E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

Product Status	Active
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I²C, USB, USART
Number of I/O	24
Voltage - Supply	3V ~ 3.6V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN-EP (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68013a-56ltxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the application note AN65209 - Getting Started with FX2LP.

- Overview: USB Portfolio, USB Roadmap
- USB 2.0 Product Selectors: FX2LP, AT2LP, NX2LP-Flex, SX2
- Application notes: Cypress offers a large number of USB application notes covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with FX2LP are:
 - AN65209 Getting Started with FX2LP
 - □ AN15456 Guide to Successful EZ-USB[®] FX2LP[™] and EZ-USB FX1[™] Hardware Design and Debug
 - □ AN50963 EZ-USB[®] FX1[™]/FX2LP[™] Boot Options
 - □ AN66806 EZ-USB[®] FX2LP[™] GPIF Design Guide
 - □ AN61345 Implementing an FX2LPTM- FPGA Interface
 - □ AN57322 Interfacing SRAM with FX2LP over GPIF
 - AN4053 Streaming Data through Isochronous/Bulk Endpoints on EZ-USB[®] FX2 and EZUSB FX2LP
 - □ AN63787 EZ-USB[®] FX2LP[™] GPIF and Slave FIFO Configuration Examples using 8-bit Asynchronous Interface

For complete list of Application notes, click here.

- Code Examples: USB Hi-Speed
- Technical Reference Manual (TRM):
 EZ-USB FX2LP Technical Reference Manual
- Reference Designs:
 - CY4661 External USB Hard Disk Drives (HDD) with Fingerprint Authentication Security
 - FX2LP DMB-T/H TV Dongle reference design
- Models: IBIS

EZ-USB FX2LP Development Kit

The CY3684 EZ-USB FX2LP Development Kit is a complete development resource for FX2LP. It provides a platform to develop and test custom projects using FX2LP. The development kit contains collateral materials for the firmware, hardware, and software aspects of a design using FX2LP.

GPIF™ Designer

FX2LP[™] General Programmable Interface (GPIF) provides an independent hardware unit, which creates the data and control signals required by an external interface. FX2LP GPIF Designer allows users to create and modify GPIF waveform descriptors for EZ-USB FX2/ FX2LP family of chips using a graphical user interface. Extensive discussion of general GPIF discussion and programming using GPIF Designer is included in *FX2LP Technical Reference Manual* and *GPIF Designer User Guide*, distributed with GPIF Designer. *AN66806* - *Getting Started with EZ-USB*[®] *FX2LP*[™] *GPIF* can be a good starting point.

Program/Data RAM

SizeThe FX2LP has 16 KB of internal program/data RAM, where PSEN#/RD# signals are internally ORed to enable the 8051 to access it as both program and data memory. No USB control registers appears in this space.

Two memory maps are shown in the following diagrams:

Figure 3 on page 10 shows the Internal Code Memory, EA = 0.

Figure 4 on page 11 shows the External Code Memory, EA = 1.

Internal Code Memory, EA = 0

This mode implements the internal 16 KB block of RAM (starting at 0) as combined code and data memory. When external RAM or ROM is added, the external read and write strobes are suppressed for memory spaces that exist inside the chip. This enables the user to connect a 64 KB memory without requiring address decodes to keep clear of internal memory spaces. Only the internal 16 KB and scratch pad 0.5 KB RAM spaces have the following access:

- USB download
- USB upload
- Setup data pointer
- I²C interface boot load

External Code Memory, EA = 1

The bottom 16 KB of program memory is external and therefore the bottom 16 KB of internal RAM is accessible only as a data memory.

Figure 3. Internal Code Memory, EA = 0

*SUDPTR, USB upload/download, I²C interface boot access

4. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 µs.

Figure 4. External Code Memory, EA = 1

Register Addresses

FFFF	
	4 KB EP2-EP8
	buffers
	(8 x 512)
F000	
EFFF	
	2 RB RESERVED
	64 BEP1IN
E/BF	64 Bytes EP1OUT
E760	
E740	64 Bytes EP0 IN/OUT
E73F	
E700	64 Bytes RESERVED
E6FF	
	8051 Addressable Registers
E500	(512)
F4FF	
E480	Reserved (128)
E47F	
F400	128 Bytes GPIF Waveforms
E3FF	Decembed (512)
E200	Reserved (512)
E1FF	
	512 Bytes
	0054 udeta DAM
E000	8051 Xdata RAM

Default Full-Speed Alternate Settings

Table 6. Default Full Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	64 bulk	64 int	64 int
ep1in	0	64 bulk	64 int	64 int
ep2	0	64 bulk out (2×)	64 int out (2×)	64 iso out (2×)
ep4	0	64 bulk out (2×)	64 bulk out (2×)	64 bulk out (2×)
ep6	0	64 bulk in (2×)	64 int in (2×)	64 iso in (2×)
ep8	0	64 bulk in (2×)	64 bulk in (2×)	64 bulk in (2×)

Default High Speed Alternate Settings

Table 7. Default Hi-Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	512 bulk ^[7]	64 int	64 int
ep1in	0	512 bulk ^[7]	64 int	64 int
ep2	0	512 bulk out (2x)	512 int out (2x)	512 iso out (2x)
ep4	0	512 bulk out (2x)	512 bulk out (2x)	512 bulk out (2x)
ep6	0	512 bulk in (2×)	512 int in (2x)	512 iso in (2x)
ep8	0	512 bulk in (2×)	512 bulk in (2x)	512 bulk in (2×)

External FIFO Interface

Architecture

The FX2LP slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).

In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms: the GPIF for internally generated control signals and the slave FIFO interface for externally controlled transfers.

Master/Slave Control Signals

The FX2LP endpoint FIFOs are implemented as eight physically distinct 256×16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between

"USB FIFOs" and "Slave FIFOs." Because they are physically the same memory, no bytes are actually transferred between buffers.

At any time, some RAM blocks are filling/emptying with the USB data under SIE control, while other RAM blocks are available to the 8051, the I/O control unit, or both. The RAM blocks operates as single-port in the USB domain, and dual-port in the 8051-I/O domain. The blocks can be configured as single-, double-, triple-, or quad-buffered as previously shown.

The I/O control unit implements either an internal master (M for Master) or external master (S for Slave) interface.

In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 MBytes/s (48

Notes

5. "0" means "not implemented."

6. "2x" means "double buffered."

^{7.} Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.

Autopointer Access

FX2LP provides two identical autopointers. They are similar to the internal 8051 data pointers but with an additional feature: they can optionally increment after every memory access. This capability is available to and from both internal and external RAM. Autopointers are available in external FX2LP registers under the control of a mode bit (AUTOPTRSET-UP.0). Using the external FX2LP autopointer access (at 0xE67B – 0xE67C) enables the autopointer to access all internal and external RAM to the part.

Also, autopointers can point to any FX2LP register or endpoint buffer space. When the autopointer access to external memory is enabled, locations 0xE67B and 0xE67C in XDATA and code space cannot be used.

I²C Controller

FX2LP has one I²C port that is driven by two internal controllers, the one that automatically operates at boot time to load VID/PID/DID and configuration information, and another that the 8051 uses when running to control external I²C devices. The I²C port operates in master mode only.

²C Port Pins

The I²C pins SCL and SDA must have external 2.2-k Ω pull-up resistors even if no EEPROM is connected to the FX2LP. External EEPROM device address pins must be configured properly. See Table 8 for configuring the device address pins.

Table 8. Strap Boot EEPROM Address Lines to These Values

Bytes	Example EEPROM	A2	A1	A0
16	24LC00 ^[10]	N/A	N/A	N/A
128	24LC01	0	0	0
256	24LC02	0	0	0
4K	24LC32	0	0	1
8K	24LC64	0	0	1
16K	24LC128	0	0	1

P^2C Interface Boot Load Access

At power-on reset, the I^2C interface boot loader loads the VID/PID/DID configuration bytes and up to 16 KB of program/data. The available RAM spaces are 16 KB from 0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051 is in reset. I^2C interface boot loads only occur after power-on reset.

PC Interface General-Purpose Access

The 8051 can control peripherals connected to the I^2C bus using the I2CTL and I2DAT registers. FX2LP provides I^2C master control only; it is never an I^2C slave.

Compatible with Previous Generation EZ-USB FX2

The EZ-USB FX2LP is form-, fit-, and with minor exceptions, functionally-compatible with its predecessor, the EZ-USB FX2.

This makes for an easy transition for designers wanting to upgrade their systems from the FX2 to the FX2LP. The pinout and package selection are identical and a vast majority of firmware previously developed for the FX2 functions in the FX2LP.

For designers migrating from the FX2 to the FX2LP, a change in the bill of material and review of the memory allocation (due to increased internal memory) is required. For more information about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the application note titled *Migrating from EZ-USB FX2 to EZ-USB FX2 to EZ-USB FX2LP* available in the Cypress web site.

Table 9. Part Number Conversion Table

EZ-USB FX2 Part Number	EZ-USB FX2LP Part Number	Package Description
CY7C68013-56PVC	CY7C68013A-56PVXC or CY7C68014A-56PVXC	56-pin SSOP
CY7C68013-56PVCT	CY7C68013A-56PVXCTor CY7C68014A-56PVXCT	56-pin SSOP – Tape and Reel
CY7C68013-56LFC	CY7C68013A-56LFXC or CY7C68014A-56LFXC	56-pin QFN
CY7C68013-100AC	CY7C68013A-100AXC or CY7C68014A-100AXC	100-pin TQFP
CY7C68013-128AC	CY7C68013A-128AXC or CY7C68014A-128AXC	128-pin TQFP

CY7C68013A/14A and CY7C68015A/16A Differences

CY7C68013A is identical to CY7C68014A in form, fit, and functionality. CY7C68015A is identical to CY7C68016A in form, fit, and functionality. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively and are ideal for power-sensitive battery applications.

CY7C68015A and CY7C68016A are available in 56-pin QFN package only. Two additional GPIO signals are available on the CY7C68015A and CY7C68016A to provide more flexibility when neither IFCLK or CLKOUT are needed in the 56-pin package.

USB developers wanting to convert their FX2 56-pin application to a bus-powered system directly benefit from these additional signals. The two GPIOs give developers the signals they need for the power-control circuitry of their bus-powered application without pushing them to a high-pincount version of FX2LP.

The CY7C68015A is only available in the 56-pin QFN package

Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Differences

CY7C68013A/CY7C68014A	CY7C68015A/CY7C68016A
IFCLK	PE0
CLKOUT	PE1

denotes programmable polarity

Figure 8. CY7C68013A/CY7C68014A 100-Pin TQFP Pin Assignment

Figure 10. CY7C68013A/14A/15A/16A 56-Pin QFN Pin Assignment

* denotes programmable polarity ** denotes CY7C68015A/CY7C68016A pinout

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment – Top View

CY7C68013A/15A Pin Descriptions

Table 11. FX2LP Pin Descriptions^[11]

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
10	9	10	3	2D	AVCC	Power	N/A	N/A	Analog VCC . Connect this pin to the 3.3 V power source. This signal provides power to the analog section of the chip.
17	16	14	7	1D	AVCC	Power	N/A	N/A	Analog VCC . Connect this pin to the 3.3 V power source. This signal provides power to the analog section of the chip.
13	12	13	6	2F	AGND	Ground	N/A	N/A	Analog Ground . Connect to ground with as short a path as possible.
20	19	17	10	1F	AGND	Ground	N/A	N/A	Analog Ground . Connect to ground with as short a path as possible.
19	18	16	9	1E	DMINUS	I/O/Z	Z	N/A	USB D- Signal. Connect to the USB D- signal.
18	17	15	8	2E	DPLUS	I/O/Z	Z	N/A	USB D+ Signal. Connect to the USB D+ signal.
94	-	-	—	-	A0	Output	L	L	
95	-	-	—	-	A1	Output	L	L	
96	-	-	—	-	A2	Output	L	L	
97	_	_	_	-	A3	Output	L	L	
117	-	-	—	-	A4	Output	L	L	
118	_	-	—	-	A5	Output	L	L	
119	_	_	_	-	A6	Output	L	L	
120	_	-	—	-	A7	Output	L	L	8051 Address Bus . This bus is driven at all times.
126	_	-	—	-	A8	Output	L	L	reflects the internal address.
127	_	_	_	-	A9	Output	L	L	
128	_	-	—	-	A10	Output	L	L	
21	_	-	—	-	A11	Output	L	L	
22	_	-	—	-	A12	Output	L	L	
23	_	-	—	-	A13	Output	L	L	
24	_	-	—	-	A14	Output	L	L	
25	_	-	—	-	A15	Output	L	L	
59	_	-	—	-	D0	I/O/Z	Z	Z	
60	_	-	—	-	D1	I/O/Z	Z	Z	
61	_	-	—	-	D2	I/O/Z	Z	Z	8051 Data Bus. This bidirectional bus is
62	_	-	—	-	D3	I/O/Z	Z	Z	and output for bus writes. The data bus is used for
63	-	-	—	-	D4	I/O/Z	Z	Z	external 8051 program and data memory. The data
86	_	-	—	-	D5	I/O/Z	Z	Z	driven LOW in suspend.
87	_	-	—	-	D6	I/O/Z	Z	Z	
88	-	-	—	-	D7	I/O/Z	Z	Z	
39	_	_	_	_	PSEN#	Output	н	н	Program Store Enable . This active LOW signal indicates an 8051 code fetch from external memory. It is active for program memory fetches from 0x4000–0xFFFF when the EA pin is LOW, or from 0x0000–0xFFFF when the EA pin is HIGH.

 Notes

 11. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in standby. Note also that no pins should be driven while the device is powered down.

 12. The Reset column indicates the state of signals during reset (RESET# asserted) or during Power on Reset (POR).

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
E62B	1	ECC1B1	ECC1 Byte 1 Address	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINE0	00000000	R
E62C	1	ECC1B2	ECC1 Byte 2 Address	COL5	COL4	COL3	COL2	COL1	COL0	LINE17	LINE16	00000000	R
E62D	1	ECC2B0	ECC2 Byte 0 Address	LINE15	LINE14	LINE13	LINE12	LINE11	LINE10	LINE9	LINE8	00000000	R
E62E	1	ECC2B1	ECC2 Byte 1 Address	LINE7	LINE6	LINE5	LINE4	LINE3	LINE2	LINE1	LINE0	00000000	R
E62F	1	ECC2B2	ECC2 Byte 2 Address	COL5	COL4	COL3	COL2	COL1	COL0	0	0	00000000	R
E630 H.S.	1	EP2FIFOPFH ^[13]	Endpoint 2 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	IN:PKTS[2] OUT:PFC12	IN:PKTS[1] OUT:PFC11	IN:PKTS[0] OUT:PFC10	0	PFC9	PFC8	10001000	bbbbbrbb
E630 F.S.	1	EP2FIFOPFH ^[13]	Endpoint 2 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2] OUT:PFC8	10001000	bbbbbrbb
E631 H.S.	1	EP2FIFOPFL ^[13]	Endpoint 2 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E631 F.S	1	EP2FIFOPFL ^[13]	Endpoint 2 / slave FIFO Programmable Flag L	IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E632 H.S.	1	EP4FIFOPFH ^[13]	Endpoint 4 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	IN: PKTS[1] OUT:PFC10	IN: PKTS[0] OUT:PFC9	0	0	PFC8	10001000	bbrbbrrb
E632 F.S	1	EP4FIFOPFH ^[13]	Endpoint 4 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	OUT:PFC10	OUT:PFC9	0	0	PFC8	10001000	bbrbbrrb
E633 H.S.	1	EP4FIFOPFL ^[13]	Endpoint 4 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E633 F.S	1	EP4FIFOPFL ^[13]	Endpoint 4 / slave FIFO Programmable Flag L	IN: PKTS[1] OUT:PFC7	IN: PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E634 H.S.	1	EP6FIFOPFH ^[13]	Endpoint 6 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	IN:PKTS[2] OUT:PFC12	IN:PKTS[1] OUT:PFC11	IN:PKTS[0] OUT:PFC10	0	PFC9	PFC8	00001000	bbbbbrbb
E634 F.S	1	EP6FIFOPFH ^[13]	Endpoint 6 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	OUT:PFC12	OUT:PFC11	OUT:PFC10	0	PFC9	IN:PKTS[2] OUT:PFC8	00001000	bbbbbrbb
E635 H.S.	1	EP6FIFOPFL ^[13]	Endpoint 6 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E635 F.S	1	EP6FIFOPFL ^[13]	Endpoint 6 / slave FIFO Programmable Flag L	IN:PKTS[1] OUT:PFC7	IN:PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E636 H.S.	1	EP8FIFOPFH ^[13]	Endpoint 8 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	IN: PKTS[1] OUT:PFC10	IN: PKTS[0] OUT:PFC9	0	0	PFC8	00001000	bbrbbrrb
E636 F.S	1	EP8FIFOPFH ^[13]	Endpoint 8 / slave FIFO Programmable Flag H	DECIS	PKTSTAT	0	OUT:PFC10	OUT:PFC9	0	0	PFC8	00001000	bbrbbrrb
E637 H.S.	1	EP8FIFOPFL ^[13]	Endpoint 8 / slave FIFO Programmable Flag L	PFC7	PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
E637 F.S	1	EP8FIFOPFL ^[13]	Endpoint 8 / slave FIFO Programmable Flag L	IN: PKTS[1] OUT:PFC7	IN: PKTS[0] OUT:PFC6	PFC5	PFC4	PFC3	PFC2	PFC1	PFC0	00000000	RW
	8	reserved			-	-	-	-	-				
E640	1	EP2ISOINPKTS	EP2 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrbb
E641	1	EP4ISOINPKTS	EP4 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrr
E642	1	EP6ISOINPKTS	EP6 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrbb
E643	1	EP8ISOINPKTS	EP8 (if ISO) IN Packets per frame (1-3)	AADJ	0	0	0	0	0	INPPF1	INPPF0	00000001	brrrrrr
E644	4	reserved											
E648	1		Force IN Packet End	Skip	0	0	0	EP3	EP2	EP1	EP0	XXXXXXXX	W
E649	7	OUTPKTEND ^[13]	Force OUT Packet End	Skip	0	0	0	EP3	EP2	EP1	EP0	XXXXXXXX	W
-		INTERRUPTS											
E650	1	EP2FIFOIE ^[13]	Endpoint 2 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E651	1	EP2FIFOIRQ ^[13,14]	Endpoint 2 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E652	1	EP4FIFOIE ^[13]	Endpoint 4 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E653	1	EP4FIFOIRQ ^[13,14]	Endpoint 4 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E654	1	EP6FIFOIE ^[13]	Endpoint 6 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E655	1	EP6FIFOIRQ ^[13,14]	Endpoint 6 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E656	1	EP8FIFOIE ^[13]	Endpoint 8 slave FIFO Flag Interrupt Enable	0	0	0	0	EDGEPF	PF	EF	FF	00000000	RW
E657	1	EP8FIFOIRQ ^[13,14]	Endpoint 8 slave FIFO Flag Interrupt Request	0	0	0	0	0	PF	EF	FF	00000000	rrrrbbb
E658	1	IBNIE	IN-BULK-NAK Interrupt Enable	0	0	EP8	EP6	EP4	EP2	EP1	EP0	00000000	RW
E659	1	IBNIRQ ^[14]	IN-BULK-NAK interrupt Request	0	0	EP8	EP6	EP4	EP2	EP1	EP0	00xxxxxx	rrbbbbbb
E65A	1		Endpoint Ping-NAK / IBN Interrupt Enable	EP8	EP6	EP4	EP2	EP1	EP0	0	IBN	0000000	RW
E65B	1		Endpoint Ping-NAK / IBN Interrupt Request	EP8	EP6	EP4	EP2	EP1	EP0	0	IBN	xxxxxx0x	bbbbbbrb
E65C	1	USBIE	USB Int Enables	0	EP0ACK	HSGRANT	URES	SUSP	SUTOK	SOF	SUDAV	00000000	RW

Note

14. The register can only be reset; it cannot be set.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
E6CF	1	GPIFTCB2 ^[13]	GPIF Transaction Count	TC23	TC22	TC21	TC20	TC19	TC18	TC17	TC16	00000000	RW
200.		01111002	Byte 2	. 020	. 011		. 020						
E6D0	1	GPIFTCB1 ^[13]	GPIF Transaction Count Byte 1	TC15	TC14	TC13	TC12	TC11	TC10	TC9	TC8	00000000	RW
E6D1	1	GPIFTCB0 ^[13]	GPIF Transaction Count Byte 0	TC7	TC6	TC5	TC4	тсз	TC2	TC1	TC0	00000001	RW
	2	reserved	, ··· ·									00000000	RW
		reserved											
		reserved											
E6D2	1	EP2GPIEELGSEL ^[13]	Endpoint 2 GPIE Flag	0	0	0	0	0	0	FS1	ES0	00000000	RW
EGD2			select	0	0	0	0	0	0	0		00000000	DW/
E6D3	1	EP2GPIFPFSTOP	transaction on prog. flag	0	0	0	0	0	0	0	FIFUZFLAG	0000000	RVV
E6D4	1	EP2GPIFTRIG ^[13]	Endpoint 2 GPIF Trigger	х	x	x	x	x	x	х	х	XXXXXXXX	W
	3	reserved											
		reserved											
		reserved											
E6DA	1	EP4GPIFFLGSEL ^[13]	Endpoint 4 GPIF Flag select	0	0	0	0	0	0	FS1	FS0	00000000	RW
E6DB	1	EP4GPIFPFSTOP	Endpoint 4 GPIF stop transaction on GPIF Flag	0	0	0	0	0	0	0	FIFO4FLAG	00000000	RW
E6DC	1	EP4GPIFTRIG ^[13]	Endpoint 4 GPIF Trigger	х	x	x	x	х	x	х	х	xxxxxxx	W
	3	reserved											
		reserved											
		reserved											
E6E2	1	EP6GPIFFLGSEL ^[13]	Endpoint 6 GPIF Flag	0	0	0	0	0	0	FS1	FS0	00000000	RW
E6E3	1	EP6GPIFPFSTOP	Endpoint 6 GPIF stop	0	0	0	0	0	0	0	FIFO6FLAG	00000000	RW
E6E4	1	EP6GPIFTRIG ^[13]	Endpoint 6 GPIF Trigger	x	x	x	x	x	x	x	x	xxxxxxx	W
	3	reserved											
		reserved											
		reserved											
E6EA	1	EP8GPIFFLGSEL ^[13]	Endpoint 8 GPIF Flag	0	0	0	0	0	0	FS1	FS0	00000000	RW
E6EB	1	EP8GPIFPFSTOP	Endpoint 8 GPIF stop	0	0	0	0	0	0	0	FIFO8FLAG	00000000	RW
E6EC	1	EP8GPIFTRIG ^[13]	Endpoint 8 GPIF Trigger	x	x	x	x	x	x	x	x	xxxxxxx	W
	3	reserved											
E6F0	1	XGPIFSGLDATH	GPIF Data H (16-bit mode only)	D15	D14	D13	D12	D11	D10	D9	D8	XXXXXXXX	RW
E6F1	1	XGPIFSGLDATLX	Read/Write GPIF Data L & trigger transaction	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
E6F2	1	XGPIFSGLDATLNOX	Read GPIF Data L, no	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	R
E6F3	1	GPIFREADYCFG	Internal RDY, Sync/Async, RDY pin states	INTRDY	SAS	TCXRDY5	0	0	0	0	0	00000000	bbbrrrrr
<u> </u>				1	1		1		1		•		
E6F4	1	GPIFREADYSTAT	GPIF Ready Status	0	0	RDY5	RDY4	RDY3	RDY2	RDY1	RDY0	00xxxxxx	R
E6E5	1	GPIFABORT	Abort GPIF Waveforms	x	x	x	x	x	x	x	x	*****	W
E6E6	2	reserved		~	^	^	^	^	^	^	~	10000000	••
2010	-												
E740	64			DZ	De	DE	D4	D2	D2	D1	DO		DW/
E740	04			D7	Do	D3	D4	D3	D2		D0	******	
	04			D7	00	00	D4	00	D2		00	XXXXXXXX	IK VV
E/C0	64	EPTINBUF	EP1-IN buffer	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
E800	2048	reserved											КW
F000	1024	EP2FIFOBUF	512/1024 byte EP 2 / slave FIFO buffer (IN or OUT)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
F400	512	EP4FIFOBUF	512 byte EP 4 / slave FIFO buffer (IN or OUT)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxxx	RW
F600	512	reserved											
F800	1024	EP6FIFOBUF	512/1024 byte EP 6 / slave FIFO buffer (IN or OUT)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
FC00	512	EP8FIFOBUF	512 byte EP 8 / slave FIFO buffer (IN or OUT)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
FE00	512	reserved											

PORTC Strobe Feature Timings

The RD# and WR# are present in the 100-pin version and the 128-pin package. In these 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from or writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register.

The RD# and WR# strobes are asserted for two CLKOUT cycles when PORTC is accessed.

The WR# strobe is asserted two clock cycles after PORTC is updated and is active for two clock cycles after that, as shown in Figure 16.

As for read, the value of PORTC three clock cycles before the assertion of RD# is the value that the 8051 reads in. The RD# is pulsed for two clock cycles after three clock cycles from the point when the 8051 has performed a read function on PORTC.

The RD# signal prompts the external logic to prepare the next data byte. Nothing gets sampled internally on assertion of the RD# signal itself; it is just a prefetch type signal to get the next data byte prepared. So, using it with that in mind easily meets the setup time to the next read.

The purpose of this pulsing of RD# is to allow the external peripheral to know that the 8051 is done reading PORTC and the data was latched into PORTC three CLKOUT cycles before asserting the RD# signal. After the RD# is pulsed, the external logic can update the data on PORTC.

Following is the timing diagram of the read and write strobing function on accessing PORTC. Refer to Data Memory Read^[21] and Data Memory Write^[23] for details on propagation delay of RD# and WR# signals.

Figure 16. WR# Strobe Function when PORTC is Accessed by 8051

Figure 17. RD# Strobe Function when PORTC is Accessed by 8051

Slave FIFO Synchronous Read

Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced $\ensuremath{\mathsf{IFCLK}}^{[25]}$

Parameter	Description	Min	Max	Ту	Unit	
Faranteter	Description	WIIII	IVIAN	Min	Max	Onit
t _{IFCLK}	IFCLK period	20.83	-	_	-	ns
t _{SRD}	SLRD to clock setup time	18.7	-	_	-	ns
t _{RDH}	Clock to SLRD hold time	0	-	_	-	ns
t _{OEon}	SLOE turn on to FIFO data valid	-	10.5	_	-	ns
t _{OEoff}	SLOE turn off to FIFO data hold	-	10.5	-	-	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	9.5	-	-	ns
t _{XFD}	Clock to FIFO data output propagation delay	-	11	_	-	ns
t _{IFCLKR}	IFCLK rise time	-	-	-	900	ps
t _{IFCLKF}	IFCLK fall time	-	-	-	900	ps
t _{IFCLKOD}	IFCLK output duty cycle	-	-	49	51	%
t _{IFCLKJ}	IFCLK jitter peak to peak	_	_	-	300	ps

Parameter	Description	Min	Мах	Unit
t _{IFCLK}	IFCLK period	20.83	200	ns
t _{SRD}	SLRD to clock setup time	12.7	-	ns
t _{RDH}	Clock to SLRD hold time	3.7	-	ns
t _{OEon}	SLOE turn on to FIFO data valid	-	10.5	ns
t _{OEoff}	SLOE turn off to FIFO data hold	_	10.5	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	13.5	ns
t _{XFD}	Clock to FIFO data output propagation delay	-	15	ns

Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced $\mbox{\rm IFCLK}^{[25]}$

Slave FIFO Asynchronous Read

Table 22. Slave FIFO Asynchronous Read Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{RDpwl}	SLRD pulse width LOW	50	_	ns
t _{RDpwh}	SLRD pulse width HIGH	50	-	ns
t _{XFLG}	SLRD to FLAGS output propagation delay	-	70	ns
t _{XFD}	SLRD to FIFO data output propagation delay	-	15	ns
t _{OEon}	SLOE turn-on to FIFO data valid	_	10.5	ns
t _{OEoff}	SLOE turn-off to FIFO data hold	_	10.5	ns

Slave FIFO Address to Flags/Data

Table 30. Slave FIFO Address to Flags/Data Parameters

Parameter	Description	Min	Max	Unit		
t _{XFLG}	FIFOADR[1:0] to FLAGS output propagation delay	-	10.7	ns		
t _{XFD}	FIFOADR[1:0] to FIFODATA output propagation delay	-	14.3	ns		

Slave FIFO Synchronous Address

Figure 28. Slave FIFO Synchronous Address Timing Diagram^[24]

Table 31. Slave FIFO Synchronous Address Parameters^[25]

Parameter	Description	Min	Max	Unit	
t _{IFCLK}	Interface clock period	20.83	200	ns	
t _{SFA}	FIFOADR[1:0] to clock setup time	25	-	ns	
t _{FAH}	Clock to FIFOADR[1:0] hold time	10	-	ns	

Slave FIFO Asynchronous Address

Figure 29. Slave FIFO Asynchronous Address Timing Diagram^[24]

Table 32. Slave FIFO Asynchronous Address Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{SFA}	FIFOADR[1:0] to SLRD/SLWR/PKTEND setup time	10	-	ns
t _{FAH}	RD/WR/PKTEND to FIFOADR[1:0] hold time	10	_	ns

Sequence Diagram

Single and Burst Synchronous Read Example

	∱ IFCLK		∱ IFCLK		∱ IFCLK		IFCLK	1	IFCLK	ſ	IFCLK	∱ IFCLK	∱ IFCL	K	FIFCLK		∱ IFCLK
FIFO POINTER	N		Ν	•	N+1		N+1		N+1		N+2	▶ N+3	► N+4		N+4		N+4
		SLOE	:	SLRD♥		SLOE 🕈 SLRD 🕈		SLOE 🕴	SL	RD			S	SLRD 🕇	S	SLOE 🕇	
FIFO DATA BUS	Not Driven		Driven: N		N+1	•	Not Driven		N+1		N+2	► N+3	► N+4		N+4		Not Driven

Figure 30 on page 52 shows the timing relationship of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read.

- At t = 0, the FIFO address is stable and the signal SLCS is asserted (SLCS may be tied LOW in some applications). Note that t_{SFA} has a minimum of 25 ns. This means that when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, SLOE is asserted. SLOE is an output enable only, whose sole function is to drive the data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently pointing to. In this example it is the first data value in the FIFO. Note: the data is prefetched and is driven on the bus when SLOE is asserted.
- At t = 2, SLRD is asserted. SLRD must meet the setup time of t_{SRD} (time from asserting the SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of t_{RDH} (time from the IFCLK edge to the deassertion of the SLRD signal).

If the SLCS signal is used, it must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition).

The FIFO pointer is updated on the rising edge of the IFCLK, while SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of t_{XFD} (measured from the rising edge of IFCLK) the new data value is present. N is the first data value read from the FIFO. To have data on the FIFO data bus, SLOE MUST also be asserted.

The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5.

Note For the burst mode, the SLRD and SLOE are left asserted during the entire duration of the read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. During the first read cycle, on the rising edge of the clock, the FIFO pointer is updated and incremented to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.

Sequence Diagram of a Single and Burst Asynchronous Read

Figure 33. Slave FIFO Asynchronous Read Sequence and Timing Diagram^[24]

Figure 34. Slave FIFO Asynchronous Read Sequence of Events Diagram

Figure 33 shows the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read.

- At t = 0, the FIFO address is stable and the SLCS signal is asserted.
- At t = 1, SLOE is asserted. This results in the data bus being driven. The data that is driven on to the bus is the previous data, the data that was in the FIFO from an earlier read cycle.
- At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of t_{RDpwl} and minimum de-active pulse width of t_{RDpwh}. If SLCS is used, then SLCS must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition.)
- The data that is driven, after asserting SLRD, is the updated data from the FIFO. This data is valid after a propagation delay of t_{XFD} from the activating edge of SLRD. In Figure 33, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle (SLRD is asserted), SLOE must be in an asserted state. SLRD and SLOE can also be tied together.

The same sequence of events is also shown for a burst read marked with T = 0 through 5.

Note In the burst read mode, during SLOE is asserted, the data bus is in a driven state and outputs the previous data. After SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

TOP VIEW BOTTOM VIEW SIDE VIEW -8.00±0.10 56 43 PIN# 1 ID 42 10000000000000000 42 ()1 0.50±0.05 υυυυυυυ PIN 1 DOT 5.20±0.10 8.00±0.10 29 L_{0.25±0.05} 14 29 d14 n n h n n n n n n n h n h-0.05 MAX 15 28 15 -1.00 MAX NOTES: 0.40±0.10 0.08 1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL. 4.50±0.10 2. REFERENCE JEDEC#: MO-220 001-53450 *D 3. PACKAGE WEIGHT: 162 \pm 16 mg 4. ALL DIMENSIONS ARE IN MILLIMETERS

Figure 37. 56-Pin QFN 8 × 8 mm Sawn Version (001-53450)

Quad Flat Package No Leads (QFN) Package Design Notes

Electrical contact of the part to the PCB is made by soldering the leads on the bottom surface of the package to the PCB. Therefore, special attention is required to the heat transfer area below the package to provide a good thermal bond to the circuit board. Design a copper (Cu) fill in the PCB as a thermal pad under the package. Heat is transferred from the FX2LP through the device's metal paddle on the bottom side of the package. Heat from here is conducted to the PCB at the thermal pad. It is then conducted from the thermal pad to the PCB inner ground plane by a 5×5 array of via. A via is a plated-through hole in the PCB with a finished diameter of 13 mil. The QFN's metal die paddle must be soldered to the PCB's thermal pad. Solder mask is placed on the board top side over each via to resist solder flow into the via. The mask on the top side also minimizes outgassing during the solder reflow process.

For further information on this package design, refer to application notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages. You can find this on Amkor's website http://www.amkor.com.

This application note provides detailed information about board mounting guidelines, soldering flow, rework process, etc.

Figure 41 shows a cross-sectional area underneath the package. The cross section is of only one via. The solder paste template should be designed to allow at least 50% solder coverage. The thickness of the solder paste template should be 5 mil. Use the No Clean type 3 solder paste for mounting the part. Nitrogen purge is recommended during reflow.

Figure 42 is a plot of the solder mask pattern and Figure 43 displays an X-Ray image of the assembly (darker areas indicate solder).

Figure 41. Cross-section of the Area Underneath the QFN Package

the Ground Plane

Figure 42. Plot of the Solder Mask (White Area)

0	•		•	0
0	°0	0		•
0	0	•	0	
Ő.	۲	0	۲	0
10	0	0	۲	0

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2003-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-08032 Rev. *Y Revise FX2LP is a trademark and EZ-USB is a registered trademark of Cypress Semiconductor Corporation.

Revised June 28, 2016

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.