reserved	<u> </u>		1		1		1	1		1	
	1	SCON0	Serial Port 0 Control (bit addressable)	SM0_0	SM1_0	SM2_0	REN_0	TB8_0	RB8_0	TI_0	RI_0	00000000	RW
99	1	SBUF0	Serial Port 0 Data Buffer	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
9A	1	AUTOPTRH1 ^[15]	Autopointer 1 Address H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	
9B	1	AUTOPTRL1 ^[15]	Autopointer 1 Address L	A13 A7	A14 A6	A13 A5	A12 A4	A3	A10 A2	A3 A1	A0	00000000	
	1		Autopointer T Address L	A7	Ao	Ab	A4	A3	AZ	AT	AU	0000000	RVV
9C	1	reserved				4.40	4.4.0			10	10		D14/
9D	1	AUTOPTRH2 ^[15]		A15	A14	A13	A12	A11	A10	A9	A8	00000000	
9E	1	AUTOPTRL2 ^[15]	Autopointer 2 Address L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
9F	1	reserved		_		_	-						
A0	1	IOC ^[15]	Port C (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
A1	1	INT2CLR ^[15]	Interrupt 2 clear	x	x	х	x	x	х	x	x	XXXXXXXX	W
A2	1	INT4CLR ^[15]	Interrupt 4 clear	х	x	х	x	x	х	x	x	XXXXXXXX	W
A3	5	reserved											
A8	1	IE	Interrupt Enable (bit addressable)	EA	ES1	ET2	ES0	ET1	EX1	ET0	EX0	00000000	RW
A9	1	reserved											
AA	1	EP2468STAT ^[15]	Endpoint 2,4,6,8 status flags	EP8F	EP8E	EP6F	EP6E	EP4F	EP4E	EP2F	EP2E	01011010	R
AB	1	EP24FIFOFLGS	status flags	0	EP4PF	EP4EF	EP4FF	0	EP2PF	EP2EF	EP2FF	00100010	R
AC	1	EP68FIFOFLGS ^[15]	Endpoint 6,8 slave FIFO status flags	0	EP8PF	EP8EF	EP8FF	0	EP6PF	EP6EF	EP6FF	01100110	R
AD	2	reserved											
AF	1		Autopointer 1&2 setup	0	0	0	0	0	APTR2INC	APTR1INC	APTREN	00000110	RW
B0	1	IOD ^[15]	Port D (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
B1	1	IOE ^[15]	Port E (NOT bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
B2	1	OEA ^[15]	Port A Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
B3	1	OEB ^[15]	Port B Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
B4	1	OEC ^[15]	Port C Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	
35	1	OED ^[15]	Port D Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	
36	1	OEE ^[15]	Port E Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	
37	1	reserved			1	1	1	1	1	1			
38	1	IP	Interrupt Priority (bit ad- dressable)	1	PS1	PT2	PS0	PT1	PX1	PT0	PX0	1000000	RW
39	1	reserved			+	1	1	1	1	1	1	1	1
BA		EP01STAT ^[15]	Endpoint 0&1 Status	0	0	0	0	0	EP1INBSY	EP1OUTBS	EP0BSY	00000000	R
BB BB	1	GPIFTRIG ^[15, 13]		DONE	0	0	0	0	RW	EP1001B3	EP0B31	10000xxx	
	1		Endpoint 2,4,6,8 GPIF slave FIFO Trigger	DONE	0	0	0	3	1.1.1	-F 1	LFU	10000xXX	מממוווים
	1	reconved											
BC BD	1	reserved GPIFSGLDATH ^[15]	GPIF Data H (16-bit mode	D15	D14	D13	D12	D11	D10	D9	D8	xxxxxxx	DW/

Notes

15. SFRs not part of the standard 8051 architecture.16. If no EEPROM is detected by the SIE then the default is 00000000.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
BE	1	GPIFSGLDATLX ^[15]	GPIF Data L w/ Trigger	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
BF	1	GPIFSGLDATL- NOX ^[15]	GPIF Data L w/ No Trigger	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxxx	R
C0	1	SCON1 ^[15]	Serial Port 1 Control (bit addressable)	SM0_1	SM1_1	SM2_1	REN_1	TB8_1	RB8_1	TI_1	RI_1	0000000	RW
C1	1	SBUF1 ^[15]	Serial Port 1 Data Buffer	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
C2	6	reserved											
C8	1	T2CON	Timer/Counter 2 Control (bit addressable)	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	CT2	CPRL2	00000000	RW
C9	1	reserved											
CA	1	RCAP2L	Capture for Timer 2, au- to-reload, up-counter	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
СВ	1	RCAP2H	Capture for Timer 2, au- to-reload, up-counter	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
CC	1	TL2	Timer 2 reload L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
CD	1	TH2	Timer 2 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
CE	2	reserved											
D0	1	PSW	Program Status Word (bit addressable)	CY	AC	F0	RS1	RS0	OV	F1	Р	00000000	RW
D1	7	reserved											
D8	1	EICON ^[15]	External Interrupt Control	SMOD1	1	ERESI	RESI	INT6	0	0	0	01000000	RW
D9	7	reserved											
E0	1	ACC	Accumulator (bit address- able)	D7	D6	D5	D4	D3	D2	D1	D0	0000000	RW
E1	7	reserved											
E8	1	EIE ^[15]	External Interrupt En- able(s)	1	1	1	EX6	EX5	EX4	EI ² C	EUSB	11100000	RW
E9	7	reserved											
F0	1	В	B (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
F1	7	reserved											
F8	1	EIP ^[15]	External Interrupt Priority Control	1	1	1	PX6	PX5	PX4	PI ² C	PUSB	11100000	RW
F9	7	reserved								1	1	1	

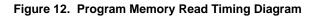
R = all bits read-only

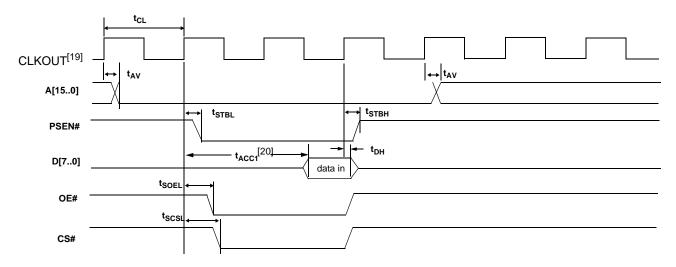
W = all bits write-only

r = read-only bit

w = write-only bit b = both read/write bit

Document Number: 38-08032 Rev. *Y




AC Electrical Characteristics

USB Transceiver

USB 2.0 compliant in Full-Speed and Hi-Speed modes.

Program Memory Read

Table 15.	Program	Memory	Read	Parameters
-----------	---------	--------	------	------------

Parameter	Description	Min	Тур	Max	Unit	Notes
		_	20.83	-	ns	48 MHz
t _{CL}	1/CLKOUT frequency	_	41.66	-	ns	24 MHz
		-	83.2	-	ns	12 MHz
t _{AV}	Delay from clock to valid address	0	_	10.7	ns	-
t _{STBL}	Clock to PSEN LOW	0	_	8	ns	-
t _{STBH}	Clock to PSEN HIGH	0	_	8	ns	-
t _{SOEL}	Clock to OE LOW	-	_	11.1	ns	-
t _{SCSL}	Clock to CS LOW	-	_	13	ns	-
t _{DSU}	Data setup to clock	9.6	-	-	ns	-
t _{DH}	Data hold time	0	-	-	ns	-

Notes

19. CLKOUT is shown with positive polarity.

20. t_{ACC1} is computed from these parameters as follows: t_{ACC1}(24 MHz) = $3^{*}t_{CL} - t_{AV} - t_{DSU} = 106$ ns. t_{ACC1}(48 MHz) = $3^{*}t_{CL} - t_{AV} - t_{DSU} = 43$ ns.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Data Memory Read^[21]

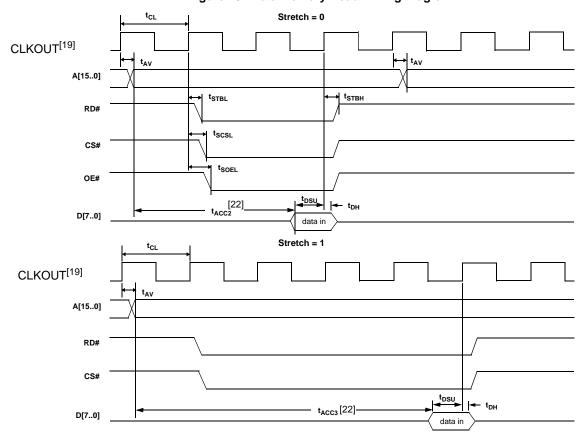


Figure 13. Data Memory Read Timing Diagram

Table 16. Data Memory Read Parameters

Parameter	Description	Min	Тур	Max	Unit	Notes
		-	20.83	-	ns	48 MHz
t _{CL}	1/CLKOUT frequency	_	41.66	-	ns	24 MHz
		_	83.2	-	ns	12 MHz
t _{AV}	Delay from clock to valid address	-	-	10.7	ns	-
t _{STBL}	Clock to RD LOW	-	-	11	ns	-
t _{STBH}	Clock to RD HIGH	-	-	11	ns	-
t _{SCSL}	Clock to CS LOW	-	-	13	ns	-
t _{SOEL}	Clock to OE LOW	-	-	11.1	ns	-
t _{DSU}	Data setup to clock	9.6	-	-	ns	-
t _{DH}	Data hold time	0	-	-	ns	-

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# is active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value.

Notes

21. The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.

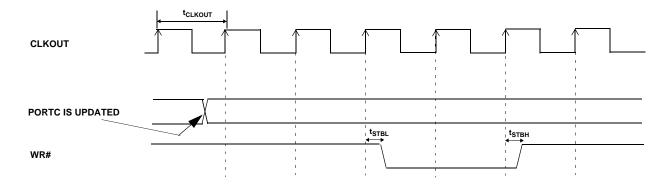
22. t_{ACC2} and t_{ACC3} are computed from these parameters as follows: $t_{ACC2}(24 \text{ MHz}) = 3^* t_{CL} - t_{AV} - t_{DSU} = 106 \text{ ns}$ $t_{ACC2}(24 \text{ MHz}) = 3^* t_{CL} - t_{AV} - t_{DSU} = 43 \text{ ns}$ $t_{ACC3}(24 \text{ MHz}) = 5^* t_{CL} - t_{AV} - t_{DSU} = 190 \text{ ns}$ $t_{ACC3}(48 \text{ MHz}) = 5^* t_{CL} - t_{AV} - t_{DSU} = 86 \text{ ns}$

PORTC Strobe Feature Timings

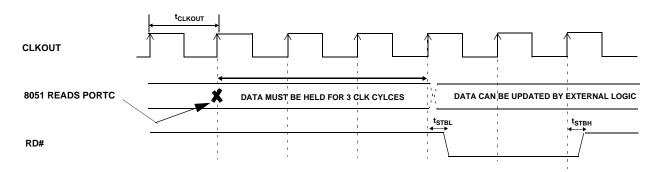
The RD# and WR# are present in the 100-pin version and the 128-pin package. In these 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from or writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register.

The RD# and WR# strobes are asserted for two CLKOUT cycles when PORTC is accessed.

The WR# strobe is asserted two clock cycles after PORTC is updated and is active for two clock cycles after that, as shown in Figure 16.


As for read, the value of PORTC three clock cycles before the assertion of RD# is the value that the 8051 reads in. The RD# is pulsed for two clock cycles after three clock cycles from the point when the 8051 has performed a read function on PORTC.

The RD# signal prompts the external logic to prepare the next data byte. Nothing gets sampled internally on assertion of the RD# signal itself; it is just a prefetch type signal to get the next data byte prepared. So, using it with that in mind easily meets the setup time to the next read.


The purpose of this pulsing of RD# is to allow the external peripheral to know that the 8051 is done reading PORTC and the data was latched into PORTC three CLKOUT cycles before asserting the RD# signal. After the RD# is pulsed, the external logic can update the data on PORTC.

Following is the timing diagram of the read and write strobing function on accessing PORTC. Refer to Data Memory Read^[21] and Data Memory Write^[23] for details on propagation delay of RD# and WR# signals.

Figure 16. WR# Strobe Function when PORTC is Accessed by 8051

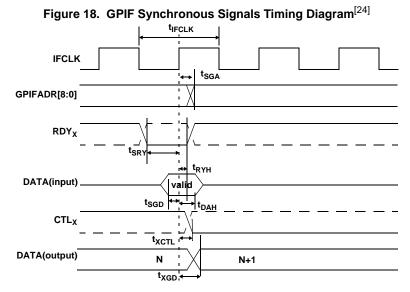
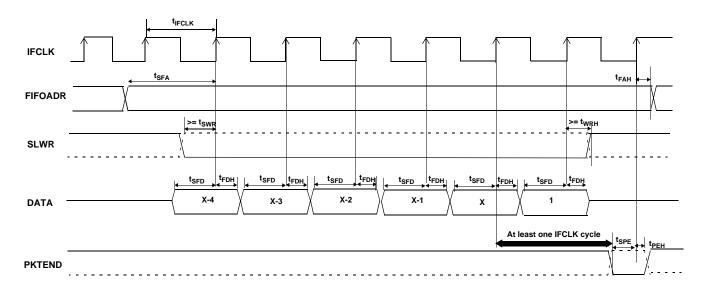


Figure 17. RD# Strobe Function when PORTC is Accessed by 8051

GPIF Synchronous Signals

Table 18. GPIF Synchronous Signals Parameters with Internally Sourced $\mbox{IFCLK}^{[24,\ 25]}$

Parameter	Description	Min	Мах	T	ур	Unit
Farameter	Description	IVIIII	IVIAN	Min	Max	Onic
t _{IFCLK}	IFCLK Period	20.83	—	-	-	ns
t _{SRY}	RDY _X to clock setup time	8.9	—	-	-	ns
t _{RYH}	Clock to RDY _X	0	-	-	-	ns
t _{SGD}	GPIF data to clock setup time	9.2	—	-	-	ns
t _{DAH}	GPIF data hold time	0	—	-	-	ns
t _{SGA}	Clock to GPIF address propagation delay	-	7.5	-	-	ns
t _{XGD}	Clock to GPIF data output propagation delay	_	11	-	-	ns
t _{XCTL}	Clock to CTL _X output propagation delay	-	6.7	-	-	ns
t _{IFCLKR}	IFCLK rise time	-	_	-	900	ps
t _{IFCLKF}	IFCLK fall time	_	-	-	900	ps
t _{IFCLKOD}	IFCLK output duty cycle	-	—	49	51	%
t _{IFCLKJ}	IFCLK jitter peak to peak	-	—	-	300	ps


Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period ^[26]	20.83	200	ns
t _{SRY}	RDY _X to clock setup time	2.9	-	ns
t _{RYH}	Clock to RDY _X	3.7	-	ns
t _{SGD}	GPIF data to clock setup time	3.2	-	ns
t _{DAH}	GPIF data hold time	4.5	-	ns
t _{SGA}	Clock to GPIF address propagation delay	-	11.5	ns
t _{XGD}	Clock to GPIF data output propagation delay	-	15	ns
t _{XCTL}	Clock to CTL _X output propagation delay	-	10.7	ns

Notes

24. Dashed lines denote signals with programmable polarity.
 25. GPIF asynchronous RDY_x signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK.
 26. IFCLK must not exceed 48 MHz.

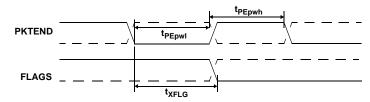


Figure 24. Slave FIFO Synchronous Write Sequence and Timing Diagram^[24]

Slave FIFO Asynchronous Packet End Strobe

Figure 25. Slave FIFO Asynchronous Packet End Strobe Timing Diagram^[24]

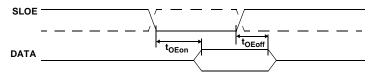


Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{PEpwl}	PKTEND pulse width LOW	50	_	ns
t _{PWpwh}	PKTEND pulse width HIGH	50	_	ns
t _{XFLG}	PKTEND to FLAGS output propagation delay	-	115	ns

Slave FIFO Output Enable

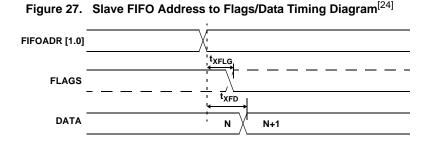


Table 29. Slave FIFO Output Enable Parameters

Parameter	Description	Min	Max	Unit
t _{OEon}	SLOE assert to FIFO DATA output		10.5	ns
t _{OEoff}	SLOE deassert to FIFO DATA hold		10.5	ns

Slave FIFO Address to Flags/Data

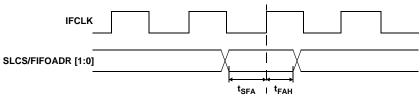


Table 30. Slave FIFO Address to Flags/Data Parameters

Parameter	Description	Min	Max	Unit
t _{XFLG}	FIFOADR[1:0] to FLAGS output propagation delay	-	10.7	ns
t _{XFD}	FIFOADR[1:0] to FIFODATA output propagation delay	_	14.3	ns

Slave FIFO Synchronous Address

Figure 28. Slave FIFO Synchronous Address Timing Diagram^[24]

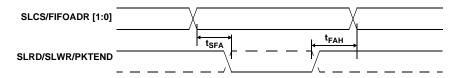


Table 31. Slave FIFO Synchronous Address Parameters^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	Interface clock period	20.83	200	ns
t _{SFA}	FIFOADR[1:0] to clock setup time	25	_	ns
t _{FAH}	Clock to FIFOADR[1:0] hold time	10	-	ns

Slave FIFO Asynchronous Address

Figure 29. Slave FIFO Asynchronous Address Timing Diagram^[24]

Table 32. Slave FIFO Asynchronous Address Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{SFA}	FIFOADR[1:0] to SLRD/SLWR/PKTEND setup time	10	-	ns
t _{FAH}	RD/WR/PKTEND to FIFOADR[1:0] hold time	10	-	ns

Single and Burst Synchronous Write

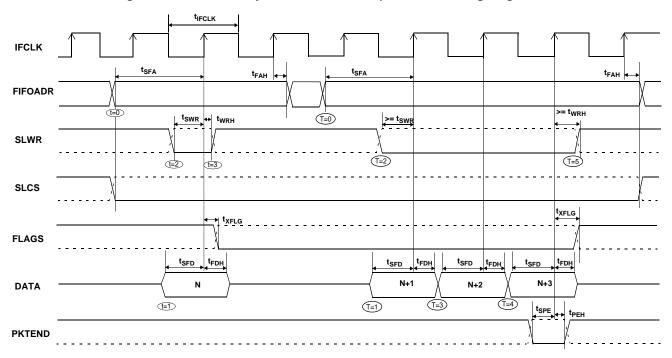


Figure 32. Slave FIFO Synchronous Write Sequence and Timing Diagram^[24]

Figure 32 shows the timing relationship of the SLAVE FIFO signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst write of three bytes and committing all four bytes as a short packet using the PKTEND pin.

- At t = 0 the FIFO address is stable and the signal SLCS is asserted. (SLCS may be tied LOW in some applications) Note that t_{SFA} has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, the external master/peripheral must outputs the data value onto the data bus with a minimum set up time of t_{SFD} before the rising edge of IFCLK.
- At t = 2, SLWR is asserted. The SLWR must meet the setup time of t_{SWR} (time from asserting the SLWR signal to the rising edge of IFCLK) and maintain a minimum hold time of t_{WRH} (time from the IFCLK edge to the deassertion of the SLWR signal). If the SLCS signal is used, it must be asserted with SLWR or before SLWR is asserted (The SLCS and SLWR signals must both be asserted to start a valid write condition).
- While the SLWR is asserted, data is written to the FIFO and on the rising edge of the IFCLK, the FIFO pointer is incremented. The FIFO flag is also updated after a delay of t_{XFLG} from the rising edge of the clock.

The same sequence of events are also shown for a burst write and are marked with the time indicators of T = 0 through 5.

Note For the burst mode, SLWR and SLCS are left asserted for the entire duration of writing all the required data values. In this burst write mode, after the SLWR is asserted, the data on the FIFO data bus is written to the FIFO on every rising edge of IFCLK. The FIFO pointer is updated on each rising edge of IFCLK. In Figure 32, after the four bytes are written to the FIFO, SLWR is deasserted. The short 4 byte packet can be committed to the host by asserting the PKTEND signal.

There is no specific timing requirement that should be met for asserting PKTEND signal with regards to asserting the SLWR signal. PKTEND can be asserted with the last data value or thereafter. The only requirement is that the setup time t_{SPE} and the hold time t_{PEH} must be met. In the scenario of Figure 32, the number of data values committed includes the last value written to the FIFO. In this example, both the data value and the PKTEND signal are clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subsequent clock cycles. The FIFOADDR lines should be held constant during the PKTEND assertion.

Although there are no specific timing requirement for the PKTEND assertion, there is a specific corner-case condition that needs attention while using the PKTEND to commit a one byte/word packet. Additional timing requirements exist when the FIFO is configured to operate in auto mode and it is desired to send two packets: a full packet ('full' defined as the number of bytes in the FIFO meeting the level set in the AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin.

In this case, the external master must ensure to assert the PKTEND pin at least one clock cycle after the rising edge that caused the last byte or word that needs to be clocked into the previous auto committed packet (the packet with the number of bytes equal to what is set in the AUTOINLEN register). Refer to Figure 24 on page 50 for further details on this timing.

Sequence Diagram of a Single and Burst Asynchronous Read

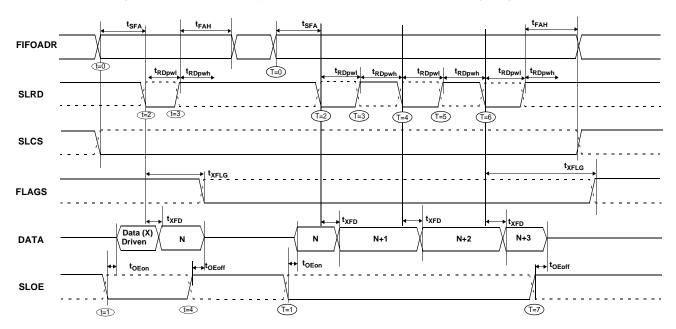


Figure 33. Slave FIFO Asynchronous Read Sequence and Timing Diagram^[24]

Figure 34. Slave FIFO Asynchronous Read Sequence of Events Diagram

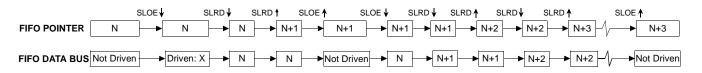
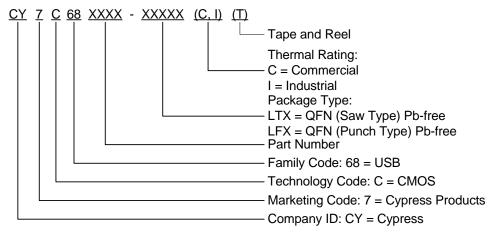


Figure 33 shows the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read.

- At t = 0, the FIFO address is stable and the SLCS signal is asserted.
- At t = 1, SLOE is asserted. This results in the data bus being driven. The data that is driven on to the bus is the previous data, the data that was in the FIFO from an earlier read cycle.
- At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of t_{RDpwl} and minimum de-active pulse width of t_{RDpwh}. If SLCS is used, then SLCS must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition.)
- The data that is driven, after asserting SLRD, is the updated data from the FIFO. This data is valid after a propagation delay of t_{XFD} from the activating edge of SLRD. In Figure 33, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle (SLRD is asserted), SLOE must be in an asserted state. SLRD and SLOE can also be tied together.

The same sequence of events is also shown for a burst read marked with T = 0 through 5.

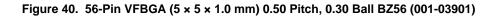
Note In the burst read mode, during SLOE is asserted, the data bus is in a driven state and outputs the previous data. After SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented.

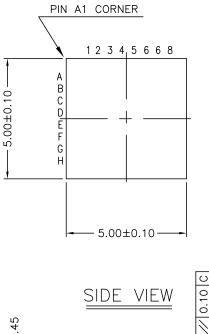


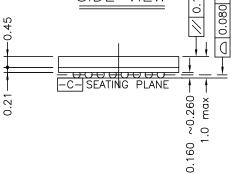
Ordering Information

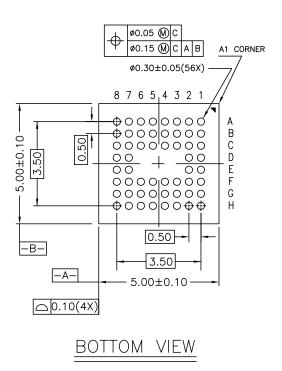
Table 33. Ordering Information

		# Prog I/Os	8051 Address /Data Bus	Serial Debug ^[28]			
olications							
128 TQFP – Pb-free	16 K	40	16-/8-bit	Y			
100 TQFP – Pb-free	16 K	40	_	Y			
56 SSOP – Pb-free	16 K	24	_	N			
56 QFN - Pb-free	16 K	24	_	N			
56 QFN - Pb-free	16 K	26	_	N			
56 QFN - Pb-free	16 K	26	-	N			
d Applications	1						
128 TQFP – Pb-free	16 K	40	16-/8-bit	Y			
128 TQFP – Pb-free (Industrial)	16 K	40	16-/8-bit	Y			
100 TQFP – Pb-free	16 K	40	_	Y			
100 TQFP – Pb-free (Industrial)	16 K	40	_	Y			
56 SSOP – Pb-free	16 K	24	_	N			
56 SSOP – Pb-free	16 K	24	_	N			
56 SSOP – Pb-free (Industrial)	16 K	24	_	N			
56 VFBGA – Pb-free	16 K	24	_	N			
56 VFBGA – Pb-free	16 K	24	_	N			
56 QFN – Pb-free	16 K	24	_	N			
56 QFN – Pb-free	16 K	24	_	N			
56 QFN – Pb-free (Industrial)	16 K	24	—	N			
56 QFN – Pb-free	16 K	26	_	N			
	1						
EZ-USB FX2LP development kit							
USB 2.0 to ATA/ATAPI reference	USB 2.0 to ATA/ATAPI reference design using EZ-USB FX2LP						
	128 TQFP - Pb-free100 TQFP - Pb-free56 SSOP - Pb-free56 QFN - Pb-free56 QFN - Pb-free56 QFN - Pb-free56 QFN - Pb-free28 TQFP - Pb-free128 TQFP - Pb-free (Industrial)100 TQFP - Pb-free (Industrial)100 TQFP - Pb-free100 TQFP - Pb-free56 SSOP - Pb-free56 SSOP - Pb-free56 SSOP - Pb-free56 VFBGA - Pb-free56 QFN - Pb-free	128 TQFP – Pb-free 16 K 100 TQFP – Pb-free 16 K 56 SSOP – Pb-free 16 K 56 QFN - Pb-free 16 K 4 Applications 128 TQFP – Pb-free 128 TQFP – Pb-free 16 K 128 TQFP – Pb-free 16 K 128 TQFP – Pb-free 16 K 100 TQFP – Pb-free (Industrial) 16 K 100 TQFP – Pb-free (Industrial) 16 K 56 SSOP – Pb-free 16 K 56 SSOP – Pb-free 16 K 56 SSOP – Pb-free 16 K 56 VFBGA – Pb-free 16 K 56 VFBGA – Pb-free 16 K 56 QFN – Pb-free 16 K	128 TQFP – Pb-free 16 K 40 100 TQFP – Pb-free 16 K 40 56 SSOP – Pb-free 16 K 24 56 QFN - Pb-free 16 K 24 56 QFN - Pb-free 16 K 24 56 QFN - Pb-free 16 K 26 54 Applications 128 TQFP – Pb-free 16 K 40 128 TQFP – Pb-free (Industrial) 16 K 40 100 TQFP – Pb-free (Industrial) 16 K 40 100 TQFP – Pb-free (Industrial) 16 K 24 56 SSOP – Pb-free 16 K 24 56 SSOP – Pb-free 16 K 24 56 SSOP – Pb-free 16 K 24 56 VFBGA – Pb-free 16 K 24 56 QFN – Pb-free (Industrial) 16 K	128 TQFP - Pb-free 16 K 40 16-/8-bit 100 TQFP - Pb-free 16 K 40 - 56 SSOP - Pb-free 16 K 24 - 56 QFN - Pb-free 16 K 24 - 56 QFN - Pb-free 16 K 24 - 56 QFN - Pb-free 16 K 26 - 57 QFP - Pb-free 16 K 40 16-/8-bit 128 TQFP - Pb-free (Industrial) 16 K 40 - 100 TQFP - Pb-free (Industrial) 16 K 40 - 100 TQFP - Pb-free (Industrial) 16 K 24 - 56 SSOP - Pb-free 16 K 24 - 56 SSOP - Pb-free 16 K 24 - 56 VFBGA - Pb-free 16 K 24 - 56 VFBGA - Pb-free 16 K 24 - 56 QFN - Pb-free 16			


Ordering Code Definitions


Note


28. As UART is not available in the 56-pin package of CY7C68013A, serial port debugging using Keil Monitor is not possible.



TOP VIEW

 \overline{O}

REFERENCE JEDEC: MO-195C PACKAGE WEIGHT: 0.02 grams

001-03901 *F

U.3U DMII D730

Document History Page (continued)

Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB [®] FX2LP™ USB Microcontroller High- Speed USB Peripheral Controller Document Number: 38-08032					
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change	
*W	3998554	GAYA	07/19/2013	Added Errata footnote (Note 3). Updated Functional Overview: Updated Interrupt System: Updated FIFO/GPIF Interrupt (INT4): Added Note 3 and referred the same note in "Endpoint 2 empty flag" in Table 4. Updated Package Diagrams: spec 51-85062 – Changed revision from *E to *F. spec 001-53450 – Changed revision from *B to *C. Added Errata. Updated in new template.	
*Х	4617527	GAYA	01/15/2015	Updated Figure 13 Added a note to sections Data Memory Read ^[21] and Data Memory Write ^[23] sections Updated template to include the More Information section Updated Figure 37, Figure 38, Figure 39 Updated Table 11 with Reset state information for pins Sunset Review	
*Y	5317277	ODC	06/28/2016	Updated CY Logo and Sales Disclaimer.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2003-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-08032 Rev. *Y Revise FX2LP is a trademark and EZ-USB is a registered trademark of Cypress Semiconductor Corporation.

Revised June 28, 2016

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.