

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

•XF

Details	
Product Status	Active
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I ² C, USB, USART
Number of I/O	24
Voltage - Supply	3V ~ 3.6V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68013a-56ltxct

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Applications

- Portable video recorder
- MPEG/TV conversion
- DSL modems
- ATA interface
- Memory card readers
- Legacy conversion devices
- Cameras
- Scanners
- Wireless LAN
- MP3 players
- Networking

The "Reference Designs" section of the Cypress web site provides additional tools for typical USB 2.0 applications. Each reference design comes complete with firmware source and object code, schematics, and documentation. Visit www.cypress.com for more information.

Functional Overview

USB Signaling Speed

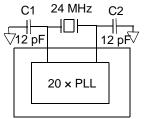
FX2LP operates at two of the three rates defined in the USB Specification Revision 2.0, dated April 27, 2000:

- Full speed, with a signaling bit rate of 12 Mbps
- High speed, with a signaling bit rate of 480 Mbps

FX2LP does not support the Low Speed signaling mode of 1.5 Mbps.

8051 Microprocessor

The 8051 microprocessor embedded in the FX2LP family has 256 bytes of register RAM, an expanded interrupt system, three timer/counters, and two USARTs.


8051 Clock Frequency

FX2LP has an on-chip oscillator circuit that uses an external 24-MHz (±100 ppm) crystal with the following characteristics:

- Parallel resonant
- Fundamental mode
- 500-µW drive level
- 12-pF (5% tolerance) load capacitors

An on-chip PLL multiplies the 24-MHz oscillator up to 480 MHz, as required by the transceiver/PHY; internal counters divide it down for use as the 8051 clock. The default 8051 clock frequency is 12 MHz. The clock frequency of the 8051 can be changed by the 8051 through the CPUCS register, dynamically.

Figure 1. Crystal Configuration

12-pF capacitor values assume a trace capacitance of 3 pF per side on a four-layer FR4 PCA

The CLKOUT pin, which can be three-stated and inverted using internal control bits, outputs the 50% duty cycle 8051 clock, at the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz.

USARTs

FX2LP contains two standard 8051 USARTs, addressed through Special Function Register (SFR) bits. The USART interface pins are available on separate I/O pins, and are not multiplexed with port pins.

UART0 and UART1 can operate using an internal clock at 230 KBaud with no more than 1% baud rate error. 230 KBaud operation is achieved by an internally derived clock source that generates overflow pulses at the appropriate time. The internal clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and 12 MHz) such that it always presents the correct frequency for the 230-KBaud operation.^[1]

Special Function Registers

Certain 8051 SFR addresses are populated to provide fast access to critical FX2LP functions. These SFR additions are shown in Table 1 on page 6. Bold type indicates nonstandard, enhanced 8051 registers. The two SFR rows that end with "0" and "8" contain bit-addressable registers. The four I/O ports A to D use the SFR addresses used in the standard 8051 for ports 0 to 3, which are not implemented in FX2LP. Because of the faster and more efficient SFR addressing, the FX2LP I/O ports are not addressable in external RAM space (using the MOVX instruction).

I²C Bus

FX2LP supports the I²C bus as a master only at 100/400 kHz. SCL and SDA pins have open-drain outputs and hysteresis inputs. These signals must be pulled up to 3.3 V, even if no I²C device is connected.

Buses

All packages, 8-bit or 16-bit "FIFO" bidirectional data bus, multiplexed on I/O ports B and D. 128-pin package: adds 16-bit output-only 8051 address bus, 8-bit bidirectional data bus.

Note

1. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a "1" for UART0, UART1, or both respectively.

Default Full-Speed Alternate Settings

Table 6. Default Full Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3	
ep0	64	64	64	64	
ep1out	ep1out 0		64 int	64 int	
ep1in	0	64 bulk	64 int	64 int	
ep2	0	64 bulk out (2x)	64 int out (2×)	64 iso out (2×)	
ep4	0	64 bulk out (2x)	64 bulk out (2x)	64 bulk out (2x)	
ep6	0	64 bulk in (2×)	64 int in (2x)	64 iso in (2x)	
ep8	0	64 bulk in (2×)	64 bulk in (2×)	64 bulk in (2×)	

Default High Speed Alternate Settings

Table 7. Default Hi-Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	512 bulk ^[7]	64 int	64 int
ep1in	0	512 bulk ^[7]	64 int	64 int
ep2	0	512 bulk out (2x)	512 int out (2x)	512 iso out (2x)
ep4	0	512 bulk out (2x)	512 bulk out (2x)	512 bulk out (2x)
ep6	0	512 bulk in (2x)	512 int in (2x)	512 iso in (2x)
ep8	0	512 bulk in (2x)	512 bulk in (2×)	512 bulk in (2×)

External FIFO Interface

Architecture

The FX2LP slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).

In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms: the GPIF for internally generated control signals and the slave FIFO interface for externally controlled transfers.

Master/Slave Control Signals

The FX2LP endpoint FIFOs are implemented as eight physically distinct 256×16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between

"USB FIFOs" and "Slave FIFOs." Because they are physically the same memory, no bytes are actually transferred between buffers.

At any time, some RAM blocks are filling/emptying with the USB data under SIE control, while other RAM blocks are available to the 8051, the I/O control unit, or both. The RAM blocks operates as single-port in the USB domain, and dual-port in the 8051-I/O domain. The blocks can be configured as single-, double-, triple-, or quad-buffered as previously shown.

The I/O control unit implements either an internal master (M for Master) or external master (S for Slave) interface.

In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 MBytes/s (48

Notes

5. "0" means "not implemented."

6. "2x" means "double buffered."

^{7.} Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.

Autopointer Access

FX2LP provides two identical autopointers. They are similar to the internal 8051 data pointers but with an additional feature: they can optionally increment after every memory access. This capability is available to and from both internal and external RAM. Autopointers are available in external FX2LP registers under the control of a mode bit (AUTOPTRSET-UP.0). Using the external FX2LP autopointer access (at 0xE67B – 0xE67C) enables the autopointer to access all internal and external RAM to the part.

Also, autopointers can point to any FX2LP register or endpoint buffer space. When the autopointer access to external memory is enabled, locations 0xE67B and 0xE67C in XDATA and code space cannot be used.

I²C Controller

FX2LP has one I²C port that is driven by two internal controllers, the one that automatically operates at boot time to load VID/PID/DID and configuration information, and another that the 8051 uses when running to control external I²C devices. The I²C port operates in master mode only.

²C Port Pins

The I²C pins SCL and SDA must have external 2.2-k Ω pull-up resistors even if no EEPROM is connected to the FX2LP. External EEPROM device address pins must be configured properly. See Table 8 for configuring the device address pins.

Table 8. Strap Boot EEPROM Address Lines to These Values

Bytes	Example EEPROM	A2	A1	A0
16	24LC00 ^[10]	N/A	N/A	N/A
128	24LC01	0	0	0
256	24LC02	0	0	0
4K	24LC32	0	0	1
8K	24LC64	0	0	1
16K	24LC128	0	0	1

P^2C Interface Boot Load Access

At power-on reset, the I^2C interface boot loader loads the VID/PID/DID configuration bytes and up to 16 KB of program/data. The available RAM spaces are 16 KB from 0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051 is in reset. I^2C interface boot loads only occur after power-on reset.

PC Interface General-Purpose Access

The 8051 can control peripherals connected to the I^2C bus using the I2CTL and I2DAT registers. FX2LP provides I^2C master control only; it is never an I^2C slave.

Compatible with Previous Generation EZ-USB FX2

The EZ-USB FX2LP is form-, fit-, and with minor exceptions, functionally-compatible with its predecessor, the EZ-USB FX2.

This makes for an easy transition for designers wanting to upgrade their systems from the FX2 to the FX2LP. The pinout and package selection are identical and a vast majority of firmware previously developed for the FX2 functions in the FX2LP.

For designers migrating from the FX2 to the FX2LP, a change in the bill of material and review of the memory allocation (due to increased internal memory) is required. For more information about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the application note titled *Migrating from EZ-USB FX2 to EZ-USB FX2 to EZ-USB FX2LP* available in the Cypress web site.

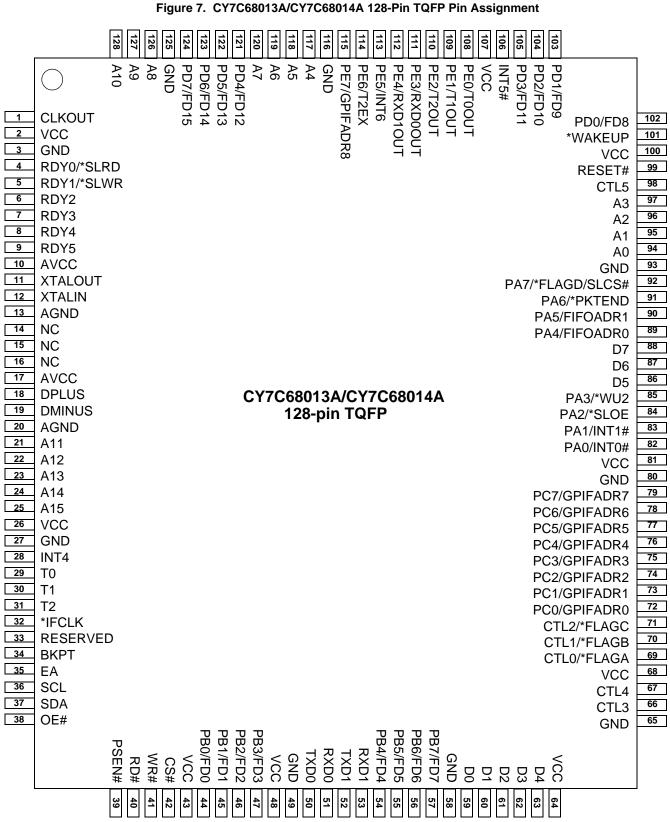
Table 9. Part Number Conversion Table

EZ-USB FX2 Part Number	EZ-USB FX2LP Part Number	Package Description
CY7C68013-56PVC	CY7C68013A-56PVXC or CY7C68014A-56PVXC	56-pin SSOP
CY7C68013-56PVCT	CY7C68013A-56PVXCT or CY7C68014A-56PVXCT	56-pin SSOP – Tape and Reel
CY7C68013-56LFC	CY7C68013A-56LFXC or CY7C68014A-56LFXC	56-pin QFN
CY7C68013-100AC	CY7C68013A-100AXC or CY7C68014A-100AXC	100-pin TQFP
CY7C68013-128AC	CY7C68013A-128AXC or CY7C68014A-128AXC	128-pin TQFP

CY7C68013A/14A and CY7C68015A/16A Differences

CY7C68013A is identical to CY7C68014A in form, fit, and functionality. CY7C68015A is identical to CY7C68016A in form, fit, and functionality. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively and are ideal for power-sensitive battery applications.

CY7C68015A and CY7C68016A are available in 56-pin QFN package only. Two additional GPIO signals are available on the CY7C68015A and CY7C68016A to provide more flexibility when neither IFCLK or CLKOUT are needed in the 56-pin package.


USB developers wanting to convert their FX2 56-pin application to a bus-powered system directly benefit from these additional signals. The two GPIOs give developers the signals they need for the power-control circuitry of their bus-powered application without pushing them to a high-pincount version of FX2LP.

The CY7C68015A is only available in the 56-pin QFN package

Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Differences

CY7C68013A/CY7C68014A	CY7C68015A/CY7C68016A			
IFCLK	PE0			
CLKOUT	PE1			

* denotes programmable polarity

 Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
30	24	-	_	_	T1	Input	N/A	N/A	T1 is the active HIGH T1 signal for 8051 Timer1, which provides the input to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does not use this bit.
29	23	_	_	-	ТО	Input	N/A	N/A	T0 is the active HIGH T0 signal for 8051 Timer0, which provides the input to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does not use this bit.
53	43	_	_	Ι	RXD1	Input	N/A	N/A	RXD1 is an active HIGH input signal for 8051 UART1, which provides data to the UART in all modes.
52	42	Ι	Ι	-	TXD1	Output	н	L	TXD1 is an active HIGH output pin from 8051 UART1, which provides the output clock in sync mode, and the output data in async mode.
51	41	-	-	_	RXD0	Input	N/A	N/A	RXD0 is the active HIGH RXD0 input to 8051 UART0, which provides data to the UART in all modes.
50	40	_	_	_	TXD0	Output	Н	L	TXD0 is the active HIGH TXD0 output from 8051 UART0, which provides the output clock in sync mode, and the output data in async mode.
42		_	_	_	CS#	Output	н	Н	CS# is the active LOW chip select for external memory.
41	32	_	_	-	WR#	Output	Н	Н	WR# is the active LOW write strobe output for external memory.
40	31	_	_	_	RD#	Output	Н	Н	RD# is the active LOW read strobe output for external memory.
38		_	-	-	OE#	Output	Н	Н	OE# is the active LOW output enable for external memory.
33	27	21	14	2H	Reserved	Input	N/A	N/A	Reserved. Connect to ground.
101	79	51	44	7B	WAKEUP	Input	N/A	N/A	USB Wakeup . If the 8051 is in suspend, asserting this pin starts up the oscillator and interrupts the 8051 to enable it to exit the suspend mode. Holding WAKEUP asserted inhibits the EZ-USB chip from suspending. This pin has programmable polarity (WAKEUP.4).
36	29	22	15	3F	SCL	OD	Z	Z (if booting is done)	Clock for the I^2C interface. Connect to VCC with a 2.2-k Ω resistor, even if no I^2C peripheral is attached.
37	30	23	16	3G	SDA	OD	Z	Z (if booting is done)	Data for I ² C compatible interface. Connect to VCC with a 2.2-k Ω resistor, even if no I ² C compatible peripheral is attached.
2	1	6	55	5A	VCC	Power	N/A	N/A	VCC. Connect to the 3.3-V power source.
26	20	18	11	1G	VCC	Power	N/A	N/A	VCC. Connect to the 3.3-V power source.
43	33	24	17	7E	VCC	Power	N/A	N/A	VCC. Connect to the 3.3-V power source.
48	38	-	-	_	VCC	Power	N/A	N/A	VCC. Connect to 3.3-V power source.
64	49	34	27	8E	VCC	Power	N/A	N/A	VCC. Connect to the 3.3-V power source.
68	53	-	-	_	VCC	Power	N/A	N/A	VCC. Connect to the 3.3-V power source.
81	66	39	32	5C	VCC	Power	N/A	N/A	VCC. Connect to the 3.3-V power source.

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
E62B	1	ECC1B1	ECC1 Byte 1 Address	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINE0	00000000	R
E62C	1	ECC1B2	ECC1 Byte 2 Address	COL5	COL4	COL3	COL2	COL1	COL0	LINE17	LINE16	00000000	R
E62D	1	ECC2B0	ECC2 Byte 0 Address	LINE15	LINE14	LINE13	LINE12	LINE11	LINE10	LINE9	LINE8	00000000	
E62E	1	ECC2B1	ECC2 Byte 1 Address	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINEO	00000000	
E62F	1	ECC2B2	ECC2 Byte 2 Address	COL5	COL4	COL3	COL2	COL1	COLO	0	0	00000000	
E630	1	EP2FIFOPFH ^[13]	Endpoint 2 / slave FIFO	DECIS			IN:PKTS[1]		0	PFC9	PFC8		bbbbbrbb
H.S.	1		Programmable Flag H			IN:PKTS[2] OUT:PFC12	OUT:PFC11	IN:PKTS[0] OUT:PFC10	-				
E630 F.S.	1	EP2FIFOPFH ^[13]	Endpoint 2 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10		PFC9	IN:PKTS[2] OUT:PFC8		bbbbbrbb
E631 H.S.	1	EP2FIFOPFL ^[13]	Endpoint 2 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	
E631 F.S	1	EP2FIFOPFL ^[13]	Endpoint 2 / slave FIFO Programmable Flag L	IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	
E632 H.S.	1	EP4FIFOPFH ^[13]	Endpoint 4 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	IN: PKTS[1] OUT:PFC10	OUT:PFC9	0	0	PFC8	10001000	
E632 F.S	1	EP4FIFOPFH ^[13]	Endpoint 4 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	OUT:PFC10	OUT:PFC9	0	0	PFC8	10001000	
E633 H.S.	1	EP4FIFOPFL ^[13]	Endpoint 4 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	
E633 F.S	1	EP4FIFOPFL ^[13]	Endpoint 4 / slave FIFO Programmable Flag L	IN: PKTS[1] OUT:PFC7	IN: PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E634 H.S.	1	EP6FIFOPFH ^[13]	Endpoint 6 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	IN:PKTS[2] OUT:PFC12	IN:PKTS[1] OUT:PFC11	IN:PKTS[0] OUT:PFC10	0	PFC9	PFC8	00001000	bbbbbrbb
E634 F.S	1	EP6FIFOPFH ^[13]	Endpoint 6 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2] OUT:PFC8	00001000	bbbbbrbb
E635 H.S.	1	EP6FIFOPFL ^[13]	Endpoint 6 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E635 F.S	1	EP6FIFOPFL ^[13]	Endpoint 6 / slave FIFO Programmable Flag L	IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E636 H.S.	1	EP8FIFOPFH ^[13]	Endpoint 8 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	IN: PKTS[1] OUT:PFC10	OUT:PFC9	0	0	PFC8	00001000	bbrbbrrb
E636 F.S	1	EP8FIFOPFH ^[13]	Endpoint 8 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	OUT:PFC10	OUT:PFC9	0	0	PFC8	00001000	bbrbbrrb
E637 H.S.	1	EP8FIFOPFL ^[13]	Endpoint 8 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E637 F.S	1	EP8FIFOPFL ^[13]	Endpoint 8 / slave FIFO Programmable Flag L	IN: PKTS[1] OUT:PFC7	IN: PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
	8	reserved											
E640	1	EP2ISOINPKTS	EP2 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrbb
E641	1	EP4ISOINPKTS	EP4 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrr
E642	1	EP6ISOINPKTS	EP6 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrbb
E643	1	EP8ISOINPKTS	EP8 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrr
E644	4	reserved											
E648	1	INPKTEND ^[13]	Force IN Packet End	Skip	0	0	0	EP3	EP2	EP1	EP0	xxxxxxx	W
E649	7	OUTPKTEND ^[13]	Force OUT Packet End	Skip	0	0	0	EP3	EP2	EP1	EP0	xxxxxxx	W
		INTERRUPTS		•									
E650	1	EP2FIFOIE ^[13]	Endpoint 2 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E651	1	EP2FIFOIRQ ^[13,14]	Endpoint 2 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E652	1	EP4FIFOIE ^[13]	Endpoint 4 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E653	1	EP4FIFOIRQ ^[13,14]	Endpoint 4 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E654	1	EP6FIFOIE ^[13]	Endpoint 6 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E655	1	EP6FIFOIRQ ^[13,14]	Endpoint 6 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E656	1	EP8FIFOIE ^[13]	Endpoint 8 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E657	1	EP8FIFOIRQ ^[13,14]	Endpoint 8 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrrbbb
E658	1	IBNIE		0	0	EP8	EP6	EP4	EP2	EP1	EP0	00000000	RW
E659	1	IBNIRQ ^[14]	IN-BULK-NAK interrupt Request	0	0	EP8	EP6	EP4	EP2	EP1	EP0	00xxxxxx	rrbbbbbb
E65A	1	NAKIE	Endpoint Ping-NAK / IBN Interrupt Enable	EP8	EP6	EP4	EP2	EP1	EP0	0	IBN	00000000	RW
E65B	1	NAKIRQ ^[14]	Endpoint Ping-NAK / IBN Interrupt Request	EP8	EP6	EP4	EP2	EP1	EP0	0	IBN	xxxxxx0x	bbbbbbrb
E65C	1	USBIE	USB Int Enables	0	EP0ACK	HSGRANT	URES	SUSP	SUTOK	SOF	SUDAV	00000000	RW
_000	•			-							202.10	1.2000000	

Note

14. The register can only be reset; it cannot be set.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
E6CF		GPIFTCB2 ^[13]	GPIF Transaction Count	TC23	TC22	TC21		TC19	TC18	TC17	TC16	00000000	
E6D0		GPIFTCB1 ^[13]	Byte 2 GPIF Transaction Count	TC15	TC14	TC13	TC12	TC11	TC10	TC9	TC8	00000000	
E6D1		GPIFTCB0 ^[13]	Byte 1 GPIF Transaction Count	TC7	TC6	TC5	TC4	TC3	TC2	TC1	TC0	00000001	
LUDI			Byte 0	107	100	100	104	100	102	101	100		
		reserved										00000000	RW
		reserved											
		reserved											
E6D2			Endpoint 2 GPIF Flag select	0	0	0	0	0	0	FS1	FS0	00000000	
E6D3		EP2GPIFPFSTOP	transaction on prog. flag	0	0	0	0	0	0	0	FIFO2FLAG	00000000	RW
E6D4	1	EP2GPIFTRIG ^[13]	Endpoint 2 GPIF Trigger	х	x	х	х	x	x	х	х	XXXXXXX	W
	3	reserved											
		reserved											
		reserved									1		
E6DA	1	EP4GPIFFLGSEL ^[13]	Endpoint 4 GPIF Flag select	0	0	0	0	0	0	FS1	FS0	00000000	RW
E6DB	1	EP4GPIFPFSTOP	Endpoint 4 GPIF stop transaction on GPIF Flag	0	0	0	0	0	0	0	FIFO4FLAG	00000000	RW
E6DC	1	EP4GPIFTRIG ^[13]	Endpoint 4 GPIF Trigger	х	x	х	x	x	x	x	х	xxxxxxx	W
		reserved	331							1			
		reserved					1	1					
		reserved											
E6E2	1		Endpoint 6 GPIF Flag select	0	0	0	0	0	0	FS1	FS0	00000000	RW
E6E3	1	EP6GPIFPFSTOP	Endpoint 6 GPIF stop transaction on prog. flag	0	0	0	0	0	0	0	FIFO6FLAG	00000000	RW
E6E4	1	EP6GPIFTRIG ^[13]	Endpoint 6 GPIF Trigger	х	x	х	x	x	x	х	х	xxxxxxx	W
-		reserved	331										
	-	reserved											
		reserved						1					
E6EA	1		Endpoint 8 GPIF Flag select	0	0	0	0	0	0	FS1	FS0	00000000	RW
E6EB	1	EP8GPIFPFSTOP		0	0	0	0	0	0	0	FIFO8FLAG	00000000	RW
E6EC	1	EP8GPIFTRIG ^[13]	Endpoint 8 GPIF Trigger	x	x	x	×	x	x	x	x	xxxxxxx	W
		reserved					-						
E6F0		XGPIFSGLDATH	GPIF Data H	D15	D14	D13	D12	D11	D10	D9	D8	xxxxxxx	RW
E6F1		XGPIFSGLDATLX	(16-bit mode only) Read/Write GPIF Data L &	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
E6F2			trigger transaction Read GPIF Data L, no	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	R
E6F3		GPIFREADYCFG	Internal RDY, Sync/Async,		SAS	TCXRDY5	0	0	0	0	0	00000000	
EOFS	1	GFIFREADTOFG	RDY pin states	INTROT	343	ICARD15	0	0	0	0	0	0000000	
E6F4	1	GPIFREADYSTAT	GPIF Ready Status	0	0	RDY5	RDY4	RDY3	RDY2	RDY1	RDY0	00xxxxxx	R
E6F5		GPIFREADTSTAT	Abort GPIF Waveforms	u x	u x	ND15	V 14	v 1013	KD12 X	X	v v	XXXXXXXXX	к W
			ADULT OF IF WAVEIONIS	^	^	^	^	^	^	^	^	^XXXXXXX	٧V
E6F6							-						
5740		ENDPOINT BUFFERS	•	D7	D.0	05	D.4	D 0	D 0	D4	D.		D)A/
E740		EPOBUE	EP0-IN/-OUT buffer	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
		EP10UTBUF	EP1-OUT buffer	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
E7C0		EP1INBUF	EP1-IN buffer	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	
		reserved					L			-			RW
			512/1024 byte EP 2 / slave FIFO buffer (IN or OUT)		D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	
		EP4FIFOBUF	512 byte EP 4 / slave FIFO buffer (IN or OUT)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxxx	RW
		reserved											
		EP6FIFOBUF	512/1024 byte EP 6 / slave FIFO buffer (IN or OUT)		D6	D5	D4	D3	D2	D1	D0		RW
		EP8FIFOBUF	512 byte EP 8 / slave FIFO buffer (IN or OUT)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
FE00	512	reserved											
_													

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power supplied (commercial)0 °C to +70 °C
Ambient temperature with power supplied (industrial)40 °C to + 105 °C
Supply voltage to ground potential–0.5 V to +4.0 V
DC input voltage to any input pin ^[17] 5.25 V
DC voltage applied to outputs in high Z state
Deven dissingtion
Power dissipation
Static discharge voltage>2000 V

Operating Conditions

T _A (ambient temperature under bias) Commercial0 °C to +70 °C
T _A (ambient temperature under bias) Industrial40 °C to +105 °C
Supply voltage+3.00 V to +3.60 V
Ground voltage 0 V
F_{OSC} (oscillator or crystal frequency) 24 MHz \pm 100 ppm, parallel resonant

Thermal Characteristics

The following table displays the thermal characteristics of various packages:

Table 13. Thermal Characteristics

Package	Ambient Temperature (°C)	Ambient Temperature (°C) Hermal Resistance (°C/W)					
56 SSOP	70	24.4	47.7				
100 TQFP	70	11.9	45.9				
128 TQFP	70	15.5	43.2				
56 QFN	70	10.6	25.2				
56 VFBGA	70	30.9	58.6				

The junction temperature θ_j , can be calculated using the following equation: θ_j = P* θ_{Ja} + θ_a Where,

P = Power

 θ_{Ja} = Junction to ambient temperature ($\theta_{Jc} + \theta_{Ca}$)

 θ_a = Ambient temperature (70 °C)

The case temperature θ_c , can be calculated using the following equation: θ_c = P* θ_{Ca} + θ_a where,

P = Power

 θ_{Ca} = Case to ambient temperature

 θ_a = Ambient temperature (70 °C)

DC Characteristics

Table 14. DC Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
VCC	Supply voltage	-	3.00	3.3	3.60	V
VCC Ramp Up	0 to 3.3 V	-	200	-	-	μS
V _{IH}	Input HIGH voltage	-	2	-	5.25	V
V _{IL}	Input LOW voltage	_	-0.5	-	0.8	V
V _{IH_X}	Crystal input HIGH voltage	-	2	-	5.25	V
V _{IL_X}	Crystal input LOW voltage	-	-0.5	-	0.8	V
I _I	Input leakage current	$0 < V_{IN} < V_{CC}$	-	-	±10	μA
V _{OH}	Output voltage HIGH	I _{OUT} = 4 mA	2.4	-	-	V
V _{OL}	Output LOW voltage	$I_{OUT} = -4 \text{ mA}$	-	-	0.4	V
I _{ОН}	Output current HIGH	-	-	-	4	mA
I _{OL}	Output current LOW	-	_	-	4	mA
C		Except D+/D-	-	-	10	pF
C _{IN}	Input pin capacitance	D+/D-	-	-	15	pF
	Suspend current	Connected	_	300	380 ^[18]	μA
	CY7C68014/CY7C68016	Disconnected	_	100	150 ^[18]	μA
I _{SUSP}	Suspend current	Connected	_	0.5	1.2 ^[18]	mA
	CY7C68013/CY7C68015	Disconnected	_	0.3	1.0 ^[18]	mA
1	Supply ourrent	8051 running, connected to USB HS	_	50	85	mA
Icc	Supply current	8051 running, connected to USB FS	_	35	65	mA
-	Reset time after valid power	γ min = 2.0 V	5.0	-	-	ms
T _{RESET}	Pin reset after powered on	$-V_{CC}$ min = 3.0 V	200	-	-	μS

USB Transceiver

USB 2.0 compliant in Full Speed and Hi-Speed modes.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Data Memory Write^[23]

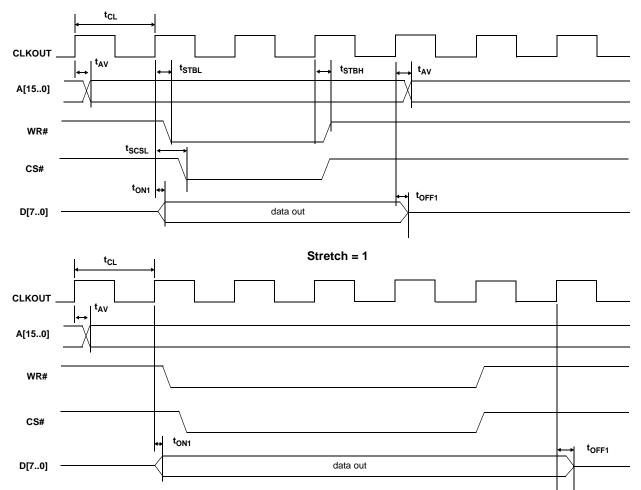
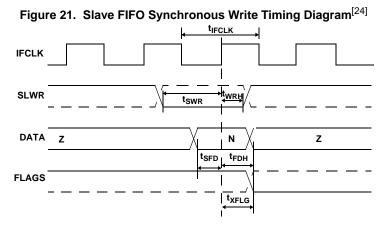


Figure 14. Data Memory Write Timing Diagram

Table 17. Data Memory Write Parameters

Parameter	Description	Min	Max	Unit	Notes
t _{AV}	Delay from clock to valid address	0	10.7	ns	-
t _{STBL}	Clock to WR pulse LOW	0	11.2	ns	-
t _{STBH}	Clock to WR pulse HIGH	0	11.2	ns	-
t _{SCSL}	Clock to CS pulse LOW	-	13.0	ns	-
t _{ON1}	Clock to data turn-on	0	13.1	ns	-
t _{OFF1}	Clock to data hold time	0	13.1	ns	-


When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value.

Note

^{23.} The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.

Slave FIFO Synchronous Write

Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK^[25]

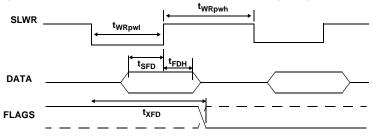
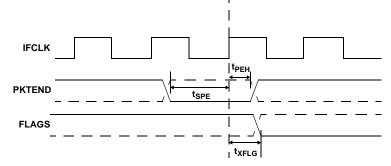

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	-	ns
t _{SWR}	SLWR to clock setup time	10.4	-	ns
t _{WRH}	Clock to SLWR hold time	0	-	ns
t _{SFD}	FIFO data to clock setup time	9.2	-	ns
t _{FDH}	Clock to FIFO data hold time	0	_	ns
t _{XFLG}	Clock to FLAGS output propagation time	_	9.5	ns

Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK Period	20.83	200	ns
t _{SWR}	SLWR to clock setup time	12.1	-	ns
t _{WRH}	Clock to SLWR hold time	3.6	-	ns
t _{SFD}	FIFO data to clock setup time	3.2	-	ns
t _{FDH}	Clock to FIFO data hold time	4.5	-	ns
t _{XFLG}	Clock to FLAGS output propagation time	-	13.5	ns

Slave FIFO Asynchronous Write



Parameter	Description	Min	Max	Unit
t _{WRpwl}	SLWR pulse LOW	50	_	ns
t _{WRpwh}	SLWR pulse HIGH	70	_	ns
t _{SFD}	SLWR to FIFO DATA setup time	10	_	ns
t _{FDH}	FIFO DATA to SLWR hold time	10	_	ns
t _{XFD}	SLWR to FLAGS output propagation delay	-	70	ns

Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK^[27]

Slave FIFO Synchronous Packet End Strobe

Figure 23. Slave FIFO Synchronous Packet End Strobe Timing Diagram^[24]

Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	_	ns
t _{SPE}	PKTEND to clock setup time	14.6	_	ns
t _{PEH}	Clock to PKTEND hold time	0	_	ns
t _{XFLG}	Clock to FLAGS output propagation delay	_	9.5	ns

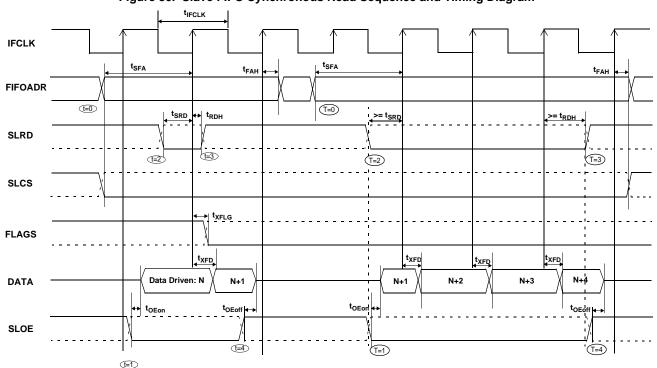
Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK^[25]

Parameter	Description	Min	Мах	Unit
t _{IFCLK}	IFCLK period	20.83	200	ns
t _{SPE}	PKTEND to clock setup time	8.6	_	ns
t _{PEH}	Clock to PKTEND hold time	2.5	_	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	13.5	ns

There is no specific timing requirement that should be met for asserting the PKTEND pin to asserting SLWR. PKTEND can be asserted with the last data value clocked into the FIFOs or thereafter. The setup time t_{SPE} and the hold time t_{PEH} must be met.

Although there are no specific timing requirements for PKTEND assertion, there is a specific corner-case condition that needs attention while using the PKTEND pin to commit a one byte or word packet. There is an additional timing requirement that needs to be met when the FIFO is configured to operate in auto mode and it is required to send two packets back to back: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin. In this scenario, the user must ensure to assert PKTEND, at least one clock cycle after the rising edge that

caused the last byte or word to be clocked into the previous auto committed packet. Figure 24 shows this scenario. X is the value the AUTOINLEN register is set to when the IN endpoint is configured to be in auto mode.


Figure 24 shows a scenario where two packets are committed. The first packet gets committed automatically when the number of bytes in the FIFO reaches X (value set in AUTOINLEN register) and the second one byte/word short packet being committed manually using PKTEND.

Note that there is at least one IFCLK cycle timing between the assertion of PKTEND and clocking of the last byte of the previous packet (causing the packet to be committed automatically). Failing to adhere to this timing results in the FX2 failing to send the one byte or word short packet.

Sequence Diagram

Single and Burst Synchronous Read Example

	∱ IFCLK		∱ IFCLK		∱ IFCLK		† IFCLK		∱ IFCLK	<u>،</u>	FCLK	∱ IFCLK	∱ IFCLK	↑ IFCLK	∱ IFCLK	
FIFO POINTER	Ν	} ►	Ν		N+1		N+1] ,	N+1		N+2	▶ N+3	► N+4	► N+4	► N+4	
		SLOE		SLRD♦		SLOE 🕈 SLRD 🕇		SLOE	s	SLRD 🖡			SL	RD † S	LOE	_
FIFO DATA BUS	Not Driven	→	Driven: N	} →	N+1	` >	Not Driver	ר ו	• N+1		N+2	► N+3	► N+4	► N+4	Not Driven	

Figure 30 on page 52 shows the timing relationship of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read.

- At t = 0, the FIFO address is stable and the signal SLCS is asserted (SLCS may be tied LOW in some applications). Note that t_{SFA} has a minimum of 25 ns. This means that when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, SLOE is asserted. SLOE is an output enable only, whose sole function is to drive the data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently pointing to. In this example it is the first data value in the FIFO. Note: the data is prefetched and is driven on the bus when SLOE is asserted.
- At t = 2, SLRD is asserted. SLRD must meet the setup time of t_{SRD} (time from asserting the SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of t_{RDH} (time from the IFCLK edge to the deassertion of the SLRD signal).

If the SLCS signal is used, it must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition).

The FIFO pointer is updated on the rising edge of the IFCLK, while SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of t_{XFD} (measured from the rising edge of IFCLK) the new data value is present. N is the first data value read from the FIFO. To have data on the FIFO data bus, SLOE MUST also be asserted.

The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5.

Note For the burst mode, the SLRD and SLOE are left asserted during the entire duration of the read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. During the first read cycle, on the rising edge of the clock, the FIFO pointer is updated and incremented to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.

Single and Burst Synchronous Write

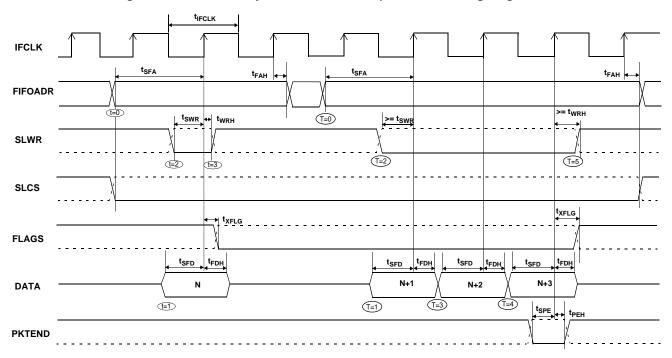


Figure 32. Slave FIFO Synchronous Write Sequence and Timing Diagram^[24]

Figure 32 shows the timing relationship of the SLAVE FIFO signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst write of three bytes and committing all four bytes as a short packet using the PKTEND pin.

- At t = 0 the FIFO address is stable and the signal SLCS is asserted. (SLCS may be tied LOW in some applications) Note that t_{SFA} has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, the external master/peripheral must outputs the data value onto the data bus with a minimum set up time of t_{SFD} before the rising edge of IFCLK.
- At t = 2, SLWR is asserted. The SLWR must meet the setup time of t_{SWR} (time from asserting the SLWR signal to the rising edge of IFCLK) and maintain a minimum hold time of t_{WRH} (time from the IFCLK edge to the deassertion of the SLWR signal). If the SLCS signal is used, it must be asserted with SLWR or before SLWR is asserted (The SLCS and SLWR signals must both be asserted to start a valid write condition).
- While the SLWR is asserted, data is written to the FIFO and on the rising edge of the IFCLK, the FIFO pointer is incremented. The FIFO flag is also updated after a delay of t_{XFLG} from the rising edge of the clock.

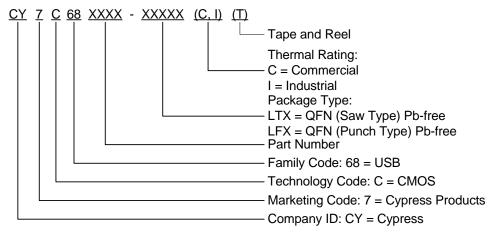
The same sequence of events are also shown for a burst write and are marked with the time indicators of T = 0 through 5.

Note For the burst mode, SLWR and SLCS are left asserted for the entire duration of writing all the required data values. In this burst write mode, after the SLWR is asserted, the data on the FIFO data bus is written to the FIFO on every rising edge of IFCLK. The FIFO pointer is updated on each rising edge of IFCLK. In Figure 32, after the four bytes are written to the FIFO, SLWR is deasserted. The short 4 byte packet can be committed to the host by asserting the PKTEND signal.

There is no specific timing requirement that should be met for asserting PKTEND signal with regards to asserting the SLWR signal. PKTEND can be asserted with the last data value or thereafter. The only requirement is that the setup time t_{SPE} and the hold time t_{PEH} must be met. In the scenario of Figure 32, the number of data values committed includes the last value written to the FIFO. In this example, both the data value and the PKTEND signal are clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subsequent clock cycles. The FIFOADDR lines should be held constant during the PKTEND assertion.

Although there are no specific timing requirement for the PKTEND assertion, there is a specific corner-case condition that needs attention while using the PKTEND to commit a one byte/word packet. Additional timing requirements exist when the FIFO is configured to operate in auto mode and it is desired to send two packets: a full packet ('full' defined as the number of bytes in the FIFO meeting the level set in the AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin.

In this case, the external master must ensure to assert the PKTEND pin at least one clock cycle after the rising edge that caused the last byte or word that needs to be clocked into the previous auto committed packet (the packet with the number of bytes equal to what is set in the AUTOINLEN register). Refer to Figure 24 on page 50 for further details on this timing.



Ordering Information

Table 33. Ordering Information

		# Prog I/Os	8051 Address /Data Bus	Serial Debug ^[28]						
Ideal for Battery Powered Applications										
128 TQFP – Pb-free	16 K	40	16-/8-bit	Y						
100 TQFP – Pb-free	16 K	40	_	Y						
56 SSOP – Pb-free	16 K	24	_	N						
56 QFN - Pb-free	16 K	24	_	N						
56 QFN - Pb-free	16 K	26	_	N						
56 QFN - Pb-free	16 K	26	-	N						
d Applications	1									
128 TQFP – Pb-free	16 K	40	16-/8-bit	Y						
128 TQFP – Pb-free (Industrial)	16 K	40	16-/8-bit	Y						
100 TQFP – Pb-free	16 K	40	_	Y						
100 TQFP – Pb-free (Industrial)	16 K	40	_	Y						
56 SSOP – Pb-free	16 K	24	_	N						
56 SSOP – Pb-free	16 K	24	_	N						
56 SSOP – Pb-free (Industrial)	16 K	24	_	N						
56 VFBGA – Pb-free	16 K	24	_	N						
56 VFBGA – Pb-free	16 K	24	_	N						
56 QFN – Pb-free	16 K	24	_	N						
56 QFN – Pb-free	16 K	24	_	N						
56 QFN – Pb-free (Industrial)	16 K	24	—	N						
56 QFN – Pb-free	16 K	26	_	N						
	1									
EZ-USB FX2LP development kit										
USB 2.0 to ATA/ATAPI reference	JSB 2.0 to ATA/ATAPI reference design using EZ-USB FX2LP									
	128 TQFP - Pb-free100 TQFP - Pb-free56 SSOP - Pb-free56 QFN - Pb-free56 QFN - Pb-free56 QFN - Pb-free56 QFN - Pb-free28 TQFP - Pb-free128 TQFP - Pb-free (Industrial)100 TQFP - Pb-free (Industrial)100 TQFP - Pb-free100 TQFP - Pb-free56 SSOP - Pb-free56 SSOP - Pb-free56 SSOP - Pb-free56 VFBGA - Pb-free56 QFN - Pb-free	128 TQFP – Pb-free 16 K 100 TQFP – Pb-free 16 K 56 SSOP – Pb-free 16 K 56 QFN - Pb-free 16 K 4 Applications 128 TQFP – Pb-free 128 TQFP – Pb-free 16 K 128 TQFP – Pb-free 16 K 128 TQFP – Pb-free 16 K 100 TQFP – Pb-free (Industrial) 16 K 100 TQFP – Pb-free (Industrial) 16 K 56 SSOP – Pb-free 16 K 56 SSOP – Pb-free 16 K 56 SSOP – Pb-free 16 K 56 VFBGA – Pb-free 16 K 56 VFBGA – Pb-free 16 K 56 QFN – Pb-free 16 K	128 TQFP – Pb-free 16 K 40 100 TQFP – Pb-free 16 K 40 56 SSOP – Pb-free 16 K 24 56 QFN - Pb-free 16 K 24 56 QFN - Pb-free 16 K 24 56 QFN - Pb-free 16 K 26 54 Applications 128 TQFP – Pb-free 16 K 40 128 TQFP – Pb-free (Industrial) 16 K 40 100 TQFP – Pb-free (Industrial) 16 K 40 100 TQFP – Pb-free (Industrial) 16 K 24 56 SSOP – Pb-free 16 K 24 56 SSOP – Pb-free 16 K 24 56 SSOP – Pb-free 16 K 24 56 VFBGA – Pb-free 16 K 24 56 QFN – Pb-free (Industrial) 16 K	128 TQFP - Pb-free 16 K 40 16-/8-bit 100 TQFP - Pb-free 16 K 40 - 56 SSOP - Pb-free 16 K 24 - 56 QFN - Pb-free 16 K 24 - 56 QFN - Pb-free 16 K 24 - 56 QFN - Pb-free 16 K 26 - 57 QFP - Pb-free 16 K 40 16-/8-bit 128 TQFP - Pb-free (Industrial) 16 K 40 - 100 TQFP - Pb-free (Industrial) 16 K 40 - 100 TQFP - Pb-free (Industrial) 16 K 24 - 56 SSOP - Pb-free 16 K 24 - 56 SSOP - Pb-free 16 K 24 - 56 VFBGA - Pb-free 16 K 24 - 56 VFBGA - Pb-free 16 K 24 - 56 QFN - Pb-free 16						

Ordering Code Definitions

Note

28. As UART is not available in the 56-pin package of CY7C68013A, serial port debugging using Keil Monitor is not possible.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

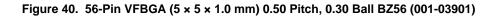
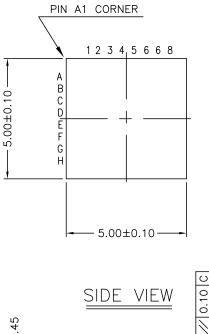
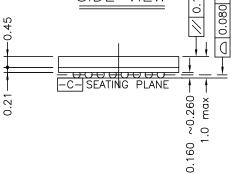
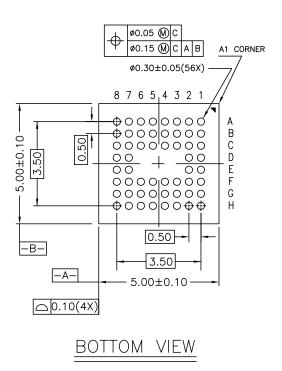

TOP VIEW BOTTOM VIEW SIDE VIEW -8.00±0.10 56 43 PIN# 1 ID 42 10000000000000000 42 ()1 0.50±0.05 υυυυυυυ PIN 1 DOT 5.20±0.10 8.00±0.10 29 L_{0.25±0.05} 14 29 d14 n n h n n n n n n n h n h-0.05 MAX 15 28 15 -1.00 MAX NOTES: 0.40±0.10 0.08 1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL. 4.50±0.10 2. REFERENCE JEDEC#: MO-220 001-53450 *D 3. PACKAGE WEIGHT: 162 \pm 16 mg 4. ALL DIMENSIONS ARE IN MILLIMETERS

Figure 37. 56-Pin QFN 8 × 8 mm Sawn Version (001-53450)




128 Lead Thin Plastic Quad Flatpack 14 X 20 X 1.4mm - A128 16.00±0.20 1.40±0.05 14.00±0.10 128 0.22±0.05 22.00±0.20 20.00±0.10 12°±1° SEE DETAIL A (8X) 0.50 1 TYP. ſ 0.20 MAX. 1.60 MAX. R 0.08 MIN. ~ 0° MIN. 0.20 MAX 0.08 SEATING PLANE STAND-DFF D 0.05 MIN. 0.15 MAX. NDTE: 0.25 1. JEDEC STD REF MS-026 GAUGE PLANE 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE R 0.08 MIN. 0.20 MAX. BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH **∩**•–7 3. DIMENSIONS IN MILLIMETERS 0.60±0.15 -51-85101 *F DETAILA



TOP VIEW

 \overline{O}

REFERENCE JEDEC: MO-195C PACKAGE WEIGHT: 0.02 grams

001-03901 *F

U.3U DMII D730

Errata

This section describes the errata for the EZ-USB[®] FX2LP™ CY7C68013A/14A/15A/16A Rev. B silicon. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Package Type	Operating Range
CY7C68013A	All	Commercial
CY7C68014A	All	Commercial
CY7C68015A	All	Commercial
CY7C68016A	All	Commercial

CY7C68013A/14A/15A/16A Qualification Status

In production

CY7C68013A/14A/15A/16A Errata Summary

This table defines the errata for available CY7C68013A/14A/15A/16A family devices. An "X" indicates that the errata pertain to the selected device.

Items	CY7C68013A/14A/15A/16A	Silicon Revision	Fix Status
[1.]. Empty Flag Assertion	Х	В	No silicon fix planned currently. Use the workaround.

1. Empty Flag Assertion

Problem Definition

In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction.

Parameters Affected

NA

■ Trigger Condition(S)

In Slave FIFO Asynchronous Word Wide Mode, after firmware boot and initialization, EP2 OUT endpoint empty flag indicates the status as 'Empty'. When data is received in EP2, the status changes to 'Not-Empty'. However, if data transferred to EP2 is a single word, then asserting SLRD with FIFOADR pointing to any other endpoint changes 'Not-Empty' status to 'Empty' for EP2 even though there is a word data (or it is untouched). This is noticed only when the single word is sent as the first transaction and not if it follows a multi-word packet as the first transaction.

Scope of Impact

External interface does not see data available in EP2 OUT endpoint and can end up waiting for data to be read.

Workaround

One of the following workarounds can be used:

- Send a pulse signal to the SLWR pin, with FIFOADR pins pointing to an endpoint other than EP2, after firmware initialization and before or after transferring the data to EP2 from the host
- · Set the length of the first data to EP2 to be more than a word
- Prioritize EP2 read from the Master for multiple OUT EPs and single word write to EP2
- Write to an IN EP, if any, from the Master before reading from other OUT EPs (other than EP2) from the Master.

Fix Status

There is no silicon fix planned for this currently; use the workarounds provided.

Document History Page

Speed US	t Title: CY7C B Periphera t Number: 38	I Controller	7C68014A, CY	7C68015A, CY7C68016A, EZ-USB [®] FX2LP™ USB Microcontroller High-
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	124316	VCS	03/17/03	New datasheet
*A	128461	VCS	09/02/03	Added PN CY7C68015A throughout datasheet Modified Figure 1 to add ECC block and fix errors Removed word "compatible" where associated with I ² C Corrected grammar and formatting in various locations Updated Sections 3.2.1, 3.9, 3.11, Table 9, Section 5.0 Added Sections 3.15, 3.18.4, 3.20 Modified Figure 5 for clarity Updated Figure 37 to match current spec revision
*B	130335	KKV	10/09/03	Restored PRELIMINARY to header (had been removed in error from rev. *A)
*C	131673	KKU	02/12/04	Section 8.1 changed "certified" to "compliant" Table 14 added parameter V_{IH_X} and V_{IL_X} Added Sequence diagrams Section 9.16 Updated Ordering information with lead-free parts Updated Registry Summary Section 3.12.4:example changed to column 8 from column 9 Updated Figure 14 memory write timing Diagram Updated section 3.9 (reset) Updated section 3.15 ECC Generation
*D	230713	KKU	See ECN	Changed Lead free Marketing part numbers in Table 33 as per spec change in 28-00054.
*E	242398	TMD	See ECN	Minor Change: datasheet posted to the web,
*F	271169	MON	See ECN	Added USB-IF Test ID number Added USB 2.0 logo Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x Changed VCC from \pm 10% to \pm 5% Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in Table 28 from a max value of 70 ns to 115 ns
*G	316313	MON	See ECN	Removed CY7C68013A-56PVXCT part availability Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A Provided additional timing restrictions and requirement about the use of PKETEND pin to commit a short one byte/word packet subsequent to committing a packet automatically (when in auto mode). Added Min Vcc Ramp Up time (0 to 3.3v)
*H	338901	MON	See ECN	Added information about the AUTOPTR1/AUTOPTR2 address timing with regards to data memory read/write timing diagram. Removed TBD for Min value of Clock to FIFO Data Output Propagation Delay (t _{XFD}) for Slave FIFO Synchronous Read Changed Table 33 to include part CY7C68016A-56LFXC in the part listed for battery powered applications Added register GPCR2 in register summary
*	371097	MON	See ECN	Added timing for strobing RD#/WR# signals when using PortC strobe feature (Section)
*J	397239	MON	See ECN	Removed XTALINSRC register from register summary. Changed Vcc margins to ±10% Added 56-pin VFBGA Pin Package Diagram Added 56-pin VFBGA definition in pin listing Added RDK part number to the Ordering Information table