E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application energific microcontrollars are angineered to

Details

Product Status	Obsolete
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I²C, USB, USART
Number of I/O	24
Voltage - Supply	3V ~ 3.6V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68013a-56lfxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Cypress's EZ-USB[®] FX2LP[™] (CY7C68013A/14A) is a low-power version of the EZ-USB FX2[™] (CY7C68013), which is a highly integrated, low-power USB 2.0 microcontroller. By integrating the USB 2.0 transceiver, serial interface engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypress has created a cost-effective solution that provides superior time-to-market advantages with low power to enable bus-powered applications.

The ingenious architecture of FX2LP results in data transfer rates of over 53 Mbytes per second (the maximum allowable USB 2.0 bandwidth), while still using a low-cost 8051 microcontroller in a package as small as a 56 VFBGA (5 mm x 5 mm). Because it incorporates the USB 2.0 transceiver, the FX2LP is more economical, providing a smaller-footprint solution than a USB 2.0 SIE or external transceiver implementations. With EZ-USB FX2LP, the Cypress Smart SIE handles most of the USB 1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for application-specific functions and decreasing the development time to ensure USB compatibility.

The general programmable interface (GPIF) and Master/Slave Endpoint FIFO (8-bit or 16-bit data bus) provide an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors.

The FX2LP draws less current than the FX2 (CY7C68013), has double the on-chip code/data RAM, and is fit, form, and function compatible with the 56-, 100-, and 128-pin FX2.

Five packages are defined for the family: 56 VFBGA, 56 SSOP, 56 QFN, 100 TQFP, and 128 TQFP.

The FX2LP jump instruction is encoded as follows:.

Table 3. INT2 USB Interrupts

USB INTERRUPT TABLE FOR INT2								
Priority	INT2VEC Value	Source	Notes					
1	00	SUDAV	Setup data available					
2	04	SOF	Start of frame (or microframe)					
3	08	SUTOK	Setup token received					
4	0C	SUSPEND	USB suspend request					
5	10	USB RESET	Bus reset					
6	14	HISPEED	Entered high speed operation					
7	18	EP0ACK	FX2LP ACK'd the CONTROL Handshake					
8	1C		reserved					
9	20	EP0-IN	EP0-IN ready to be loaded with data					
10	24	EP0-OUT	EP0-OUT has USB data					
11	28	EP1-IN	EP1-IN ready to be loaded with data					
12	2C	EP1-OUT	EP1-OUT has USB data					
13	30	EP2	IN: buffer available. OUT: buffer has data					
14	34	EP4	IN: buffer available. OUT: buffer has data					
15	38	EP6	IN: buffer available. OUT: buffer has data					
16	3C	EP8	IN: buffer available. OUT: buffer has data					
17	40	IBN	IN-Bulk-NAK (any IN endpoint)					
18	44		reserved					
19	48	EP0PING	EP0 OUT was pinged and it NAK'd					
20	4C	EP1PING	EP1 OUT was pinged and it NAK'd					
21	50	EP2PING	EP2 OUT was pinged and it NAK'd					
22	54	EP4PING	EP4 OUT was pinged and it NAK'd					
23	58	EP6PING	EP6 OUT was pinged and it NAK'd					
24	5C	EP8PING	EP8 OUT was pinged and it NAK'd					
25	60	ERRLIMIT	Bus errors exceeded the programmed limit					
26	64	-	-					
27	68	-	Reserved					
28	6C	-	Reserved					
29	70	EP2ISOERR	ISO EP2 OUT PID sequence error					
30	74	EP4ISOERR	ISO EP4 OUT PID sequence error					
31	78	EP6ISOERR	ISO EP6 OUT PID sequence error					
32	7C	EP8ISOERR	ISO EP8 OUT PID sequence error					

If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), the FX2LP substitutes its INT2VEC byte. Therefore, if the high byte ("page") of a jump table address is preloaded at the location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs the jump to the correct address out of the 27 addresses within the page.

FIFO/GPIF Interrupt (INT4)

Just as the USB Interrupt is shared among 27 individual USB interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, similar to the USB Interrupt, can employ autovectoring.

Table 4 on page 8 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.

Table 4. Individual FIFO/GPIF Interrupt Sources

Priority	INT4VEC Value	Source	Notes			
1	80	EP2PF	Endpoint 2 programmable flag			
2	84	EP4PF	Endpoint 4 programmable flag			
3	88	EP6PF	Endpoint 6 programmable flag			
4	8C	EP8PF	Endpoint 8 programmable flag			
5	90	EP2EF	Endpoint 2 empty flag ^[3]			
6	94	EP4EF	Endpoint 4 empty flag			
7	98	EP6EF	Endpoint 6 empty flag			
8	9C	EP8EF	Endpoint 8 empty flag			
9	A0	EP2FF	Endpoint 2 full flag			
10	A4	EP4FF	Endpoint 4 full flag			
11	A8	EP6FF	Endpoint 6 full flag			
12	AC	EP8FF	Endpoint 8 full flag			
13	B0	GPIFDONE	GPIF operation complete			
14	B4	GPIFWF	GPIF waveform			

If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP register), the FX 2LP substitutes its INT4VEC byte. Therefore, if the high byte ("page") of a jump-table address is preloaded at location 0x0054, the automatically inserted INT4VEC byte at 0x0055 directs the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX2LP pushes the program counter to its stack then jumps to address 0x0053, where it expects to find a "jump" instruction to the interrupt service routine (ISR).

Note

Errata: In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction. For more information, see the "Errata" on page 65.

Program/Data RAM

SizeThe FX2LP has 16 KB of internal program/data RAM, where PSEN#/RD# signals are internally ORed to enable the 8051 to access it as both program and data memory. No USB control registers appears in this space.

Two memory maps are shown in the following diagrams:

Figure 3 on page 10 shows the Internal Code Memory, EA = 0.

Figure 4 on page 11 shows the External Code Memory, EA = 1.

Internal Code Memory, EA = 0

This mode implements the internal 16 KB block of RAM (starting at 0) as combined code and data memory. When external RAM or ROM is added, the external read and write strobes are suppressed for memory spaces that exist inside the chip. This enables the user to connect a 64 KB memory without requiring address decodes to keep clear of internal memory spaces. Only the internal 16 KB and scratch pad 0.5 KB RAM spaces have the following access:

- USB download
- USB upload
- Setup data pointer
- I²C interface boot load

External Code Memory, EA = 1

The bottom 16 KB of program memory is external and therefore the bottom 16 KB of internal RAM is accessible only as a data memory.

Figure 3. Internal Code Memory, EA = 0

*SUDPTR, USB upload/download, I²C interface boot access

4. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 µs.

In the Slave (S) mode, FX2LP accepts either an internally derived clock or externally supplied clock (IFCLK, max frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock must be present before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit and a Slave FIFO Output Enable signal (SLOE) that enables data of the selected width. External logic must ensure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signal SLCS#.

GPIF and FIFO Clock Rates

An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register inverts the IFCLK signal whether internally or externally sourced.

GPIF

The GPIF is a flexible 8-bit or 16-bit parallel interface driven by a user-programmable finite state machine. It enables the CY7C68013A/15A to perform local bus mastering and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia.

The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that is executed to perform the desired data move between the FX2LP and the external device.

Six Control OUT Signals

The 100-pin and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock).

Six Ready IN Signals

The 100-pin and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1.

Nine GPIF Address OUT Signals

Nine GPIF address lines are available in the 100-pin and 128-pin packages, GPIFADR[8..0]. The GPIF address lines enable indexing through up to a 512-byte block of RAM. If more address lines are needed, then I/O port pins are used.

Long Transfer Mode

In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to 2³² transactions. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction.

ECC Generation^[8]

The EZ-USB can calculate ECCs (Error Correcting Codes) on data that passes across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calculated over 256 bytes (SmartMedia Standard); and one ECC calculated over 512 bytes.

The ECC can correct any one-bit error or detect any two-bit error.

ECC Implementation

The two ECC configurations are selected by the ECCM bit:

ECCM = 0

Two 3-byte ECCs, each calculated over a 256-byte block of data. This configuration conforms to the SmartMedia Standard.

Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 256 bytes of data is calculated and stored in ECC1. The ECC for the next 256 bytes is stored in ECC2. After the second ECC is calculated, the values in the ECCx registers do not change until ECCRESET is written again, even if more data is subsequently passed across the interface.

ECCM = 1

One 3-byte ECC calculated over a 512-byte block of data.

Write any value to ECCRESET then pass data across the GPIF or Slave FIFO interface. The ECC for the first 512 bytes of data is calculated and stored in ECC1; ECC2 is unused. After the ECC is calculated, the values in ECC1 do not change even if more data is subsequently passed across the interface, till ECCRESET is written again.

USB Uploads and Downloads

The core has the ability to directly edit the data contents of the internal 16-KB RAM and of the internal 512-byte scratch pad RAM via a vendor-specific command. This capability is normally used when soft downloading the user code and is available only to and from the internal RAM, only when the 8051 is held in reset. The available RAM spaces are 16 KB from 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad data RAM)^[9].

Notes

8. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.

^{9.} After the data is downloaded from the host, a "loader" can execute from internal RAM to transfer downloaded data to external memory.

Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment – Top View

 Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
34	28	_	_		ВКРТ	Output	L	L	Breakpoint . This pin goes active (HIGH) when the 8051 address bus matches the BPADDRH/L registers and breakpoints are enabled in the BREAKPT register (BPEN = 1). If the BPPULSE bit in the BREAKPT register is HIGH, this signal pulses HIGH for eight 12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the signal remains HIGH until the 8051 clears the BREAK bit (by writing 1 to it) in the BREAKPT register.
99	77	49	42	8B	RESET#	Input	N/A	N/A	Active LOW Reset. Resets the entire chip. See section "Reset and Wakeup" on page 9 for more details.
35	_	_	_	_	EA	Input	N/A	N/A	External Access . This pin determines where the 8051 fetches code between addresses $0x0000$ and $0x3FFF$. If EA = 0 the 8051 fetches this code from its internal RAM. IF EA = 1 the 8051 fetches this code from external memory.
12	11	12	5	1C	XTALIN	Input	N/A	N/A	Crystal Input . Connect this signal to a 24-MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. It is also correct to drive XTALIN with an external 24-MHz square wave derived from another clock source. When driving from an external source, the driving signal should be a 3.3-V square wave.
11	10	11	4	2C	XTALOUT	Output	N/A	N/A	Crystal Output . Connect this signal to a 24-MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. If an external clock is used to drive XTALIN, leave this pin open.
1	100	5	54	2B	CLKOUT on CY7C68013A and CY7C68014A	O/Z	12 MHz	Clock Driven	CLKOUT: 12-, 24- or 48-MHz clock, phase-locked to the 24-MHz input clock. The 8051 defaults to 12-MHz operation. The 8051 may three-state this output by setting CPUCS.1 = 1.
					PE1 on CY7C68015A and CY7C68016A	 I/O/Z	 I	Z	PE1 is a bidirectional I/O port pin.
Port	A								
82	67	40	33	8G	PA0 or INT0#	I/O/Z	І (РА0)	Z (PA0)	Multiplexed pin whose function is selected by PORTACFG.0 PA0 is a bidirectional I/O port pin. INT0# is the active-LOW 8051 INT0 interrupt input signal, which is either edge-triggered (IT0 = 1) or level-triggered (IT0 = 0).
83	68	41	34	6G	PA1 or INT1#	I/O/Z	I (PA1)	Z (PA1)	Multiplexed pin whose function is selected by: PORTACFG.1 PA1 is a bidirectional I/O port pin. INT1# is the active-LOW 8051 INT1 interrupt input signal, which is either edge-triggered (IT1 = 1) or level-triggered (IT1 = 0).

Register Summary

FX2LP register bit definitions are described in the FX2LP TRM in greater detail.

Table 12. FX2LP Register Summary

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
		GPIF Waveform Memo	ories										
E400	128	WAVEDATA	GPIF Waveform Descriptor 0, 1, 2, 3 data	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
E480	128	reserved											
		GENERAL CONFIGUI	RATION										
E50D		GPCR2	General Purpose Configu- ration Register 2	reserved	reserved	reserved	FULL_SPEE D_ONLY	reserved	reserved	reserved	reserved	00000000	R
E600	1	CPUCS	CPU Control & Status	0	0	PORTCSTB	CLKSPD1	CLKSPD0	CLKINV	CLKOE	8051RES	00000010	rrbbbbbr
E601	1	IFCONFIG	Interface Configuration (Ports, GPIF, slave FIFOs)	IFCLKSRC	3048MHZ	IFCLKOE	IFCLKPOL	ASYNC	GSTATE	IFCFG1	IFCFG0	10000000	RW
E602	1	PINFLAGSAB ^[13]	Slave FIFO FLAGA and FLAGB Pin Configuration	FLAGB3	FLAGB2	FLAGB1	FLAGB0	FLAGA3	FLAGA2	FLAGA1	FLAGA0	00000000	RW
E603	1	PINFLAGSCD ^[13]	Slave FIFO FLAGC and FLAGD Pin Configuration	FLAGD3	FLAGD2	FLAGD1	FLAGD0	FLAGC3	FLAGC2	FLAGC1	FLAGC0	00000000	RW
E604	1	FIFORESET ^[13]	Restore FIFOS to default state	NAKALL	0	0	0	EP3	EP2	EP1	EP0	XXXXXXXX	W
E605	1	BREAKPT	Breakpoint Control	0	0	0	0	BREAK	BPPULSE	BPEN	0	00000000	rrrrbbbr
E606	1	BPADDRH	Breakpoint Address H	A15	A14	A13	A12	A11	A10	A9	A8	xxxxxxx	RW
E607	1	BPADDRL	Breakpoint Address L	A7	A6	A5	A4	A3	A2	A1	A0	xxxxxxx	RW
E608	1	UART230	230 Kbaud internally generated ref. clock	0	0	0	0	0	0	230UART1	230UART0	00000000	rrrrrbb
E609	1	FIFOPINPOLAR ^[13]	Slave FIFO Interface pins polarity	0	0	PKTEND	SLOE	SLRD	SLWR	EF	FF	00000000	rrbbbbbb
E60A	1	REVID	Chip Revision	rv7	rv6	rv5	rv4	rv3	rv2	rv1	rv0	RevA 00000001	R
E60B	1	REVCTL ^[13]	Chip Revision Control	0	0	0	0	0	0	dyn_out	enh_pkt	00000000	rrrrrbb
		UDMA											
E60C	1	GPIFHOLDAMOUNT	MSTB Hold Time (for UDMA)	0	0	0	0	0	0	HOLDTIME1	HOLDTIME0	00000000	rrrrrbb
	3	reserved											
		ENDPOINT CONFIGU	IRATION										
E610	1	EP1OUTCFG	Endpoint 1-OUT	VALID	0	TYPE1	TYPE0	0	0	0	0	10100000	brbbrrrr
E611	1	EP1INCFG	Configuration Endpoint 1-IN	VALID	0	TYPE1	TYPE0	0	0	0	0	10100000	brbbrrrr
5040		500050	Configuration		DID			0175	0	DUEA	DUEO	40400040	
E612	1	EP2CFG	Endpoint 2 Configuration	VALID	DIR	TYPE1	TYPE0	SIZE	0	BUF1	BUFU	10100010	daradada
E613	1	EP4CFG	Endpoint 4 Configuration	VALID	DIR	TYPE1	TYPE0	0	0	0	0	10100000	pppprrrr
E614	1	EP6CFG	Endpoint 6 Configuration	VALID	DIR	TYPE1	TYPE0	SIZE	0	BUF1	BUF0	11100010	bbbbbrbb
E615	1	EP8CFG	Endpoint 8 Configuration	VALID	DIR	TYPE1	TYPE0	0	0	0	0	11100000	bbbbrrrr
	2	reserved											
E618	1	EP2FIFOCFG ^[13]	Endpoint 2 / slave FIFO configuration	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
E619	1	EP4FIFOCFG ^[13]	Endpoint 4 / slave FIFO configuration	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
E61A	1	EP6FIFOCFG ^[13]	Endpoint 6 / slave FIFO configuration	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
E61B	1	EP8FIFOCFG ^[13]	Endpoint 8 / slave FIFO configuration	0	INFM1	OEP1	AUTOOUT	AUTOIN	ZEROLENIN	0	WORDWIDE	00000101	rbbbbbrb
E61C	4	reserved											
E620	1	EP2AUTOINLENH ^{[13}	Endpoint 2 AUTOIN Packet Length H	0	0	0	0	0	PL10	PL9	PL8	00000010	rrrrbbb
E621	1	EP2AUTOINLENL ^[13]	Endpoint 2 AUTOIN Packet Length L	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	RW
E622	1	EP4AUTOINLENH ^[13]	Endpoint 4 AUTOIN Packet Length H	0	0	0	0	0	0	PL9	PL8	00000010	rrrrrbb
E623	1	EP4AUTOINLENL ^[13]	Endpoint 4 AUTOIN Packet Length L	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	RW
E624	1	EP6AUTOINLENH ^[13]	Endpoint 6 AUTOIN Packet Length H	0	0	0	0	0	PL10	PL9	PL8	00000010	rrrrbbb
E625	1	EP6AUTOINLENL ^[13]	Endpoint 6 AUTOIN Packet Length L	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	RW
E626	1	EP8AUTOINLENH ^[13]	Endpoint 8 AUTOIN Packet Length H	0	0	0	0	0	0	PL9	PL8	00000010	rrrrrbb
E627	1	EP8AUTOINLENL ^[13]	Endpoint 8 AUTOIN Packet Length L	PL7	PL6	PL5	PL4	PL3	PL2	PL1	PL0	00000000	RW
E628	1	ECCCFG	ECC Configuration	0	0	0	0	0	0	0	ECCM	00000000	rrrrrb
E629	1	ECCRESET	ECC Reset	x	x	x	х	х	х	х	х	00000000	W
E62A	1	ECC1B0	ECC1 Byte 0 Address	LINE15	LINE14	LINE13	LINE12	LINE11	LINE10	LINE9	LINE8	00000000	R

Note

13. Read and writes to these registers may require synchronization delay; see Technical Reference Manual for "Synchronization Delay."

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
хххх		I ² C Configuration Byte		0	DISCON	0	0	0	0	0	400KHZ	XXXXXXXX	n/a
	_	Provid Eurotian Deat	atora (SERa)										
00		Special Function Regis	sters (SFRS)	D7	D.	Dr	D.4	Do	Do	D4	D.		D)A/
00	1		Port A (bit addressable)	D7	Do	D5	D4	D3	D2		D0	XXXXXXXXX 00000111	
82	1		Data Pointer 0 I	Δ7	A6	Δ5	Δ4 Δ4	D3 43	Δ2 Δ2	Δ1	A0	00000111	RW
02 83	1	DPH0	Data Pointer 0 L	A15	A0 A14	A3 A13	Δ12	A3	A10	ΔQ	A0 A8	000000000	RW
84	1	DPI 1 ^[15]	Data Pointer 1 I	Δ7	A6	A13 A5	Δ1 Δ1	Δ3	A10	Δ1	A0	000000000	RW
85	1	DPH1 ^[15]	Data Pointer 1 H	A15	A0 A14	A13	A12	Δ11	A10	Δ9	A8	000000000	RW
86	1	DPS ^[15]	Data Pointer 0/1 select	0	0	0	0	0	0	0	SEL	00000000	RW
87	1	PCON	Power Control	SMOD0	x	1	1	x	x	x	IDLE	00110000	RW
88	1	TCON	Timer/Counter Control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000	RW
89	1	TMOD	(bit addressable) Timer/Counter Mode	GATE	СТ	M1	MO	GATE	СТ	M1	M0	00000000	RW
8A	1	TLO	Timer 0 reload I	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
8B	1	TI 1	Timer 1 reload L	D7	D6	D5	D4	D3	D2	D1	D0	000000000	RW
8C	1	THO	Timer 0 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8D	1	TH1	Timer 1 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8E	1	CKCON ^[15]	Clock Control	x	x	T2M	T1M	TOM	MD2	MD1	MD0	00000001	RW
8F	1	reserved											
90	1	IOB ^[15]	Port B (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
91	1	EXIF ^[15]	External Interrupt Flag(s)	IE5	IE4	I ² CINT	USBNT	1	0	0	0	00001000	RW
92	1	MPAGE ^[15]	Upper Addr Byte of MOVX using @R0 / @R1	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
93	5	reserved											
98	1	SCON0	Serial Port 0 Control (bit addressable)	SM0_0	SM1_0	SM2_0	REN_0	TB8_0	RB8_0	TI_0	RI_0	00000000	RW
99	1	SBUF0	Serial Port 0 Data Buffer	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
9A	1	AUTOPTRH1 ^[15]	Autopointer 1 Address H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
9B	1	AUTOPTRL1 ^[15]	Autopointer 1 Address L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
9C	1	reserved											
9D	1	AUTOPTRH2 ^[15]	Autopointer 2 Address H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
9E	1	AUTOPTRL2 ^[15]	Autopointer 2 Address L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
9F	1	reserved											
A0	1	IOC ^[15]	Port C (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
A1	1	INT2CLR ^[15]	Interrupt 2 clear	x	x	x	x	х	х	х	x	XXXXXXX	W
A2	1	INT4CLR ^[15]	Interrupt 4 clear	x	x	x	x	х	x	x	x	XXXXXXXX	W
A3	5	reserved							-		=		
A8	1		(bit addressable)	EA	ESI	E12	ESU	EI1	EX1	EIU	EXU	00000000	RW
A9 AA	1	ED2469STAT 15	Endpoint 2.4.6.9 status	EDQE	EDOE	EDGE	EDGE	EDIE	EDIE	ED2E	ED2E	01011010	D
	1		flags		EPOE			0		EP2E	EP2E	00100010	D
AD	1		status flags	0				0				00100010	R.
AC	1	[15]	status flags	0	EP8PF	EPSEF	EPOFF	0	EP6PF	EPGEF	EPOFF	01100110	ĸ
	∠ 1		Autopointor 192 cotur	0	0	0	0	0				00000110	DW/
	1	100[15]	Port D (bit addressable)		De	0 D5	0 D4	0				00000110	
B0 B1	1	IOE ^[15]	Port E	D7	D6	D5	D4 D4	D3	D2	D1	D0	******	RW
P2	1	054[15]	(NOT bit addressable)	D7	De	Df	D4	D2	D2	D1	DO	00000000	DW/
BZ D2	1		Port A Output Enable	D7	D6	D5	D4	D3	D2	D1	DU	00000000	RW
DJ D4	1		Port & Output Enable	D7	D6	D5	D4	D3	D2		DO	00000000	
D4	1		Port C Output Enable	D7	D6	D5	D4	D3	D2		DU	00000000	RW
DO DC	1		Port D Output Enable	D7	Do	D5	D4	D3	D2		D0	00000000	
B7	1	reserved	Fort E Output Enable	וט	00	00	U4	50	02	וט	00	00000000	INVV
B8	1	IP	Interrupt Priority (bit ad-	1	PS1	PT2	PS0	PT1	PX1	PT0	PX0	1000000	RW
B9	1	reserved	dressable)										
BA	1	EP01STAT ^[15]	Endpoint 0&1 Status	0	0	0	0	0	EP1INBSY	EP10UTBSY	EP0BSY	00000000	R
BB	1	GPIFTRIG ^[15, 13]	Endpoint 2,4,6,8 GPIF slave FIFO Trigger	DONE	0	0	0	0	RW	EP1	EP0	10000xxx	brrrrbbb
BC	1	reserved		-		1	1	1	1		-	1	
BD	1	GPIFSGLDATH ^[15]	GPIF Data H (16-bit mode only)	D15	D14	D13	D12	D11	D10	D9	D8	ххххххх	RW

Notes

15. SFRs not part of the standard 8051 architecture.16. If no EEPROM is detected by the SIE then the default is 00000000.

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature
Ambient temperature with power supplied (commercial)0 °C to +70 °C
Ambient temperature with power supplied (industrial)40 °C to + 105 °C
Supply voltage to ground potential–0.5 V to +4.0 V
DC input voltage to any input pin ^[17] 5.25 V
DC voltage applied to outputs in high Z state –0.5 V to V_{CC} + 0.5 V
Power dissipation
Static discharge voltage>2000 V
Static discharge voltage>2000 V Max output current, per I/O port

Operating Conditions

T _A (ambient temperature under bias) Commercial	0 °C to +70 °C
T _A (ambient temperature under bias) Industrial	–40 °C to +105 °C
Supply voltage	+3.00 V to +3.60 V
Ground voltage	0 V
F _{OSC} (oscillator or crystal frequency)	24 MHz ± 100 ppm, parallel resonant

Thermal Characteristics

The following table displays the thermal characteristics of various packages:

Table 13. Thermal Characteristics

Package	Ambient Temperature (°C)	θJc Junction to Case Thermal Resistance (°C/W)	θJa Junction to Ambient Thermal Resistance (°C/W)
56 SSOP	70	24.4	47.7
100 TQFP	70	11.9	45.9
128 TQFP	70	15.5	43.2
56 QFN	70	10.6	25.2
56 VFBGA	70	30.9	58.6

The junction temperature θ_j , can be calculated using the following equation: θ_j = P* θ_{Ja} + θ_a Where,

P = Power

 θ_{Ja} = Junction to ambient temperature ($\theta_{Jc} + \theta_{Ca}$)

 θ_a = Ambient temperature (70 °C)

The case temperature θ_c , can be calculated using the following equation: θ_c = P* θ_{Ca} + θ_a where,

P = Power

 θ_{Ca} = Case to ambient temperature

 θ_a = Ambient temperature (70 °C)

Data Memory Read^[21]

Figure 13. Data Memory Read Timing Diagram

Table 16. Data Memory Read Parameters

Parameter	Description	Min	Тур	Max	Unit	Notes
		_	20.83	_	ns	48 MHz
t _{CL}	1/CLKOUT frequency	_	41.66	_	ns	24 MHz
		_	83.2	_	ns	12 MHz
t _{AV}	Delay from clock to valid address	_	_	10.7	ns	-
t _{STBL}	Clock to RD LOW	_	_	11	ns	-
t _{STBH}	Clock to RD HIGH	_	_	11	ns	_
t _{SCSL}	Clock to CS LOW	_	_	13	ns	-
t _{SOEL}	Clock to OE LOW	_	_	11.1	ns	-
t _{DSU}	Data setup to clock	9.6	-	_	ns	-
t _{DH}	Data hold time	0	-	_	ns	-

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# is active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value.

Notes

21. The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.

22. t_{ACC2} and t_{ACC3} are computed from these parameters as follows: $t_{ACC2}(24 \text{ MHz}) = 3^* t_{CL} - t_{AV} - t_{DSU} = 106 \text{ ns}$ $t_{ACC2}(24 \text{ MHz}) = 3^* t_{CL} - t_{AV} - t_{DSU} = 43 \text{ ns}$ $t_{ACC3}(24 \text{ MHz}) = 5^* t_{CL} - t_{AV} - t_{DSU} = 190 \text{ ns}$ $t_{ACC3}(48 \text{ MHz}) = 5^* t_{CL} - t_{AV} - t_{DSU} = 86 \text{ ns}$

Data Memory Write^[23]

Figure 14. Data Memory Write Timing Diagram

Table 17. Data Memory Write Parameters

Parameter	Description	Min	Мах	Unit	Notes
t _{AV}	Delay from clock to valid address	0	10.7	ns	_
t _{STBL}	Clock to WR pulse LOW	0	11.2	ns	_
t _{STBH}	Clock to WR pulse HIGH	0	11.2	ns	_
t _{SCSL}	Clock to CS pulse LOW	-	13.0	ns	_
t _{ON1}	Clock to data turn-on	0	13.1	ns	_
t _{OFF1}	Clock to data hold time	0	13.1	ns	_

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value.

Note

^{23.} The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.

Figure 24. Slave FIFO Synchronous Write Sequence and Timing Diagram^[24]

Slave FIFO Asynchronous Packet End Strobe

Figure 25. Slave FIFO Asynchronous Packet End Strobe Timing Diagram^[24]

Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{PEpwl}	PKTEND pulse width LOW	50	-	ns
t _{PWpwh}	PKTEND pulse width HIGH	50	-	ns
t _{XFLG}	PKTEND to FLAGS output propagation delay	_	115	ns

Slave FIFO Output Enable

Table 29. Slave FIFO Output Enable Parameters

Parameter	Description	Min	Max	Unit
t _{OEon}	SLOE assert to FIFO DATA output		10.5	ns
t _{OEoff}	SLOE deassert to FIFO DATA hold		10.5	ns

Slave FIFO Address to Flags/Data

Table 30. Slave FIFO Address to Flags/Data Parameters

Parameter	Description	Min	Max	Unit
t _{XFLG}	FIFOADR[1:0] to FLAGS output propagation delay	-	10.7	ns
t _{XFD}	FIFOADR[1:0] to FIFODATA output propagation delay	-	14.3	ns

Slave FIFO Synchronous Address

Figure 28. Slave FIFO Synchronous Address Timing Diagram^[24]

Table 31. Slave FIFO Synchronous Address Parameters^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	Interface clock period	20.83	200	ns
t _{SFA}	FIFOADR[1:0] to clock setup time	25	-	ns
t _{FAH}	Clock to FIFOADR[1:0] hold time	10	-	ns

Slave FIFO Asynchronous Address

Figure 29. Slave FIFO Asynchronous Address Timing Diagram^[24]

Table 32. Slave FIFO Asynchronous Address Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{SFA}	FIFOADR[1:0] to SLRD/SLWR/PKTEND setup time	10	-	ns
t _{FAH}	RD/WR/PKTEND to FIFOADR[1:0] hold time	10	_	ns

Ordering Information

Table 33. Ordering Information

Ordering Code	Package Type	RAM Size	# Prog I/Os	8051 Address /Data Bus	Serial Debug ^[28]
Ideal for Battery Powered Applications					
CY7C68014A-128AXC	128 TQFP – Pb-free	16 K	40	16-/8-bit	Y
CY7C68014A-100AXC	100 TQFP – Pb-free	16 K	40	-	Y
CY7C68014A-56PVXC	56 SSOP – Pb-free	16 K	24	-	N
CY7C68014A-56LTXC	56 QFN - Pb-free	16 K	24	-	N
CY7C68016A-56LTXC	56 QFN - Pb-free	16 K	26	-	N
CY7C68016A-56LTXCT	56 QFN - Pb-free	16 K	26	-	N
Ideal for Non Battery Powered	Applications	•	•		
CY7C68013A-128AXC	128 TQFP – Pb-free	16 K	40	16-/8-bit	Y
CY7C68013A-128AXI	128 TQFP – Pb-free (Industrial)	16 K	40	16-/8-bit	Y
CY7C68013A-100AXC	100 TQFP – Pb-free	16 K	40	-	Y
CY7C68013A-100AXI	100 TQFP – Pb-free (Industrial)	16 K	40	-	Y
CY7C68013A-56PVXC	56 SSOP – Pb-free	16 K	24	-	N
CY7C68013A-56PVXCT	56 SSOP – Pb-free	16 K	24	-	N
CY7C68013A-56PVXI	56 SSOP – Pb-free (Industrial)	16 K	24	-	N
CY7C68013A-56BAXC	56 VFBGA – Pb-free	16 K	24	-	N
CY7C68013A-56BAXCT	56 VFBGA – Pb-free	16 K	24	-	N
CY7C68013A-56LTXC	56 QFN – Pb-free	16 K	24	-	N
CY7C68013A-56LTXCT	56 QFN – Pb-free	16 K	24	-	N
CY7C68013A-56LTXI	56 QFN – Pb-free (Industrial)	16 K	24	-	N
CY7C68015A-56LTXC	56 QFN – Pb-free	16 K	26	-	N
Development Tool Kit					
CY3684	EZ-USB FX2LP development kit				
Reference Design Kit					
CY4611B	USB 2.0 to ATA/ATAPI reference design using EZ-USB FX2LP				

Ordering Code Definitions

Note

28. As UART is not available in the 56-pin package of CY7C68013A, serial port debugging using Keil Monitor is not possible.

Package Diagrams

The FX2LP is available in five packages:

- 56-pin SSOP
- 56-pin QFN
- 100-pin TQFP
- 128-pin TQFP
- 56-ball VFBGA

Figure 36. 56-Pin Shrunk Small Outline Package O56 (51-85062)

128 Lead Thin Plastic Quad Flatpack 14 X 20 X 1.4mm - A128 16.00±0.20 1.40±0.05 14.00±0.10 128 0.22±0.05 22.00±0.20 20.00±0.10 12°±1° SEE DETAIL A (8X) 0.50 1 TYP. ſ 0.20 MAX. 1.60 MAX. R 0.08 MIN. ~ 0° MIN. 0.20 MAX 0.08 SEATING PLANE STAND-DFF D 0.05 MIN. 0.15 MAX. NDTE: 0.25 1. JEDEC STD REF MS-026 GAUGE PLANE 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE R 0.08 MIN. 0.20 MAX. BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH **∩**•–7 3. DIMENSIONS IN MILLIMETERS 0.60±0.15 -51-85101 *F DETAILA

Errata

This section describes the errata for the EZ-USB[®] FX2LP™ CY7C68013A/14A/15A/16A Rev. B silicon. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Package Type	Operating Range
CY7C68013A	All	Commercial
CY7C68014A	All	Commercial
CY7C68015A	All	Commercial
CY7C68016A	All	Commercial

CY7C68013A/14A/15A/16A Qualification Status

In production

CY7C68013A/14A/15A/16A Errata Summary

This table defines the errata for available CY7C68013A/14A/15A/16A family devices. An "X" indicates that the errata pertain to the selected device.

Items	CY7C68013A/14A/15A/16A	Silicon Revision	Fix Status
[1.]. Empty Flag Assertion	Х	В	No silicon fix planned currently. Use the workaround.

1. Empty Flag Assertion

Problem Definition

In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction.

Parameters Affected

NA

■ Trigger Condition(S)

In Slave FIFO Asynchronous Word Wide Mode, after firmware boot and initialization, EP2 OUT endpoint empty flag indicates the status as 'Empty'. When data is received in EP2, the status changes to 'Not-Empty'. However, if data transferred to EP2 is a single word, then asserting SLRD with FIFOADR pointing to any other endpoint changes 'Not-Empty' status to 'Empty' for EP2 even though there is a word data (or it is untouched). This is noticed only when the single word is sent as the first transaction and not if it follows a multi-word packet as the first transaction.

Scope of Impact

External interface does not see data available in EP2 OUT endpoint and can end up waiting for data to be read.

Workaround

One of the following workarounds can be used:

- Send a pulse signal to the SLWR pin, with FIFOADR pins pointing to an endpoint other than EP2, after firmware initialization and before or after transferring the data to EP2 from the host
- · Set the length of the first data to EP2 to be more than a word
- Prioritize EP2 read from the Master for multiple OUT EPs and single word write to EP2
- Write to an IN EP, if any, from the Master before reading from other OUT EPs (other than EP2) from the Master.

Fix Status

There is no silicon fix planned for this currently; use the workarounds provided.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2003-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-08032 Rev. *Y Revise FX2LP is a trademark and EZ-USB is a registered trademark of Cypress Semiconductor Corporation.

Revised June 28, 2016

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.