

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

ĿХF

Details	
Product Status	Active
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I²C, USB, USART
Number of I/O	24
Voltage - Supply	3V ~ 3.6V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68013a-56ltxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Contents

Applications	5
Functional Overview	5
USB Signaling Speed	5
8051 Microprocessor	5
I ² C Bus	5
Buses	5
Reset and Wakeup	9
Program/Data RAM	10
External FIFO Interface	
GPIF	14
ECC Generation ^[8]	14
USB Uploads and Downloads	14
Autopointer Access	15
I ² C Controller	
CY7C68013A/14A and CY7C68015A/	
16A Differences	15
Register Summary	32
Absolute Maximum Ratings	39
Operating Conditions	39
Thermal Characteristics	
DC Characteristics	40

AC Electrical Characteristics	41
USB Transceiver	41
Program Memory Read	41
Data Memory Read	42
Data Memory Write	43
PORTC Strobe Feature Timings	
Slave FIFO Synchronous Read	
Slave FIFO Synchronous Write	
Ordering Information	
Ordering Code Definitions	56
Package Diagrams	
Quad Flat Package No Leads (QFN)	
Package Design Notes	63
Acronyms	64
Document Conventions	64
Units of Measure	64
Errata	65
Document History Page	66
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	69
Products	
PSoC® Solutions	69
Cypress Developer Community	69
Technical Support	

Table 1. Special Function Registers

x	8x	9x	Ax	Bx	Сх	Dx	Ex	Fx
0	IOA	IOB	IOC	IOD	SCON1	PSW	ACC	В
1	SP	EXIF	INT2CLR	IOE	SBUF1	-	-	_
2	DPL0	MPAGE	INT4CLR	OEA	-	-	-	_
3	DPH0	-	_	OEB	_	_	-	_
4	DPL1	-	_	OEC	_	_	-	_
5	DPH1	-	_	OED	-	-	-	-
6	DPS	-	_	OEE	-	-	-	-
7	PCON	-			-	-	-	_
8	TCON	SCON0	IE	IP	T2CON	EICON	EIE	EIP
9	TMOD	SBUF0	_	_	-	-	-	_
А	TL0	AUTOPTRH1	EP2468STAT	EP01STAT	RCAP2L	-	-	-
В	TL1	AUTOPTRL1	EP24FIFOFLGS	GPIFTRIG	RCAP2H	-	-	_
С	TH0	reserved	EP68FIFOFLGS		TL2	-	-	_
D	TH1	AUTOPTRH2	_	GPIFSGLDATH	TH2	_	-	_
E	CKCON	AUTOPTRL2	_	GPIFSGLDATLX	_	_	-	_
F	_	reserved	AUTOPTRSET-UP	GPIFSGLDATLNOX	-	_	-	-

USB Boot Methods

During the power-up sequence, internal logic checks the l^2C port for the connection of an EEPROM whose first byte is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM in place of the internally stored values (0xC0), or it boot-loads the EEPROM contents into internal RAM (0xC2). If no EEPROM is detected, FX2LP enumerates using internally stored descriptors. The default ID values for FX2LP are VID/PID/DID (0x04B4, 0x8613, 0xAxxx where xxx = Chip revision).^[2]

Table 2. Default ID Values for FX2LP

Default VID/PID/DID								
Vendor ID	0x04B4	Cypress Semiconductor						
Product ID	0x8613	EZ-USB FX2LP						
Device release	0xAnnn	Depends on chip revision (nnn = chip revision where first silicon = 001)						

ReNumeration

Because the FX2LP's configuration is soft, one chip can take on the identities of multiple distinct USB devices.

When first plugged into USB, the FX2LP enumerates automatically and downloads firmware and USB descriptor tables over the USB cable. Next, the FX2LP enumerates again, this time as a device defined by the downloaded information. This patented two step process called ReNumeration[™] happens instantly when the device is plugged in, without a hint that the initial download step has occurred. Two control bits in the USBCS (USB Control and Status) register control the ReNumeration process: DISCON and RENUM. To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears DISCON to 0.

Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware or the Default USB Device handles device requests over endpoint zero: if RENUM = 0, the Default USB Device handles device requests; if RENUM = 1, the firmware services the requests.

Bus-Powered Applications

The FX2LP fully supports bus-powered designs by enumerating with less than 100 mA as required by the USB 2.0 specification.

Interrupt System

INT2 Interrupt Request and Enable Registers

FX2LP implements an autovector feature for INT2 and INT4. There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF) vectors. See EZ-USB Technical Reference Manual (TRM) for more details.

USB Interrupt Autovectors

The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time that is required to identify the individual USB interrupt source, the FX2LP provides a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the FX2LP pushes the program counter to its stack, and then jumps to the address 0x0043 where it expects to find a "jump" instruction to the USB interrupt service routine.

Note

2. The I²C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.

Reset and Wakeup

Reset Pin

The input pin, RESET#, resets the FX2LP when asserted. This pin has hysteresis and is active LOW. When a crystal is used with the CY7C680xxA, the reset period must enable stabilization of the crystal and the PLL. This reset period must be approximately 5 ms after VCC reaches 3.0 V. If the crystal input pin is driven by a clock signal, the internal PLL stabilizes in 200 μ s after VCC has reached 3.0 V^[4].

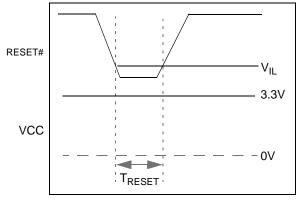

RESET# VCC VCC Power on Reset

Table 5. Reset Timing Values

Condition	T _{RESET}		
Power-on reset with crystal	5 ms		
Power-on reset with external clock	200 μ s + clock stability time		
Powered reset	200 μs		

Figure 2 on page 9 shows a power-on reset condition and a reset applied during operation. A power-on reset is defined as the time reset that is asserted while power is being applied to the circuit. A powered reset is when the FX2LP is powered on and operating and the RESET# pin is asserted.

n is driven by after VCC has Cypress provides an application note which describes and recommends power-on reset implementation. For more information about reset implementation for the FX2 family of products, visit http://www.cypress.com. Figure 2. Reset Timing Plots

Powered Reset

Wakeup Pins

The 8051 puts itself and the rest of the chip into a power-down mode by setting PCON.0 = 1. This stops the oscillator and PLL. When WAKEUP is asserted by external logic, the oscillator restarts after the PLL stabilizes, and the 8051 receives a wakeup interrupt. This applies irrespective of whether FX2LP is connected to the USB.

The FX2LP exits the power-down (USB suspend) state by using one of the following methods:

- USB bus activity (if D+/D- lines are left floating, noise on these lines may indicate activity to the FX2LP and initiate a wakeup)
- External logic asserts the WAKEUP pin
- External logic asserts the PA3/WU2 pin

The second wakeup pin, WU2, can also be configured as a general-purpose I/O pin. This enables a simple external R-C network to be used as a periodic wakeup source. WAKEUP is by default active LOW.

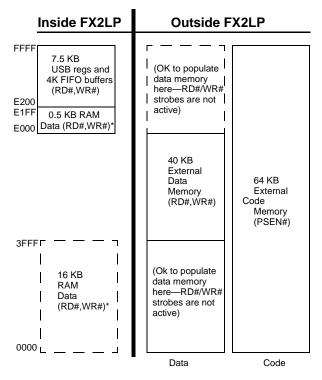


Figure 4. External Code Memory, EA = 1

Register Addresses

FFFF											
	4 KB EP2-EP8										
	buffers										
	(8 x 512)										
	(8 X 512)										
F000 EFFF											
FFFF											
	2 KB RESERVED										
E800											
E7FF											
E7C0	64 BEP1IN										
E7BF											
E780	64 Bytes EP1OUT										
E77F											
E740	64 Bytes EP0 IN/OUT										
E73F											
E700	64 Bytes RESERVED										
E6FF	2051 Addresseeble Degisters										
	8051 Addressable Registers (512)										
E500	(312)										
E4FF	D										
E480	Reserved (128)										
E47F											
E400	128 Bytes GPIF Waveforms										
E3FF											
E200	Reserved (512)										
E1FF											
	512 Bytes										
	,										
F 000	8051 xdata RAM										
E000											

Default Full-Speed Alternate Settings

Table 6. Default Full Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	64 bulk	64 int	64 int
ep1in	0	64 bulk	64 int	64 int
ep2	0	64 bulk out (2x)	64 int out (2×)	64 iso out (2×)
ep4	0	64 bulk out (2x)	64 bulk out (2x)	64 bulk out (2x)
ep6	0	64 bulk in (2×)	64 int in (2x)	64 iso in (2x)
ep8	0	64 bulk in (2×)	64 bulk in (2×)	64 bulk in (2×)

Default High Speed Alternate Settings

Table 7. Default Hi-Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	512 bulk ^[7]	64 int	64 int
ep1in	0	512 bulk ^[7]	64 int	64 int
ep2	0	512 bulk out (2x)	512 int out (2x)	512 iso out (2x)
ep4	0	512 bulk out (2x)	512 bulk out (2x)	512 bulk out (2x)
ep6	0	512 bulk in (2x)	512 int in (2x)	512 iso in (2x)
ep8	0	512 bulk in (2x)	512 bulk in (2×)	512 bulk in (2×)

External FIFO Interface

Architecture

The FX2LP slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).

In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms: the GPIF for internally generated control signals and the slave FIFO interface for externally controlled transfers.

Master/Slave Control Signals

The FX2LP endpoint FIFOs are implemented as eight physically distinct 256×16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between

"USB FIFOs" and "Slave FIFOs." Because they are physically the same memory, no bytes are actually transferred between buffers.

At any time, some RAM blocks are filling/emptying with the USB data under SIE control, while other RAM blocks are available to the 8051, the I/O control unit, or both. The RAM blocks operates as single-port in the USB domain, and dual-port in the 8051-I/O domain. The blocks can be configured as single-, double-, triple-, or quad-buffered as previously shown.

The I/O control unit implements either an internal master (M for Master) or external master (S for Slave) interface.

In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 MBytes/s (48

Notes

5. "0" means "not implemented."

6. "2x" means "double buffered."

^{7.} Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.

In the Slave (S) mode, FX2LP accepts either an internally derived clock or externally supplied clock (IFCLK, max frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock must be present before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit and a Slave FIFO Output Enable signal (SLOE) that enables data of the selected width. External logic must ensure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signal SLCS#.

GPIF and FIFO Clock Rates

An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register inverts the IFCLK signal whether internally or externally sourced.

GPIF

The GPIF is a flexible 8-bit or 16-bit parallel interface driven by a user-programmable finite state machine. It enables the CY7C68013A/15A to perform local bus mastering and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia.

The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that is executed to perform the desired data move between the FX2LP and the external device.

Six Control OUT Signals

The 100-pin and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock).

Six Ready IN Signals

The 100-pin and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1.

Nine GPIF Address OUT Signals

Nine GPIF address lines are available in the 100-pin and 128-pin packages, GPIFADR[8..0]. The GPIF address lines enable indexing through up to a 512-byte block of RAM. If more address lines are needed, then I/O port pins are used.

Long Transfer Mode

In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to 2³² transactions. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction.

ECC Generation^[8]

The EZ-USB can calculate ECCs (Error Correcting Codes) on data that passes across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calculated over 256 bytes (SmartMedia Standard); and one ECC calculated over 512 bytes.

The ECC can correct any one-bit error or detect any two-bit error.

ECC Implementation

The two ECC configurations are selected by the ECCM bit:

ECCM = 0

Two 3-byte ECCs, each calculated over a 256-byte block of data. This configuration conforms to the SmartMedia Standard.

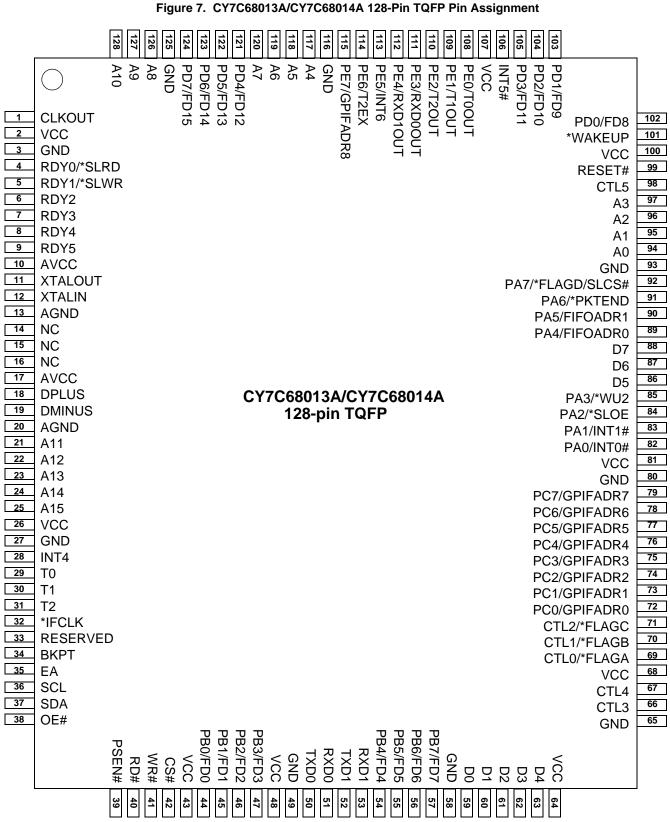
Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 256 bytes of data is calculated and stored in ECC1. The ECC for the next 256 bytes is stored in ECC2. After the second ECC is calculated, the values in the ECCx registers do not change until ECCRESET is written again, even if more data is subsequently passed across the interface.

ECCM = 1

One 3-byte ECC calculated over a 512-byte block of data.

Write any value to ECCRESET then pass data across the GPIF or Slave FIFO interface. The ECC for the first 512 bytes of data is calculated and stored in ECC1; ECC2 is unused. After the ECC is calculated, the values in ECC1 do not change even if more data is subsequently passed across the interface, till ECCRESET is written again.

USB Uploads and Downloads


The core has the ability to directly edit the data contents of the internal 16-KB RAM and of the internal 512-byte scratch pad RAM via a vendor-specific command. This capability is normally used when soft downloading the user code and is available only to and from the internal RAM, only when the 8051 is held in reset. The available RAM spaces are 16 KB from 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad data RAM)^[9].

Notes

8. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.

^{9.} After the data is downloaded from the host, a "loader" can execute from internal RAM to transfer downloaded data to external memory.

* denotes programmable polarity

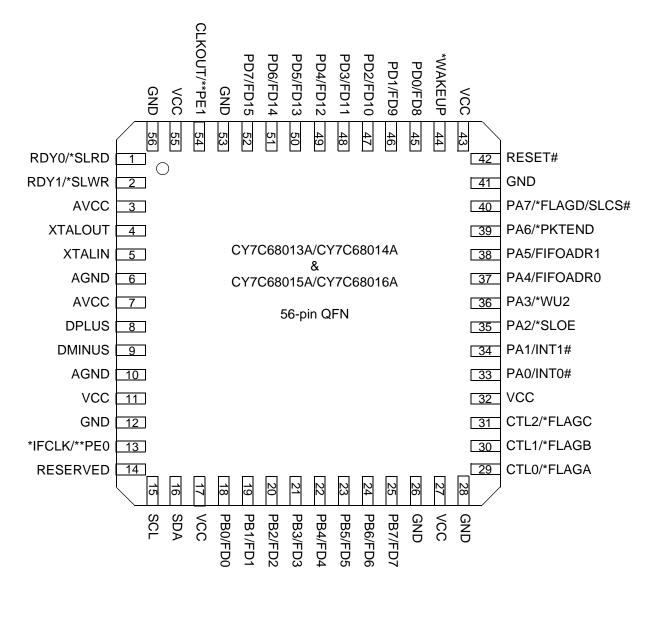


Figure 10. CY7C68013A/14A/15A/16A 56-Pin QFN Pin Assignment

* denotes programmable polarity ** denotes CY7C68015A/CY7C68016A pinout

CY7C68013A/15A Pin Descriptions

Table 11. FX2LP Pin Descriptions^[11]

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
10	9	10	3	2D	AVCC	Power	N/A	N/A	Analog VCC . Connect this pin to the 3.3 V power source. This signal provides power to the analog section of the chip.
17	16	14	7	1D	AVCC	Power	N/A	N/A	Analog VCC . Connect this pin to the 3.3 V power source. This signal provides power to the analog section of the chip.
13	12	13	6	2F	AGND	Ground	N/A	N/A	Analog Ground. Connect to ground with as short a path as possible.
20	19	17	10	1F	AGND	Ground	N/A	N/A	Analog Ground . Connect to ground with as short a path as possible.
19	18	16	9	1E	DMINUS	I/O/Z	Z	N/A	USB D- Signal. Connect to the USB D- signal.
18	17	15	8	2E	DPLUS	I/O/Z	Z	N/A	USB D+ Signal. Connect to the USB D+ signal.
94	_	-	_	_	A0	Output	L	L	
95	-	-	-	-	A1	Output	L	L	
96	_	-	_	_	A2	Output	L	L	
97	_	-	_	_	A3	Output	L	L	
117	_	-	_	_	A4	Output	L	L	
118	-	-	_	-	A5	Output	L	L	
119	-	-	_	-	A6	Output	L	L	
120	-	-	_	-	A7	Output	L	L	8051 Address Bus . This bus is driven at all times. When the 8051 is addressing internal RAM it
126	-	-	_	-	A8	Output	L	L	reflects the internal address.
127	-	-	_	-	A9	Output	L	L	
128	-	-	_	-	A10	Output	L	L	
21	-	-	_	-	A11	Output	L	L	
22	-	-	_	-	A12	Output	L	L	
23	_	-	_	-	A13	Output	L	L	
24	-	-	_	-	A14	Output	L	L	
25	-	-	-	-	A15	Output	L	L	
59	-	-	_	-	D0	I/O/Z	Z	Z	
60	-	-	-	-	D1	I/O/Z	Z	Z	
61	-	-	-	-	D2	I/O/Z	Z	Z	8051 Data Bus . This bidirectional bus is high impedance when inactive, input for bus reads,
62	-	-	-	-	D3	I/O/Z	Z	Z	and output for bus writes. The data bus is used for
63	-	-	-	-	D4	I/O/Z	Z	Z	external 8051 program and data memory. The data
86	-	-	-	-	D5	I/O/Z	Z	Z	bus is active only for external bus accesses, and is driven LOW in suspend.
87	-	-	_	—	D6	I/O/Z	Z	Z	
88	-	-	-	-	D7	I/O/Z	Z	Z	
39	_	_	_	_	PSEN#	Output	Н	Н	Program Store Enable . This active LOW signal indicates an 8051 code fetch from external memory. It is active for program memory fetches from 0x4000–0xFFFF when the EA pin is LOW, or from 0x0000–0xFFFF when the EA pin is HIGH.

 Notes

 11. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in standby. Note also that no pins should be driven while the device is powered down.

 12. The Reset column indicates the state of signals during reset (RESET# asserted) or during Power on Reset (POR).

 Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
84	69	42	35	8F	PA2 or SLOE	I/O/Z	I (PA2)	Z (PA2)	Multiplexed pin whose function is selected by two bits: IFCONFIG[1:0]. PA2 is a bidirectional I/O port pin. SLOE is an input-only output enable with program- mable polarity (FIFOPINPOLAR.4) for the slave FIFOs connected to FD[70] or FD[150].
85	70	43	36	7F	PA3 or WU2	I/O/Z	l (PA3)	Z (PA3)	Multiplexed pin whose function is selected by: WAKEUP.7 and OEA.3 PA3 is a bidirectional I/O port pin. WU2 is an alternate source for USB Wakeup , enabled by WU2EN bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is in suspend and WU2EN = 1, a transition on this pin starts up the oscillator and interrupts the 8051 to enable it to exit the suspend mode. Asserting this pin inhibits the chip from suspending if WU2EN = 1.
89	71	44	37	6F	PA4 or FIFOADR0	I/O/Z	l (PA4)	Z (PA4)	Multiplexed pin whose function is selected by: IFCONFIG[10]. PA4 is a bidirectional I/O port pin. FIFOADR0 is an input-only address select for the slave FIFOs connected to FD[70] or FD[150].
90	72	45	38	8C	PA5 or FIFOADR1	I/O/Z	l (PA5)	Z (PA5)	Multiplexed pin whose function is selected by: IFCONFIG[10]. PA5 is a bidirectional I/O port pin. FIFOADR1 is an input-only address select for the slave FIFOs connected to FD[70] or FD[150].
91	73	46	39	7C	PA6 or PKTEND	I/O/Z	l (PA6)	Z (PA6)	Multiplexed pin whose function is selected by the IFCONFIG[1:0] bits. PA6 is a bidirectional I/O port pin. PKTEND is an input used to commit the FIFO packet data to the endpoint and whose polarity is programmable via FIFOPINPOLAR.5.
92	74	47	40	6C	PA7 or FLAGD or SLCS#	I/O/Z	l (PA7)	Z (PA7)	Multiplexed pin whose function is selected by the IFCONFIG[1:0] and PORTACFG.7 bits. PA7 is a bidirectional I/O port pin. FLAGD is a programmable slave-FIFO output status flag signal. SLCS# gates all other slave FIFO enable/strobes
Port	В								
44	34	25	18	ЗH	PB0 or FD[0]	I/O/Z	І (РВ0)	Z (PB0)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB0 is a bidirectional I/O port pin. FD[0] is the bidirectional FIFO/GPIF data bus.
45	35	26	19	4F	PB1 or FD[1]	I/O/Z	І (РВ1)	Z (PB1)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB1 is a bidirectional I/O port pin. FD[1] is the bidirectional FIFO/GPIF data bus.
46	36	27	20	4H	PB2 or FD[2]	I/O/Z	l (PB2)	Z (PB2)	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. PB2 is a bidirectional I/O port pin. FD[2] is the bidirectional FIFO/GPIF data bus.

Table 11. FX2LP Pin Descriptions^[11] (continued)

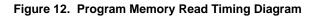
128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
POR	ΓD								
102	80	52	45	8A	PD0 or FD[8]	I/O/Z	l (PD0)	Z (PD0)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[8] is the bidirectional FIFO/GPIF data bus.
103	81	53	46	7A	PD1 or FD[9]	I/O/Z	l (PD1)	Z (PD1)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[9] is the bidirectional FIFO/GPIF data bus.
104	82	54	47	6B	PD2 or FD[10]	I/O/Z	l (PD2)	Z (PD2)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[10] is the bidirectional FIFO/GPIF data bus.
105	83	55	48	6A	PD3 or FD[11]	I/O/Z	l (PD3)	Z (PD3)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[11] is the bidirectional FIFO/GPIF data bus.
121	95	56	49	3B	PD4 or FD[12]	I/O/Z	l (PD4)	Z (PD4)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[12] is the bidirectional FIFO/GPIF data bus.
122	96	1	50	ЗA	PD5 or FD[13]	I/O/Z	l (PD5)	Z (PD5)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[13] is the bidirectional FIFO/GPIF data bus.
123	97	2	51	3C	PD6 or FD[14]	I/O/Z	l (PD6)	Z (PD6)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[14] is the bidirectional FIFO/GPIF data bus.
124	98	3	52	2A	PD7 or FD[15]	I/O/Z	l (PD7)	Z (PD7)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[15] is the bidirectional FIFO/GPIF data bus.
Port	E								
108	86	_	_	_	PE0 or T0OUT	I/O/Z	l (PE0)	Z (PE0)	Multiplexed pin whose function is selected by the PORTECFG.0 bit. PE0 is a bidirectional I/O port pin. TOOUT is an active-HIGH signal from 8051 Timer-counter0. TOOUT outputs a high level for one CLKOUT clock cycle when Timer0 overflows. If Timer0 is operated in Mode 3 (two separate timer/counters), TOOUT is active when the low byte timer/counter overflows.
109	87	_	_	_	PE1 or T1OUT	I/O/Z	l (PE1)	Z (PE1)	Multiplexed pin whose function is selected by the PORTECFG.1 bit. PE1 is a bidirectional I/O port pin. T10UT is an active HIGH signal from 8051 Timer-counter1. T10UT outputs a high level for one CLKOUT clock cycle when Timer1 overflows. If Timer1 is operated in Mode 3 (two separate timer/counters), T10UT is active when the low byte timer/counter overflows.

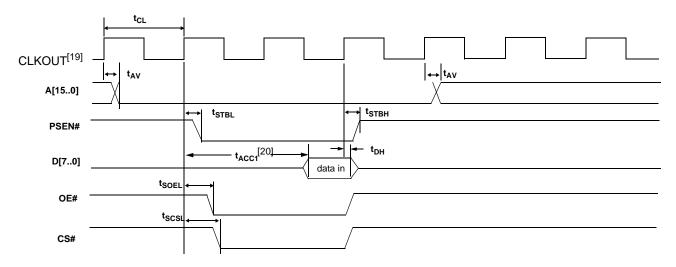
Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
E62B	1	ECC1B1	ECC1 Byte 1 Address	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINE0	00000000	R
E62C	1	ECC1B2	ECC1 Byte 2 Address	COL5	COL4	COL3	COL2	COL1	COL0	LINE17	LINE16	00000000	R
E62D	1	ECC2B0	ECC2 Byte 0 Address	LINE15	LINE14	LINE13	LINE12	LINE11	LINE10	LINE9	LINE8	00000000	R
E62E	1	ECC2B1	ECC2 Byte 1 Address	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINE0	00000000	
E62F	1	ECC2B2	ECC2 Byte 2 Address	COL5	COL4	COL3	COL2	COL1	COL0	0	0	00000000	
E630 H.S.	1	EP2FIFOPFH ^[13]	Endpoint 2 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	IN:PKTS[2] OUT:PFC12	IN:PKTS[1] OUT:PFC11	IN:PKTS[0] OUT:PFC10	0	PFC9	PFC8		bbbbbrbb
E630 F.S.	1	EP2FIFOPFH ^[13]	Endpoint 2 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2] OUT:PFC8	10001000	bbbbbrbb
E631 H.S.	1	EP2FIFOPFL ^[13]	Endpoint 2 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E631 F.S	1	EP2FIFOPFL ^[13]	Endpoint 2 / slave FIFO Programmable Flag L	IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E632 H.S.	1	EP4FIFOPFH ^[13]	Endpoint 4 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	IN: PKTS[1] OUT:PFC10	IN: PKTS[0] OUT:PFC9	0	0	PFC8	10001000	bbrbbrrb
E632 F.S	1	EP4FIFOPFH ^[13]	Endpoint 4 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0		OUT:PFC9	0	0	PFC8	10001000	bbrbbrrb
E633 H.S.	1	EP4FIFOPFL ^[13]	Endpoint 4 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E633 F.S	1	EP4FIFOPFL ^[13]	Endpoint 4 / slave FIFO Programmable Flag L	IN: PKTS[1] OUT:PFC7	IN: PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E634 H.S.	1	EP6FIFOPFH ^[13]	Endpoint 6 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	IN:PKTS[2] OUT:PFC12	IN:PKTS[1] OUT:PFC11	IN:PKTS[0] OUT:PFC10	0	PFC9	PFC8	00001000	bbbbbrbb
E634 F.S	1	EP6FIFOPFH ^[13]	Endpoint 6 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2] OUT:PFC8	00001000	bbbbbrbb
E635 H.S.	1	EP6FIFOPFL ^[13]	Endpoint 6 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	
E635 F.S	1	EP6FIFOPFL ^[13]	Endpoint 6 / slave FIFO Programmable Flag L	IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	
E636 H.S.	1	EP8FIFOPFH ^[13]	Endpoint 8 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	OUT:PFC10	IN: PKTS[0] OUT:PFC9	0	0	PFC8	00001000	
E636 F.S	1	EP8FIFOPFH ^[13]	Endpoint 8 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	OUT:PFC10		0	0	PFC8	00001000	
E637 H.S.	1	EP8FIFOPFL ^[13]	Endpoint 8 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	
E637 F.S	1	EP8FIFOPFL ^[13]	Endpoint 8 / slave FIFO Programmable Flag L	IN: PKTS[1] OUT:PFC7	IN: PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
	8	reserved			-	-	-		-				
E640	1	EP2ISOINPKTS	EP2 (if ISO) IN Packets per frame (1-3)		0	0	0	0	0	INPPF1	INPPF0	00000001	
E641	1	EP4ISOINPKTS	EP4 (if ISO) IN Packets per frame (1-3)		0	0	0	0	0	INPPF1	INPPF0	00000001	
E642	1	EP6ISOINPKTS	EP6 (if ISO) IN Packets per frame (1-3)		0	0	0	0	0	INPPF1	INPPF0	00000001	
E643	1	EP8ISOINPKTS	EP8 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrr
	4	reserved		011	-	-	-						
E648	1	INPKTEND ^[13]	Force IN Packet End	Skip	0	0	0	EP3	EP2	EP1	EP0	XXXXXXXX	W
E649	7	OUTPKTEND ^[13] INTERRUPTS	Force OUT Packet End	Skip	0	0	0	EP3	EP2	EP1	EP0	XXXXXXXX	W
E650	1	EP2FIFOIE ^[13]	Endpoint 2 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E651	1	EP2FIFOIRQ ^[13,14]	Endpoint 2 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E652		EP4FIFOIE ^[13]	Endpoint 4 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E653	1	EP4FIFOIRQ ^[13,14]	Endpoint 4 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E654	1	EP6FIFOIE ^[13]	Endpoint 6 slave FIFO Flag Interrupt Enable		0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E655	1	EP6FIFOIRQ ^[13,14]	Endpoint 6 slave FIFO Flag Interrupt Request		0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E656	1	EP8FIFOIE ^[13]	Endpoint 8 slave FIFO Flag Interrupt Enable		0	0	0	EDGEPF	PF	EF	FF	00000000	
E657	1	EP8FIFOIRQ ^[13,14]	Endpoint 8 slave FIFO Flag Interrupt Request		0	0	0	0	PF	EF	FF	00000000	
E658		IBNIE	Enable	0	0	EP8	EP6	EP4	EP2	EP1	EP0	00000000	
E659		IBNIRQ ^[14]	Request	0	0	EP8	EP6	EP4	EP2	EP1	EP0	00xxxxxx	
E65A		NAKIE	Interrupt Enable	EP8	EP6	EP4	EP2	EP1	EP0	0	IBN	00000000	
E65B	1	NAKIRQ ^[14]	Interrupt Request	EP8	EP6	EP4	EP2	EP1	EP0	0	IBN		bbbbbbrb
E65C	1	USBIE	USB Int Enables	0	EP0ACK	HSGRANT	URES	SUSP	SUTOK	SOF	SUDAV	0000000	RM

Note

14. The register can only be reset; it cannot be set.




AC Electrical Characteristics

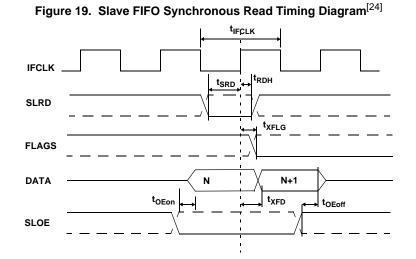
USB Transceiver

USB 2.0 compliant in Full-Speed and Hi-Speed modes.

Program Memory Read

Table 15.	Program	Memory	Read	Parameters
-----------	---------	--------	------	------------

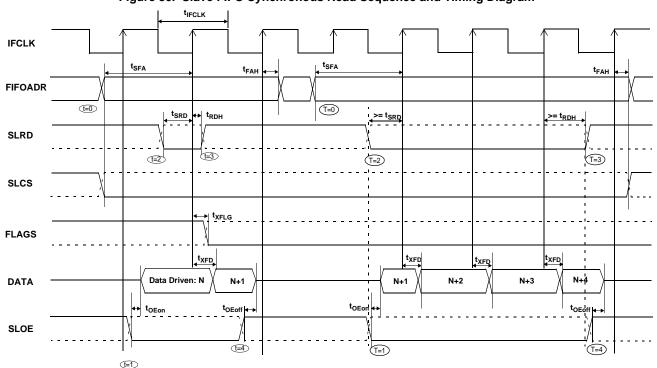
Parameter	Description	Min	Тур	Max	Unit	Notes
		-	20.83	-	ns	48 MHz
t _{CL}	1/CLKOUT frequency	-	41.66	-	ns	24 MHz
		-	83.2	-	ns	12 MHz
t _{AV}	Delay from clock to valid address	0	-	10.7	ns	-
t _{STBL}	Clock to PSEN LOW	0	-	8	ns	-
t _{STBH}	Clock to PSEN HIGH	0	-	8	ns	-
t _{SOEL}	Clock to OE LOW	-	-	11.1	ns	-
t _{SCSL}	Clock to CS LOW	-	-	13	ns	-
t _{DSU}	Data setup to clock	9.6	-	-	ns	-
t _{DH}	Data hold time	0	-	-	ns	-


Notes

19. CLKOUT is shown with positive polarity.

20. t_{ACC1} is computed from these parameters as follows: t_{ACC1}(24 MHz) = $3^{*}t_{CL} - t_{AV} - t_{DSU} = 106$ ns. t_{ACC1}(48 MHz) = $3^{*}t_{CL} - t_{AV} - t_{DSU} = 43$ ns.

Slave FIFO Synchronous Read


Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced $\ensuremath{\mathsf{IFCLK}}^{[25]}$

Parameter	Description	Min	Max	Ty	Unit	
Farameter	Description	IVIIII	IVIAX	Min	Min Max	
t _{IFCLK}	IFCLK period	20.83	-	-	_	ns
t _{SRD}	SLRD to clock setup time	18.7	-	-	_	ns
t _{RDH}	Clock to SLRD hold time	0	-	-	_	ns
t _{OEon}	SLOE turn on to FIFO data valid	_	10.5	-	_	ns
t _{OEoff}	SLOE turn off to FIFO data hold	-	10.5	-	_	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	9.5	-	_	ns
t _{XFD}	Clock to FIFO data output propagation delay	-	11	-	_	ns
t _{IFCLKR}	IFCLK rise time	-	-	-	900	ps
t _{IFCLKF}	IFCLK fall time	_	-	-	900	ps
t _{IFCLKOD}	IFCLK output duty cycle	-	-	49	51	%
t _{IFCLKJ}	IFCLK jitter peak to peak	-	-	-	300	ps

Sequence Diagram

Single and Burst Synchronous Read Example

	∱ IFCLK		∱ IFCLK		∱ IFCLK		† IFCLK		∱ IFCLK	<u>،</u>	FCLK	∱ IFCLK	∱ IFCLK	↑ IFCLK	∱ IFCLK	
FIFO POINTER	Ν	} ►	Ν		N+1		N+1] ,	N+1		N+2	▶ N+3	► N+4	► N+4	► N+4	
		SLOE		SLRD♦		SLOE 🕈 SLRD 🕇		SLOE	s	SLRD 🖡			SL	RD † S	LOE	_
FIFO DATA BUS	Not Driven	→	Driven: N	} →	N+1	` >	Not Driver	ר ו	• N+1		N+2	► N+3	► N+4	► N+4	Not Driven	

Figure 30 on page 52 shows the timing relationship of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read.

- At t = 0, the FIFO address is stable and the signal SLCS is asserted (SLCS may be tied LOW in some applications). Note that t_{SFA} has a minimum of 25 ns. This means that when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, SLOE is asserted. SLOE is an output enable only, whose sole function is to drive the data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently pointing to. In this example it is the first data value in the FIFO. Note: the data is prefetched and is driven on the bus when SLOE is asserted.
- At t = 2, SLRD is asserted. SLRD must meet the setup time of t_{SRD} (time from asserting the SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of t_{RDH} (time from the IFCLK edge to the deassertion of the SLRD signal).

If the SLCS signal is used, it must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition).

The FIFO pointer is updated on the rising edge of the IFCLK, while SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of t_{XFD} (measured from the rising edge of IFCLK) the new data value is present. N is the first data value read from the FIFO. To have data on the FIFO data bus, SLOE MUST also be asserted.

The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5.

Note For the burst mode, the SLRD and SLOE are left asserted during the entire duration of the read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. During the first read cycle, on the rising edge of the clock, the FIFO pointer is updated and incremented to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.

Single and Burst Synchronous Write

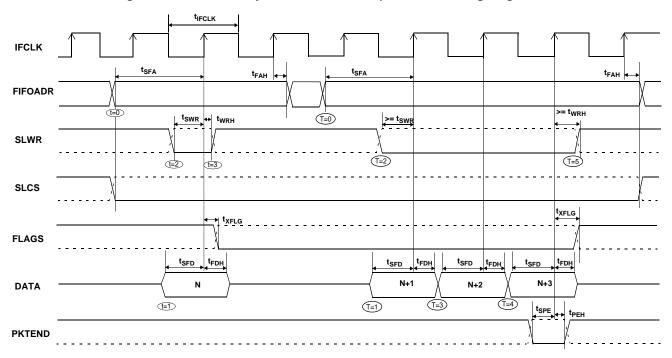


Figure 32. Slave FIFO Synchronous Write Sequence and Timing Diagram^[24]

Figure 32 shows the timing relationship of the SLAVE FIFO signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst write of three bytes and committing all four bytes as a short packet using the PKTEND pin.

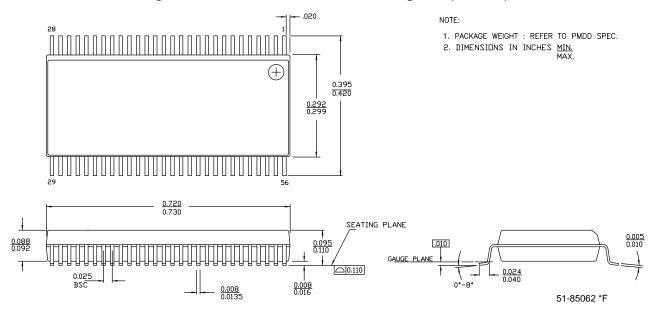
- At t = 0 the FIFO address is stable and the signal SLCS is asserted. (SLCS may be tied LOW in some applications) Note that t_{SFA} has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, the external master/peripheral must outputs the data value onto the data bus with a minimum set up time of t_{SFD} before the rising edge of IFCLK.
- At t = 2, SLWR is asserted. The SLWR must meet the setup time of t_{SWR} (time from asserting the SLWR signal to the rising edge of IFCLK) and maintain a minimum hold time of t_{WRH} (time from the IFCLK edge to the deassertion of the SLWR signal). If the SLCS signal is used, it must be asserted with SLWR or before SLWR is asserted (The SLCS and SLWR signals must both be asserted to start a valid write condition).
- While the SLWR is asserted, data is written to the FIFO and on the rising edge of the IFCLK, the FIFO pointer is incremented. The FIFO flag is also updated after a delay of t_{XFLG} from the rising edge of the clock.

The same sequence of events are also shown for a burst write and are marked with the time indicators of T = 0 through 5.

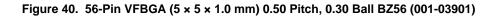
Note For the burst mode, SLWR and SLCS are left asserted for the entire duration of writing all the required data values. In this burst write mode, after the SLWR is asserted, the data on the FIFO data bus is written to the FIFO on every rising edge of IFCLK. The FIFO pointer is updated on each rising edge of IFCLK. In Figure 32, after the four bytes are written to the FIFO, SLWR is deasserted. The short 4 byte packet can be committed to the host by asserting the PKTEND signal.

There is no specific timing requirement that should be met for asserting PKTEND signal with regards to asserting the SLWR signal. PKTEND can be asserted with the last data value or thereafter. The only requirement is that the setup time t_{SPE} and the hold time t_{PEH} must be met. In the scenario of Figure 32, the number of data values committed includes the last value written to the FIFO. In this example, both the data value and the PKTEND signal are clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subsequent clock cycles. The FIFOADDR lines should be held constant during the PKTEND assertion.

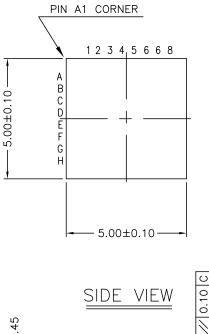
Although there are no specific timing requirement for the PKTEND assertion, there is a specific corner-case condition that needs attention while using the PKTEND to commit a one byte/word packet. Additional timing requirements exist when the FIFO is configured to operate in auto mode and it is desired to send two packets: a full packet ('full' defined as the number of bytes in the FIFO meeting the level set in the AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin.

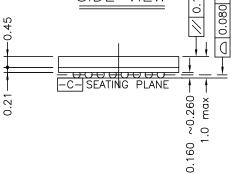

In this case, the external master must ensure to assert the PKTEND pin at least one clock cycle after the rising edge that caused the last byte or word that needs to be clocked into the previous auto committed packet (the packet with the number of bytes equal to what is set in the AUTOINLEN register). Refer to Figure 24 on page 50 for further details on this timing.

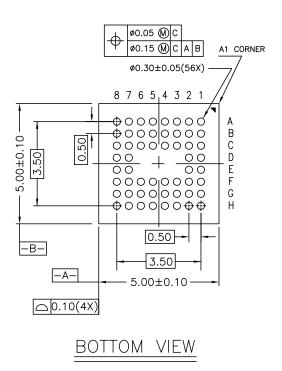
Package Diagrams


The FX2LP is available in five packages:

- 56-pin SSOP
- 56-pin QFN
- 100-pin TQFP
- 128-pin TQFP
- 56-ball VFBGA




Figure 36. 56-Pin Shrunk Small Outline Package O56 (51-85062)



TOP VIEW

 \overline{O}

REFERENCE JEDEC: MO-195C PACKAGE WEIGHT: 0.02 grams

001-03901 *F

U.3U DMII D730

PCB Layout Recommendations

Follow these recommendations to ensure reliable high performance operation: $\ensuremath{^{[29]}}$

- Four-layer, impedance-controlled boards are required to maintain signal quality.
- Specify impedance targets (ask your board vendor what they can achieve).
- To control impedance, maintain trace widths and trace spacing.
- Minimize stubs to minimize reflected signals.
- Connections between the USB connector shell and signal ground must be near the USB connector.

- Bypass and flyback caps on VBUS, near connector, are recommended.
- DPLUS and DMINUS trace lengths should be kept to within 2 mm of each other in length, with preferred length of 20 to 30 mm.
- Maintain a solid ground plane under the DPLUS and DMINUS traces. Do not allow the plane to split under these traces.
- Do not place vias on the DPLUS or DMINUS trace routing.
- Isolate the DPLUS and DMINUS traces from all other signal traces by no less than 10 mm.

Note

^{29.} Source for recommendations: *EZ-USB FX2™PCB Design Recommendations*, http://www.cypress.com and *High Speed USB Platform Design Guidelines*, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.

Document History Page (continued)

Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB [®] FX2LP™ USB Microcontroller High- Speed USB Peripheral Controller Document Number: 38-08032									
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change					
*W	3998554	GAYA	07/19/2013	Added Errata footnote (Note 3). Updated Functional Overview: Updated Interrupt System: Updated FIFO/GPIF Interrupt (INT4): Added Note 3 and referred the same note in "Endpoint 2 empty flag" in Table 4. Updated Package Diagrams: spec 51-85062 – Changed revision from *E to *F. spec 001-53450 – Changed revision from *B to *C. Added Errata. Updated in new template.					
*Х	4617527	GAYA	01/15/2015	Updated Figure 13 Added a note to sections Data Memory Read ^[21] and Data Memory Write ^[23] sections Updated template to include the More Information section Updated Figure 37, Figure 38, Figure 39 Updated Table 11 with Reset state information for pins Sunset Review					
*Y	5317277	ODC	06/28/2016	Updated CY Logo and Sales Disclaimer.					