

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

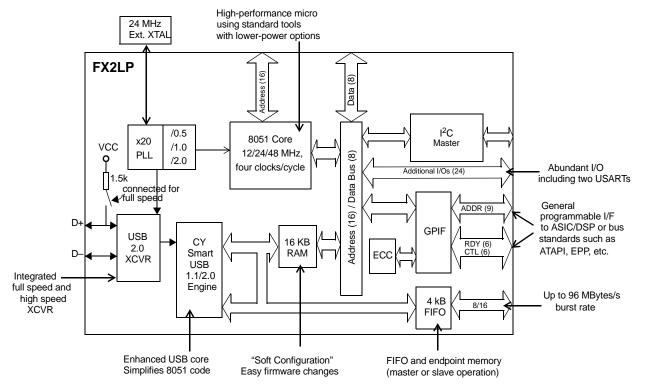
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details


Details	
Product Status	Active
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I ² C, USB, USART
Number of I/O	24
Voltage - Supply	3V ~ 3.6V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	56-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	56-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68013a-56pvxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Cypress's EZ-USB[®] FX2LP[™] (CY7C68013A/14A) is a low-power version of the EZ-USB FX2[™] (CY7C68013), which is a highly integrated, low-power USB 2.0 microcontroller. By integrating the USB 2.0 transceiver, serial interface engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypress has created a cost-effective solution that provides superior time-to-market advantages with low power to enable bus-powered applications.

The ingenious architecture of FX2LP results in data transfer rates of over 53 Mbytes per second (the maximum allowable USB 2.0 bandwidth), while still using a low-cost 8051 microcontroller in a package as small as a 56 VFBGA (5 mm x 5 mm). Because it incorporates the USB 2.0 transceiver, the FX2LP is more economical, providing a smaller-footprint solution than a USB 2.0 SIE or external transceiver implementations. With EZ-USB FX2LP, the Cypress Smart SIE handles most of the USB 1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for application-specific functions and decreasing the development time to ensure USB compatibility.

The general programmable interface (GPIF) and Master/Slave Endpoint FIFO (8-bit or 16-bit data bus) provide an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors.

The FX2LP draws less current than the FX2 (CY7C68013), has double the on-chip code/data RAM, and is fit, form, and function compatible with the 56-, 100-, and 128-pin FX2.

Five packages are defined for the family: 56 VFBGA, 56 SSOP, 56 QFN, 100 TQFP, and 128 TQFP.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Contents

Applications	5
Functional Overview	5
USB Signaling Speed	5
8051 Microprocessor	5
I ² C Bus	5
Buses	5
Reset and Wakeup	9
Program/Data RAM	10
External FIFO Interface	
GPIF	14
ECC Generation ^[8]	14
USB Uploads and Downloads	14
Autopointer Access	15
I ² C Controller	
CY7C68013A/14A and CY7C68015A/	
16A Differences	15
Register Summary	32
Absolute Maximum Ratings	39
Operating Conditions	39
Thermal Characteristics	
DC Characteristics	40

AC Electrical Characteristics	41
USB Transceiver	41
Program Memory Read	41
Data Memory Read	42
Data Memory Write	43
PORTC Strobe Feature Timings	
Slave FIFO Synchronous Read	
Slave FIFO Synchronous Write	
Ordering Information	
Ordering Code Definitions	56
Package Diagrams	
Quad Flat Package No Leads (QFN)	
Package Design Notes	63
Acronyms	64
Document Conventions	64
Units of Measure	64
Errata	65
Document History Page	66
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	69
Products	
PSoC® Solutions	69
Cypress Developer Community	69
Technical Support	

Table 4. Individual FIFO/GPIF Interrupt Sources

Priority	INT4VEC Value	Source	Notes
1	80	EP2PF	Endpoint 2 programmable flag
2	84	EP4PF	Endpoint 4 programmable flag
3	88	EP6PF	Endpoint 6 programmable flag
4	8C	EP8PF	Endpoint 8 programmable flag
5	90	EP2EF	Endpoint 2 empty flag ^[3]
6	94	EP4EF	Endpoint 4 empty flag
7	98	EP6EF	Endpoint 6 empty flag
8	9C	EP8EF	Endpoint 8 empty flag
9	A0	EP2FF	Endpoint 2 full flag
10	A4	EP4FF	Endpoint 4 full flag
11	A8	EP6FF	Endpoint 6 full flag
12	AC	EP8FF	Endpoint 8 full flag
13	B0	GPIFDONE	GPIF operation complete
14	B4	GPIFWF	GPIF waveform

If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP register), the FX 2LP substitutes its INT4VEC byte. Therefore, if the high byte ("page") of a jump-table address is preloaded at location 0x0054, the automatically inserted INT4VEC byte at 0x0055 directs the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX2LP pushes the program counter to its stack then jumps to address 0x0053, where it expects to find a "jump" instruction to the interrupt service routine (ISR).

Note

Errata: In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction. For more information, see the "Errata" on page 65.

Endpoint RAM

Size

- 3 × 64 bytes (Endpoints 0 and 1)
- 8 × 512 bytes (Endpoints 2, 4, 6, 8)

Organization

- EP0
- Bidirectional endpoint zero, 64-byte buffer
- EP1IN, EP1OUT
- 64 byte buffers, bulk or interrupt
- EP2, 4, 6, 8
- Eight 512-byte buffers, bulk, interrupt, or isochronous. EP4 and EP8 can be double buffered; EP2 and 6 can be either double, triple, or quad buffered. For Hi-Speed endpoint configuration options, see Figure 5.

Setup Data Buffer

A separate 8-byte buffer at 0xE6B8-0xE6BF holds the setup data from a CONTROL transfer.

Endpoint Configurations (Hi-Speed Mode)

Endpoints 0 and 1 are the same for every configuration. Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can be either BULK or INTERRUPT.

The endpoint buffers can be configured in any 1 of the 12 configurations shown in the vertical columns. When operating in the Full-Speed BULK mode, only the first 64 bytes of each buffer are used. For example, in Hi-Speed mode, the max packet size is 512 bytes, but in Full-Speed mode, it is 64 bytes. Even though a buffer is configured to a 512-byte buffer, in Full-Speed mode, only the first 64 bytes are used. The unused endpoint buffer space is not available for other operations. An example endpoint configuration is the EP2–1024 double-buffered; EP6–512 quad-buffered (column 8).

Figure 5. Endpoint Configuration

EP0 IN&OUT 64 64 EP1 IN 64 64 EP1 OUT 64 64	64 64 64	64 64 64	64 64 64	64 64 64	64 64 64	64 64 64	64 64 64	64 64 64	64 64 64	64 64 64
EP2 EP2 512 512 512 512 512 512 EP4 512 512 512 512 512 512 512 512 512 512 512 EP6 EP6 512 512 512 512 512 512 512 512 512 512 512 512	EP2 512 512 EP4 512 512 EP6 1024	EP2 512 512 512 512 512 512 512 EP8 512 512	EP2 512 512 512 512 512 512 512 512 512	EP2 512 512 512 512 EP6 1024	EP2 1024 1024 512 512 512 512 512	EP2 1024 1024 EP6 512 512 512 512	EP2 1024 1024 EP6 1024	EP2 512 512 512 EP6 512 512 512 512 512 512	EP2 1024 1024 1024 1024 EP8 512 512	1024 1024 1024
	3	4	5	6	7	8	9	10	11	12

In the Slave (S) mode, FX2LP accepts either an internally derived clock or externally supplied clock (IFCLK, max frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock must be present before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit and a Slave FIFO Output Enable signal (SLOE) that enables data of the selected width. External logic must ensure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signal SLCS#.

GPIF and FIFO Clock Rates

An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register inverts the IFCLK signal whether internally or externally sourced.

GPIF

The GPIF is a flexible 8-bit or 16-bit parallel interface driven by a user-programmable finite state machine. It enables the CY7C68013A/15A to perform local bus mastering and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia.

The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that is executed to perform the desired data move between the FX2LP and the external device.

Six Control OUT Signals

The 100-pin and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock).

Six Ready IN Signals

The 100-pin and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1.

Nine GPIF Address OUT Signals

Nine GPIF address lines are available in the 100-pin and 128-pin packages, GPIFADR[8..0]. The GPIF address lines enable indexing through up to a 512-byte block of RAM. If more address lines are needed, then I/O port pins are used.

Long Transfer Mode

In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to 2³² transactions. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction.

ECC Generation^[8]

The EZ-USB can calculate ECCs (Error Correcting Codes) on data that passes across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calculated over 256 bytes (SmartMedia Standard); and one ECC calculated over 512 bytes.

The ECC can correct any one-bit error or detect any two-bit error.

ECC Implementation

The two ECC configurations are selected by the ECCM bit:

ECCM = 0

Two 3-byte ECCs, each calculated over a 256-byte block of data. This configuration conforms to the SmartMedia Standard.

Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 256 bytes of data is calculated and stored in ECC1. The ECC for the next 256 bytes is stored in ECC2. After the second ECC is calculated, the values in the ECCx registers do not change until ECCRESET is written again, even if more data is subsequently passed across the interface.

ECCM = 1

One 3-byte ECC calculated over a 512-byte block of data.

Write any value to ECCRESET then pass data across the GPIF or Slave FIFO interface. The ECC for the first 512 bytes of data is calculated and stored in ECC1; ECC2 is unused. After the ECC is calculated, the values in ECC1 do not change even if more data is subsequently passed across the interface, till ECCRESET is written again.

USB Uploads and Downloads

The core has the ability to directly edit the data contents of the internal 16-KB RAM and of the internal 512-byte scratch pad RAM via a vendor-specific command. This capability is normally used when soft downloading the user code and is available only to and from the internal RAM, only when the 8051 is held in reset. The available RAM spaces are 16 KB from 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad data RAM)^[9].

Notes

8. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.

^{9.} After the data is downloaded from the host, a "loader" can execute from internal RAM to transfer downloaded data to external memory.

Autopointer Access

FX2LP provides two identical autopointers. They are similar to the internal 8051 data pointers but with an additional feature: they can optionally increment after every memory access. This capability is available to and from both internal and external RAM. Autopointers are available in external FX2LP registers under the control of a mode bit (AUTOPTRSET-UP.0). Using the external FX2LP autopointer access (at 0xE67B – 0xE67C) enables the autopointer to access all internal and external RAM to the part.

Also, autopointers can point to any FX2LP register or endpoint buffer space. When the autopointer access to external memory is enabled, locations 0xE67B and 0xE67C in XDATA and code space cannot be used.

I²C Controller

FX2LP has one I²C port that is driven by two internal controllers, the one that automatically operates at boot time to load VID/PID/DID and configuration information, and another that the 8051 uses when running to control external I²C devices. The I²C port operates in master mode only.

²C Port Pins

The I²C pins SCL and SDA must have external 2.2-k Ω pull-up resistors even if no EEPROM is connected to the FX2LP. External EEPROM device address pins must be configured properly. See Table 8 for configuring the device address pins.

Table 8. Strap Boot EEPROM Address Lines to These Values

Bytes	Example EEPROM	A2	A1	A0
16	24LC00 ^[10]	N/A	N/A	N/A
128	24LC01	0	0	0
256	24LC02	0	0	0
4K	24LC32	0	0	1
8K	24LC64	0	0	1
16K	24LC128	0	0	1

P^2C Interface Boot Load Access

At power-on reset, the I^2C interface boot loader loads the VID/PID/DID configuration bytes and up to 16 KB of program/data. The available RAM spaces are 16 KB from 0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051 is in reset. I^2C interface boot loads only occur after power-on reset.

PC Interface General-Purpose Access

The 8051 can control peripherals connected to the I^2C bus using the I2CTL and I2DAT registers. FX2LP provides I^2C master control only; it is never an I^2C slave.

Compatible with Previous Generation EZ-USB FX2

The EZ-USB FX2LP is form-, fit-, and with minor exceptions, functionally-compatible with its predecessor, the EZ-USB FX2.

This makes for an easy transition for designers wanting to upgrade their systems from the FX2 to the FX2LP. The pinout and package selection are identical and a vast majority of firmware previously developed for the FX2 functions in the FX2LP.

For designers migrating from the FX2 to the FX2LP, a change in the bill of material and review of the memory allocation (due to increased internal memory) is required. For more information about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the application note titled *Migrating from EZ-USB FX2 to EZ-USB FX2 to EZ-USB FX2LP* available in the Cypress web site.

Table 9. Part Number Conversion Table

EZ-USB FX2 Part Number	EZ-USB FX2LP Part Number	Package Description
CY7C68013-56PVC	CY7C68013A-56PVXC or CY7C68014A-56PVXC	56-pin SSOP
CY7C68013-56PVCT	CY7C68013A-56PVXCT or CY7C68014A-56PVXCT	56-pin SSOP – Tape and Reel
CY7C68013-56LFC	CY7C68013A-56LFXC or CY7C68014A-56LFXC	56-pin QFN
CY7C68013-100AC	CY7C68013A-100AXC or CY7C68014A-100AXC	100-pin TQFP
CY7C68013-128AC	CY7C68013A-128AXC or CY7C68014A-128AXC	128-pin TQFP

CY7C68013A/14A and CY7C68015A/16A Differences

CY7C68013A is identical to CY7C68014A in form, fit, and functionality. CY7C68015A is identical to CY7C68016A in form, fit, and functionality. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively and are ideal for power-sensitive battery applications.

CY7C68015A and CY7C68016A are available in 56-pin QFN package only. Two additional GPIO signals are available on the CY7C68015A and CY7C68016A to provide more flexibility when neither IFCLK or CLKOUT are needed in the 56-pin package.

USB developers wanting to convert their FX2 56-pin application to a bus-powered system directly benefit from these additional signals. The two GPIOs give developers the signals they need for the power-control circuitry of their bus-powered application without pushing them to a high-pincount version of FX2LP.

The CY7C68015A is only available in the 56-pin QFN package

Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Differences

CY7C68013A/CY7C68014A	CY7C68015A/CY7C68016A
IFCLK	PE0
CLKOUT	PE1

Pin Assignments

Figure 6 on page 17 identifies all signals for the five package types. The following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of signals are available in the 128-pin, 100-pin, and 56-pin packages.

The signals on the left edge of the 56-pin package in Figure 6 are common to all versions in the FX2LP family with the noted differences between the CY7C68013A/14A and the CY7C68015A/16A.

Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register bits. Port mode is the power on default configuration.

The 100-pin package adds functionality to the 56-pin package by adding these pins:

- PORTC or alternate GPIFADR[7:0] address signals
- PORTE or alternate GPIFADR[8] address signal and seven additional 8051 signals
- Three GPIF Control signals
- Four GPIF Ready signals
- Nine 8051 signals (two USARTs, three timer inputs, INT4, and INT5#)
- BKPT, RD#, WR#.

The 128-pin package adds the 8051 address and data buses plus control signals. Note that two of the required signals, RD# and WR#, are present in the 100-pin version.

In the 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. This feature is enabled by setting the PORTCSTB bit in the CPUCS register.

PORTC Strobe Feature Timings displays the timing diagram of the read and write strobing function on accessing PORTC.

	Fig Port	jure 6. Sig	gnal GPIF Master	Slave FIFO
	XTALIN XTALOUT RESET# WAKEUP# SCL 56	PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0	$ \begin{array}{c} \Leftrightarrow \ FD[15] \\ \Leftrightarrow \ FD[14] \\ \Leftrightarrow \ FD[13] \\ \Leftrightarrow \ FD[12] \\ \Leftrightarrow \ FD[10] \\ \Leftrightarrow \ FD[10] \\ \Leftrightarrow \ FD[9] \\ \Leftrightarrow \ FD[9] \\ \Leftrightarrow \ FD[6] \\ \Leftrightarrow \ FD[5] \\ \Leftrightarrow \ FD[6] \\ \Leftrightarrow \ FD[2] \\ \Leftrightarrow \ FD[2] \\ \Leftrightarrow \ FD[2] \\ \Leftrightarrow \ FD[2] \\ \Leftrightarrow \ FD[0] \\ \end{array} $	$ \begin{array}{c} & \label{eq:constraint} \\ & c$
\longleftrightarrow	SDA **PE0 replaces IFCLK		RDY0 ← RDY1 ←	← SLRD ← SLWR
	& PE1 replaces CLKOUT on CY7C68015A/16A **PE0		$\begin{array}{c} \text{CTL0} \rightarrow \\ \text{CTL1} \rightarrow \\ \text{CTL2} \rightarrow \end{array}$	\rightarrow FLAGA \rightarrow FLAGB \rightarrow FLAGC
	**PE1 IFCLK CLKOUT DPLUS DMINUS	INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7	INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7	INT0#/ PA0 INT1#/ PA1 ← SLOE WU2/PA3 ← FIFOADR0 ← FIFOADR1 ← PKTEND PA7/FLAGD/SLCS#
	D7 D6	RxD0 TxD0 RxD1 INT4 INT5# T2 T1 T0 I RD# I OE# I PSEN# I OE# I PSEN# I OE# I PSEN# I OE# I A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0	$ \begin{array}{c} \rightarrow \text{CTL3} \\ \rightarrow \text{CTL4} \\ \rightarrow \text{CTL5} \\ \leftarrow \text{RDY2} \\ \leftarrow \text{RDY3} \\ \leftarrow \text{RDY4} \\ \leftarrow \text{RDY5} \end{array} $	

Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
POR	ΓD								
102	80	52	45	8A	PD0 or FD[8]	I/O/Z	l (PD0)	Z (PD0)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[8] is the bidirectional FIFO/GPIF data bus.
103	81	53	46	7A	PD1 or FD[9]	I/O/Z	l (PD1)	Z (PD1)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[9] is the bidirectional FIFO/GPIF data bus.
104	82	54	47	6B	PD2 or FD[10]	I/O/Z	l (PD2)	Z (PD2)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[10] is the bidirectional FIFO/GPIF data bus.
105	83	55	48	6A	PD3 or FD[11]	I/O/Z	l (PD3)	Z (PD3)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[11] is the bidirectional FIFO/GPIF data bus.
121	95	56	49	3B	PD4 or FD[12]	I/O/Z	l (PD4)	Z (PD4)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[12] is the bidirectional FIFO/GPIF data bus.
122	96	1	50	ЗA	PD5 or FD[13]	I/O/Z	l (PD5)	Z (PD5)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[13] is the bidirectional FIFO/GPIF data bus.
123	97	2	51	3C	PD6 or FD[14]	I/O/Z	l (PD6)	Z (PD6)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[14] is the bidirectional FIFO/GPIF data bus.
124	98	3	52	2A	PD7 or FD[15]	I/O/Z	l (PD7)	Z (PD7)	Multiplexed pin whose function is selected by the IFCONFIG[10] and EPxFIFOCFG.0 (wordwide) bits. FD[15] is the bidirectional FIFO/GPIF data bus.
Port	E								
108	86	_	_	_	PE0 or T0OUT	I/O/Z	l (PE0)	Z (PE0)	Multiplexed pin whose function is selected by the PORTECFG.0 bit. PE0 is a bidirectional I/O port pin. TOOUT is an active-HIGH signal from 8051 Timer-counter0. TOOUT outputs a high level for one CLKOUT clock cycle when Timer0 overflows. If Timer0 is operated in Mode 3 (two separate timer/counters), TOOUT is active when the low byte timer/counter overflows.
109	87	_	_	_	PE1 or T1OUT	I/O/Z	l (PE1)	Z (PE1)	Multiplexed pin whose function is selected by the PORTECFG.1 bit. PE1 is a bidirectional I/O port pin. T10UT is an active HIGH signal from 8051 Timer-counter1. T10UT outputs a high level for one CLKOUT clock cycle when Timer1 overflows. If Timer1 is operated in Mode 3 (two separate timer/counters), T10UT is active when the low byte timer/counter overflows.

Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
7	6	-	-	-	RDY3	Input	N/A	N/A	RDY3 is a GPIF input signal.
8	7	-	-	—	RDY4	Input	N/A	N/A	RDY4 is a GPIF input signal.
9	8	-		-	RDY5	Input	N/A	N/A	RDY5 is a GPIF input signal.
69	54	36	29	7H	CTL0 or FLAGA	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL0 is a GPIF control output. FLAGA is a programmable slave-FIFO output status flag signal. Defaults to programmable for the FIFO selected by the FIFOADR[1:0] pins.
70	55	37	30	7G	CTL1 or FLAGB	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL1 is a GPIF control output. FLAGB is a programmable slave-FIFO output status flag signal. Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.
71	56	38	31	8H	CTL2 or FLAGC	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL2 is a GPIF control output. FLAGC is a programmable slave-FIFO output status flag signal. Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins.
66	51	-	_	—	CTL3	O/Z	Н	L	CTL3 is a GPIF control output.
67	52	-	-	—	CTL4	Output	Н	L	CTL4 is a GPIF control output.
98	76	-	Ι	-	CTL5	Output	Н	L	CTL5 is a GPIF control output.
32	26	20	13	2G	IFCLK on CY7C68013A and CY7C68014A	I/O/Z	Z	Z	Interface Clock, used for synchronously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocking is used (IFCONFIG.7 = 1) the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally sourced, by setting the bit IFCONFIG.4 =1.
					PE0 on CY7C68015A and CY7C68016A	- I/O/Z	 I	Z	PE0 is a bidirectional I/O port pin.
28	22	_	_	_	INT4	Input	N/A	N/A	INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin is edge-sensitive, active HIGH.
106	84	-	_	_	INT5#	Input	N/A	N/A	INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin is edge-sensitive, active LOW.
31	25	-	_	_	T2	Input	N/A	N/A	T2 is the active HIGH T2 input signal to 8051 Timer2, which provides the input to Timer2 when C/T2 = 1. When $C/T2 = 0$, Timer2 does not use this pin.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
xxxx		I ² C Configuration Byte		0	DISCON	0	0	0	0	0	400KHZ	XXXXXXXXX [16]	n/a
		On a sight Franchism, Datai			-	-	-		-			[10]	
		Special Function Regis		D-7	D 0	0.5	D (D 0	D 0	D .1			D14/
80	1	IOA ^[15]	Port A (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	
81	1	SP	Stack Pointer	D7	D6	D5	D4	D3	D2	D1	D0	00000111	
82	1	DPL0	Data Pointer 0 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	
83	1	DPH0	Data Pointer 0 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	
84	1	DPL1 ^[15]	Data Pointer 1 L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	
85	1	DPH1 ^[15]	Data Pointer 1 H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	
86	1	DPS ^[15]	Data Pointer 0/1 select	0	0	0	0	0	0	0	SEL	00000000	
87	1	PCON	Power Control	SMOD0	x	1	1	x	х	х	IDLE	00110000	
88	1	TCON	Timer/Counter Control (bit addressable)	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	0000000	RW
89	1	TMOD	Timer/Counter Mode Control	GATE	СТ	M1	MO	GATE	СТ	M1	MO	0000000	RW
3A	1	TL0	Timer 0 reload L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
8B	1	TL1	Timer 1 reload L	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
BC	1	TH0	Timer 0 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8D	1	TH1	Timer 1 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
BE	1	CKCON ^[15]	Clock Control	х	x	T2M	T1M	TOM	MD2	MD1	MD0	00000001	RW
3F	1	reserved							-	1			
90	1	IOB ^[15]	Port B (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
90 91	1	EXIF ^[15]	External Interrupt Flag(s)	IE5	IE4	I ² CINT	USBNT	1	0	0	0	00001000	
92	1	MPAGE ^[15]	Upper Addr Byte of MOVX using @R0 / @R1		A14	A13	A12	A11	A10	A9	A8	00000000	
93	5	reserved	<u> </u>				1		1	1		1	
	1	SCON0	Serial Port 0 Control (bit addressable)	SM0_0	SM1_0	SM2_0	REN_0	TB8_0	RB8_0	TI_0	RI_0	00000000	RW
99	1	SBUF0	Serial Port 0 Data Buffer	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
9A	1	AUTOPTRH1 ^[15]	Autopointer 1 Address H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	
9B	1	AUTOPTRL1 ^[15]	Autopointer 1 Address L	A13 A7	A14 A6	A13 A5	A12 A4	A3	A10 A2	A3 A1	A0	00000000	
	1		Autopointer T Address L	A7	Ab	Ab	A4	A3	AZ	AT	AU	0000000	RVV
9C	1	reserved				4.40	4.4.0			10	10		D14/
9D	1	AUTOPTRH2 ^[15]		A15	A14	A13	A12	A11	A10	A9	A8	00000000	
9E	1	AUTOPTRL2 ^[15]	Autopointer 2 Address L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
9F	1	reserved		_		_	-						
A0	1	IOC ^[15]	Port C (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
A1	1	INT2CLR ^[15]	Interrupt 2 clear	x	x	х	x	x	х	x	x	XXXXXXXX	W
A2	1	INT4CLR ^[15]	Interrupt 4 clear	х	x	х	x	x	х	x	x	XXXXXXXX	W
A3	5	reserved											
A8	1	IE	Interrupt Enable (bit addressable)	EA	ES1	ET2	ES0	ET1	EX1	ET0	EX0	00000000	RW
A9	1	reserved											
AA	1	EP2468STAT ^[15]	Endpoint 2,4,6,8 status flags	EP8F	EP8E	EP6F	EP6E	EP4F	EP4E	EP2F	EP2E	01011010	R
AB	1	EP24FIFOFLGS	status flags	0	EP4PF	EP4EF	EP4FF	0	EP2PF	EP2EF	EP2FF	00100010	R
AC	1	EP68FIFOFLGS ^[15]	Endpoint 6,8 slave FIFO status flags	0	EP8PF	EP8EF	EP8FF	0	EP6PF	EP6EF	EP6FF	01100110	R
AD	2	reserved											
AF	1		Autopointer 1&2 setup	0	0	0	0	0	APTR2INC	APTR1INC	APTREN	00000110	RW
B0	1	IOD ^[15]	Port D (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
B1	1	IOE ^[15]	Port E (NOT bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
B2	1	OEA ^[15]	Port A Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
B3	1	OEB ^[15]	Port B Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
B4	1	OEC ^[15]	Port C Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	
35	1	OED ^[15]	Port D Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	
36	1	OEE ^[15]	Port E Output Enable	D7	D6	D5	D4	D3	D2	D1	D0	00000000	
37	1	reserved			1	1	1	1	1	1			
38	1	IP	Interrupt Priority (bit ad- dressable)	1	PS1	PT2	PS0	PT1	PX1	PT0	PX0	1000000	RW
39	1	reserved			+	1	1	1	1	1	1	1	1
BA		EP01STAT ^[15]	Endpoint 0&1 Status	0	0	0	0	0	EP1INBSY	EP1OUTBS	EP0BSY	00000000	R
BB BB	1	GPIFTRIG ^[15, 13]		DONE	0	0	0	0	RW	EP1001B3	EP0B31	10000xxx	
	1		Endpoint 2,4,6,8 GPIF slave FIFO Trigger	DONE	0	0	0	3	1.1.1	-F 1	LFU	10000xXX	מממוווים
	1	reconved											
BC BD	1	reserved GPIFSGLDATH ^[15]	GPIF Data H (16-bit mode	D15	D14	D13	D12	D11	D10	D9	D8	xxxxxxx	DW/

Notes

15. SFRs not part of the standard 8051 architecture.16. If no EEPROM is detected by the SIE then the default is 00000000.

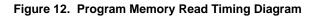
DC Characteristics

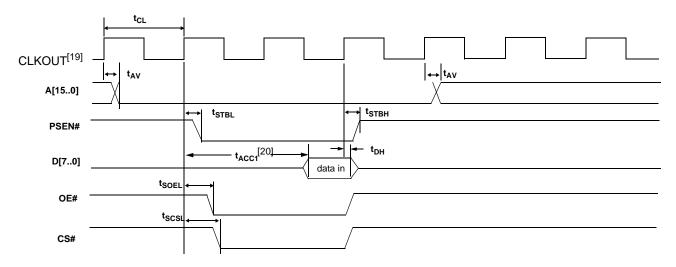
Table 14. DC Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
VCC	Supply voltage	-	3.00	3.3	3.60	V
VCC Ramp Up	0 to 3.3 V	-	200	-	-	μS
V _{IH}	Input HIGH voltage	_	2	-	5.25	V
V _{IL}	Input LOW voltage	-	-0.5	-	0.8	V
V _{IH_X}	Crystal input HIGH voltage	-	2	-	5.25	V
V _{IL_X}	Crystal input LOW voltage	-	-0.5	-	0.8	V
l _l	Input leakage current	$0 < V_{IN} < V_{CC}$	-	-	±10	μA
V _{OH}	Output voltage HIGH	I _{OUT} = 4 mA	2.4	-	-	V
V _{OL}	Output LOW voltage	$I_{OUT} = -4 \text{ mA}$	-	-	0.4	V
I _{OH}	Output current HIGH	-	-	-	4	mA
I _{OL}	Output current LOW	-	-	-	4	mA
C	Input pin capacitance	Except D+/D-	-	-	10	pF
C _{IN}		D+/D-	-	-	15	pF
	Suspend current	Connected	-	300	380 ^[18]	μA
1	CY7C68014/CY7C68016	Disconnected	-	100	150 ^[18]	μA
ISUSP	Suspend current	Connected	-	0.5	1.2 ^[18]	mA
	CY7C68013/CY7C68015	Disconnected	_	0.3	1.0 ^[18]	mA
1	Supply ourrant	8051 running, connected to USB HS	_	50	85	mA
lcc	Supply current	8051 running, connected to USB FS	-	35	65	mA
т	Reset time after valid power	$\gamma = 30 \gamma$	5.0	-	-	ms
T _{RESET}	Pin reset after powered on	— V _{CC} min = 3.0 V	200	-	-	μS

USB Transceiver

USB 2.0 compliant in Full Speed and Hi-Speed modes.




AC Electrical Characteristics

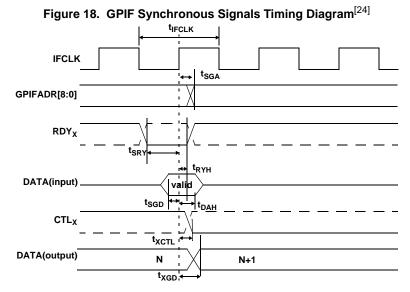
USB Transceiver

USB 2.0 compliant in Full-Speed and Hi-Speed modes.

Program Memory Read

Table 15.	Program	Memory	Read	Parameters
-----------	---------	--------	------	------------

Parameter	Description	Min	Тур	Max	Unit	Notes
		-	20.83	-	ns	48 MHz
t _{CL}	1/CLKOUT frequency	-	41.66	-	ns	24 MHz
		-	83.2	-	ns	12 MHz
t _{AV}	Delay from clock to valid address	0	-	10.7	ns	-
t _{STBL}	Clock to PSEN LOW	0	-	8	ns	-
t _{STBH}	Clock to PSEN HIGH	0	-	8	ns	-
t _{SOEL}	Clock to OE LOW	-	-	11.1	ns	-
t _{SCSL}	Clock to CS LOW	-	-	13	ns	-
t _{DSU}	Data setup to clock	9.6	-	-	ns	-
t _{DH}	Data hold time	0	-	-	ns	-


Notes

19. CLKOUT is shown with positive polarity.

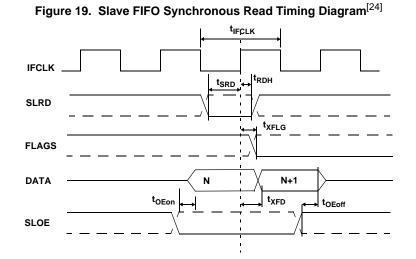
20. t_{ACC1} is computed from these parameters as follows: t_{ACC1}(24 MHz) = $3^{*}t_{CL} - t_{AV} - t_{DSU} = 106$ ns. t_{ACC1}(48 MHz) = $3^{*}t_{CL} - t_{AV} - t_{DSU} = 43$ ns.

GPIF Synchronous Signals

Table 18. GPIF Synchronous Signals Parameters with Internally Sourced $\mbox{IFCLK}^{[24,\ 25]}$

Parameter	Description	Min	Мах	T	Unit	
Farameter	Description	IVIIII	IVIAN	Min	Max	Onit
t _{IFCLK}	IFCLK Period	20.83	—	_	-	ns
t _{SRY}	RDY _X to clock setup time	8.9	—	_	-	ns
t _{RYH}	Clock to RDY _X	0	-	_	-	ns
t _{SGD}	GPIF data to clock setup time	9.2	—	_	-	ns
t _{DAH}	GPIF data hold time	0	—	_	-	ns
t _{SGA}	Clock to GPIF address propagation delay	-	7.5	_	-	ns
t _{XGD}	Clock to GPIF data output propagation delay	_	11	_	-	ns
t _{XCTL}	Clock to CTL _X output propagation delay	-	6.7	-	-	ns
t _{IFCLKR}	IFCLK rise time	-	_	-	900	ps
t _{IFCLKF}	IFCLK fall time	_	-	_	900	ps
t _{IFCLKOD}	IFCLK output duty cycle	-	-	49	51	%
t _{IFCLKJ}	IFCLK jitter peak to peak	-	—	-	300	ps

Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK^[25]


Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period ^[26]	20.83	200	ns
t _{SRY}	RDY _X to clock setup time	2.9	-	ns
t _{RYH}	Clock to RDY _X	3.7	-	ns
t _{SGD}	GPIF data to clock setup time	3.2	-	ns
t _{DAH}	GPIF data hold time	4.5	-	ns
t _{SGA}	Clock to GPIF address propagation delay	-	11.5	ns
t _{XGD}	Clock to GPIF data output propagation delay	-	15	ns
t _{XCTL}	Clock to CTL _X output propagation delay	-	10.7	ns

Notes

24. Dashed lines denote signals with programmable polarity.
 25. GPIF asynchronous RDY_x signals have a minimum setup time of 50 ns when using the internal 48-MHz IFCLK.
 26. IFCLK must not exceed 48 MHz.

Slave FIFO Synchronous Read

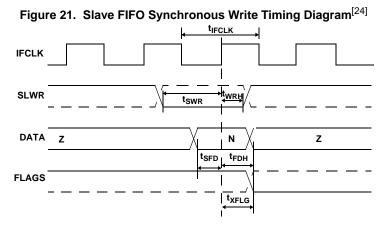


Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced $\ensuremath{\mathsf{IFCLK}}^{[25]}$

Parameter	Description	Min	Max	Ty	Unit	
Farameter	Description	IVIIII	IVIAX	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	-	-	_	ns
t _{SRD}	SLRD to clock setup time	18.7	-	-	_	ns
t _{RDH}	Clock to SLRD hold time	0	-	-	_	ns
t _{OEon}	SLOE turn on to FIFO data valid	_	10.5	-	_	ns
t _{OEoff}	SLOE turn off to FIFO data hold	-	10.5	-	_	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	9.5	-	_	ns
t _{XFD}	Clock to FIFO data output propagation delay	-	11	-	_	ns
t _{IFCLKR}	IFCLK rise time	-	-	-	900	ps
t _{IFCLKF}	IFCLK fall time	_	-	-	900	ps
t _{IFCLKOD}	IFCLK output duty cycle	-	-	49	51	%
t _{IFCLKJ}	IFCLK jitter peak to peak	-	-	-	300	ps

Slave FIFO Synchronous Write

Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK^[25]

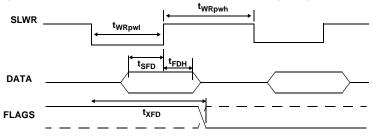
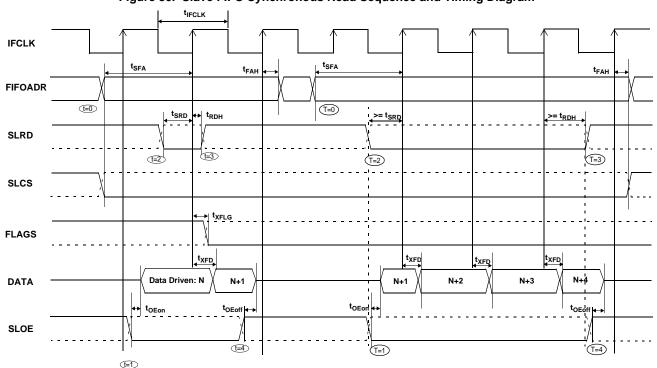

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	-	ns
t _{SWR}	SLWR to clock setup time	10.4	_	ns
t _{WRH}	Clock to SLWR hold time	0	-	ns
t _{SFD}	FIFO data to clock setup time	9.2	-	ns
t _{FDH}	Clock to FIFO data hold time	0	_	ns
t _{XFLG}	Clock to FLAGS output propagation time	_	9.5	ns

Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK Period	20.83	200	ns
t _{SWR}	SLWR to clock setup time	12.1	_	ns
t _{WRH}	Clock to SLWR hold time	3.6	_	ns
t _{SFD}	FIFO data to clock setup time	3.2	_	ns
t _{FDH}	Clock to FIFO data hold time	4.5	-	ns
t _{XFLG}	Clock to FLAGS output propagation time	_	13.5	ns

Slave FIFO Asynchronous Write



Sequence Diagram

Single and Burst Synchronous Read Example

	∱ IFCLK		∱ IFCLK		∱ IFCLK		† IFCLK		∱ IFCLK	<u>،</u>	FCLK	∱ IFCLK	∱ IFCLK	∱ IFCLK	∱ IFCLK	
FIFO POINTER	Ν	} ►	Ν		N+1		N+1] ,	N+1		N+2	▶ N+3	► N+4	► N+4	► N+4	
		SLOE		SLRD♦		SLOE 🕈 SLRD 🕇		SLOE	s	SLRD 🖡			SL	RD∱ S	LOE	_
FIFO DATA BUS	Not Driven	→	Driven: N	} →	N+1	` >	Not Driver	ר ו	• N+1		N+2	► N+3	► N+4	► N+4	Not Driven	

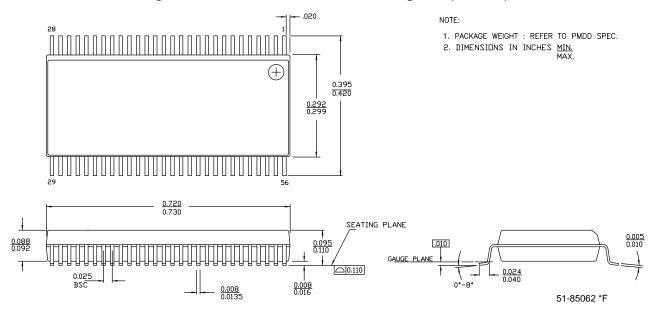
Figure 30 on page 52 shows the timing relationship of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read.

- At t = 0, the FIFO address is stable and the signal SLCS is asserted (SLCS may be tied LOW in some applications). Note that t_{SFA} has a minimum of 25 ns. This means that when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, SLOE is asserted. SLOE is an output enable only, whose sole function is to drive the data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently pointing to. In this example it is the first data value in the FIFO. Note: the data is prefetched and is driven on the bus when SLOE is asserted.
- At t = 2, SLRD is asserted. SLRD must meet the setup time of t_{SRD} (time from asserting the SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of t_{RDH} (time from the IFCLK edge to the deassertion of the SLRD signal).

If the SLCS signal is used, it must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition).

The FIFO pointer is updated on the rising edge of the IFCLK, while SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of t_{XFD} (measured from the rising edge of IFCLK) the new data value is present. N is the first data value read from the FIFO. To have data on the FIFO data bus, SLOE MUST also be asserted.

The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5.


Note For the burst mode, the SLRD and SLOE are left asserted during the entire duration of the read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. During the first read cycle, on the rising edge of the clock, the FIFO pointer is updated and incremented to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus.

Package Diagrams

The FX2LP is available in five packages:

- 56-pin SSOP
- 56-pin QFN
- 100-pin TQFP
- 128-pin TQFP
- 56-ball VFBGA

Figure 36. 56-Pin Shrunk Small Outline Package O56 (51-85062)

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

TOP VIEW BOTTOM VIEW SIDE VIEW -8.00±0.10 56 43 PIN# 1 ID 42 10000000000000000 42 ()1 0.50±0.05 υυυυυυυ PIN 1 DOT 5.20±0.10 8.00±0.10 29 L_{0.25±0.05} 14 29 d14 n n h n n n n n n n h n h-0.05 MAX 15 28 15 -1.00 MAX NOTES: 0.40±0.10 0.08 1. 🗱 HATCH AREA IS SOLDERABLE EXPOSED METAL. 4.50±0.10 2. REFERENCE JEDEC#: MO-220 001-53450 *D 3. PACKAGE WEIGHT: 162 \pm 16 mg 4. ALL DIMENSIONS ARE IN MILLIMETERS

Figure 37. 56-Pin QFN 8 × 8 mm Sawn Version (001-53450)

Document History Page

Speed US	t Title: CY7C B Periphera t Number: 38	I Controller	7C68014A, CY	7C68015A, CY7C68016A, EZ-USB [®] FX2LP™ USB Microcontroller High-
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	124316	VCS	03/17/03	New datasheet
*A	128461	VCS	09/02/03	Added PN CY7C68015A throughout datasheet Modified Figure 1 to add ECC block and fix errors Removed word "compatible" where associated with I ² C Corrected grammar and formatting in various locations Updated Sections 3.2.1, 3.9, 3.11, Table 9, Section 5.0 Added Sections 3.15, 3.18.4, 3.20 Modified Figure 5 for clarity Updated Figure 37 to match current spec revision
*B	130335	KKV	10/09/03	Restored PRELIMINARY to header (had been removed in error from rev. *A)
*C	131673	KKU	02/12/04	Section 8.1 changed "certified" to "compliant" Table 14 added parameter V_{IH_X} and V_{IL_X} Added Sequence diagrams Section 9.16 Updated Ordering information with lead-free parts Updated Registry Summary Section 3.12.4:example changed to column 8 from column 9 Updated Figure 14 memory write timing Diagram Updated section 3.9 (reset) Updated section 3.15 ECC Generation
*D	230713	KKU	See ECN	Changed Lead free Marketing part numbers in Table 33 as per spec change in 28-00054.
*E	242398	TMD	See ECN	Minor Change: datasheet posted to the web,
*F	271169	MON	See ECN	Added USB-IF Test ID number Added USB 2.0 logo Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x Changed VCC from \pm 10% to \pm 5% Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in Table 28 from a max value of 70 ns to 115 ns
*G	316313	MON	See ECN	Removed CY7C68013A-56PVXCT part availability Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A Provided additional timing restrictions and requirement about the use of PKETEND pin to commit a short one byte/word packet subsequent to committing a packet automatically (when in auto mode). Added Min Vcc Ramp Up time (0 to 3.3v)
*H	338901	MON	See ECN	Added information about the AUTOPTR1/AUTOPTR2 address timing with regards to data memory read/write timing diagram. Removed TBD for Min value of Clock to FIFO Data Output Propagation Delay (t _{XFD}) for Slave FIFO Synchronous Read Changed Table 33 to include part CY7C68016A-56LFXC in the part listed for battery powered applications Added register GPCR2 in register summary
*	371097	MON	See ECN	Added timing for strobing RD#/WR# signals when using PortC strobe feature (Section)
*J	397239	MON	See ECN	Removed XTALINSRC register from register summary. Changed Vcc margins to ±10% Added 56-pin VFBGA Pin Package Diagram Added 56-pin VFBGA definition in pin listing Added RDK part number to the Ordering Information table