E·XFL

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

Product Status	Obsolete
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I²C, USB, USART
Number of I/O	24
Voltage - Supply	3V ~ 3.6V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68014a-56lfxc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Contents

Applications	5
Functional Overview	5
USB Signaling Speed	5
8051 Microprocessor	5
I ² C Bus	5
Buses	5
Reset and Wakeup	9
Program/Data RAM	10
External FIFO Interface	13
GPIF	14
ECC Generation ^[8]	14
USB Uploads and Downloads	14
Autopointer Access	15
I ² C Controller	15
CY7C68013A/14A and CY7C68015A/	
16A Differences	15
Register Summary	32
Absolute Maximum Ratings	39
Operating Conditions	39
Thermal Characteristics	39
DC Characteristics	40

AC Electrical Characteristics	41
USB Transceiver	41
Program Memory Read	41
Data Memory Read	42
Data Memory Write	43
PORTC Strobe Feature Timings	44
Slave FIFO Synchronous Read	46
Slave FIFO Synchronous Write	48
Ordering Information	56
Ordering Code Definitions	56
Package Diagrams	57
Quad Flat Package No Leads (QFN)	
Package Design Notes	63
Acronyms	64
Document Conventions	64
Units of Measure	64
Errata	65
Document History Page	66
Sales, Solutions, and Legal Information	69
Worldwide Sales and Design Support	69
Products	69
PSoC® Solutions	69
Cypress Developer Community	69
Technical Support	69

The FX2LP jump instruction is encoded as follows:.

Table 3. INT2 USB Interrupts

	USB INTERRUPT TABLE FOR INT2							
Priority	INT2VEC Value	Source	Notes					
1	00	SUDAV	Setup data available					
2	04	SOF	Start of frame (or microframe)					
3	08	SUTOK	Setup token received					
4	0C	SUSPEND	USB suspend request					
5	10	USB RESET	Bus reset					
6	14	HISPEED	Entered high speed operation					
7	18	EP0ACK	FX2LP ACK'd the CONTROL Handshake					
8	1C		reserved					
9	20	EP0-IN	EP0-IN ready to be loaded with data					
10	24	EP0-OUT	EP0-OUT has USB data					
11	28	EP1-IN	EP1-IN ready to be loaded with data					
12	2C	EP1-OUT	EP1-OUT has USB data					
13	30	EP2	IN: buffer available. OUT: buffer has data					
14	34	EP4	IN: buffer available. OUT: buffer has data					
15	38	EP6	IN: buffer available. OUT: buffer has data					
16	3C	EP8	IN: buffer available. OUT: buffer has data					
17	40	IBN	IN-Bulk-NAK (any IN endpoint)					
18	44		reserved					
19	48	EP0PING	EP0 OUT was pinged and it NAK'd					
20	4C	EP1PING	EP1 OUT was pinged and it NAK'd					
21	50	EP2PING	EP2 OUT was pinged and it NAK'd					
22	54	EP4PING	EP4 OUT was pinged and it NAK'd					
23	58	EP6PING	EP6 OUT was pinged and it NAK'd					
24	5C	EP8PING	EP8 OUT was pinged and it NAK'd					
25	60	ERRLIMIT	Bus errors exceeded the programmed limit					
26	64	-	-					
27	68	-	Reserved					
28	6C	-	Reserved					
29	70	EP2ISOERR	ISO EP2 OUT PID sequence error					
30	74	EP4ISOERR	ISO EP4 OUT PID sequence error					
31	78	EP6ISOERR	ISO EP6 OUT PID sequence error					
32	7C	EP8ISOERR	ISO EP8 OUT PID sequence error					

If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), the FX2LP substitutes its INT2VEC byte. Therefore, if the high byte ("page") of a jump table address is preloaded at the location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs the jump to the correct address out of the 27 addresses within the page.

FIFO/GPIF Interrupt (INT4)

Just as the USB Interrupt is shared among 27 individual USB interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, similar to the USB Interrupt, can employ autovectoring.

Table 4 on page 8 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.

In the Slave (S) mode, FX2LP accepts either an internally derived clock or externally supplied clock (IFCLK, max frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock must be present before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit and a Slave FIFO Output Enable signal (SLOE) that enables data of the selected width. External logic must ensure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signal SLCS#.

GPIF and FIFO Clock Rates

An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register inverts the IFCLK signal whether internally or externally sourced.

GPIF

The GPIF is a flexible 8-bit or 16-bit parallel interface driven by a user-programmable finite state machine. It enables the CY7C68013A/15A to perform local bus mastering and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia.

The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that is executed to perform the desired data move between the FX2LP and the external device.

Six Control OUT Signals

The 100-pin and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock).

Six Ready IN Signals

The 100-pin and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1.

Nine GPIF Address OUT Signals

Nine GPIF address lines are available in the 100-pin and 128-pin packages, GPIFADR[8..0]. The GPIF address lines enable indexing through up to a 512-byte block of RAM. If more address lines are needed, then I/O port pins are used.

Long Transfer Mode

In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to 2³² transactions. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction.

ECC Generation^[8]

The EZ-USB can calculate ECCs (Error Correcting Codes) on data that passes across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calculated over 256 bytes (SmartMedia Standard); and one ECC calculated over 512 bytes.

The ECC can correct any one-bit error or detect any two-bit error.

ECC Implementation

The two ECC configurations are selected by the ECCM bit:

ECCM = 0

Two 3-byte ECCs, each calculated over a 256-byte block of data. This configuration conforms to the SmartMedia Standard.

Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 256 bytes of data is calculated and stored in ECC1. The ECC for the next 256 bytes is stored in ECC2. After the second ECC is calculated, the values in the ECCx registers do not change until ECCRESET is written again, even if more data is subsequently passed across the interface.

ECCM = 1

One 3-byte ECC calculated over a 512-byte block of data.

Write any value to ECCRESET then pass data across the GPIF or Slave FIFO interface. The ECC for the first 512 bytes of data is calculated and stored in ECC1; ECC2 is unused. After the ECC is calculated, the values in ECC1 do not change even if more data is subsequently passed across the interface, till ECCRESET is written again.

USB Uploads and Downloads

The core has the ability to directly edit the data contents of the internal 16-KB RAM and of the internal 512-byte scratch pad RAM via a vendor-specific command. This capability is normally used when soft downloading the user code and is available only to and from the internal RAM, only when the 8051 is held in reset. The available RAM spaces are 16 KB from 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad data RAM)^[9].

Notes

8. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.

^{9.} After the data is downloaded from the host, a "loader" can execute from internal RAM to transfer downloaded data to external memory.

Pin Assignments

Figure 6 on page 17 identifies all signals for the five package types. The following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of signals are available in the 128-pin, 100-pin, and 56-pin packages.

The signals on the left edge of the 56-pin package in Figure 6 are common to all versions in the FX2LP family with the noted differences between the CY7C68013A/14A and the CY7C68015A/16A.

Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register bits. Port mode is the power on default configuration.

The 100-pin package adds functionality to the 56-pin package by adding these pins:

- PORTC or alternate GPIFADR[7:0] address signals
- PORTE or alternate GPIFADR[8] address signal and seven additional 8051 signals
- Three GPIF Control signals
- Four GPIF Ready signals
- Nine 8051 signals (two USARTs, three timer inputs, INT4, and INT5#)
- BKPT, RD#, WR#.

The 128-pin package adds the 8051 address and data buses plus control signals. Note that two of the required signals, RD# and WR#, are present in the 100-pin version.

In the 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. This feature is enabled by setting the PORTCSTB bit in the CPUCS register.

PORTC Strobe Feature Timings displays the timing diagram of the read and write strobing function on accessing PORTC.

	Figure 6. Signal								
	Port		GPIF Master	Slave FIFO					
	XTALIN XTALOUT RESET# WAKEUP# SCI 56	PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0	$\begin{array}{l} \Leftrightarrow \ FD[15] \\ \Leftrightarrow \ FD[14] \\ \Leftrightarrow \ FD[12] \\ \Leftrightarrow \ FD[12] \\ \Leftrightarrow \ FD[12] \\ \Leftrightarrow \ FD[9] \\ \Leftrightarrow \ FD[9] \\ \Leftrightarrow \ FD[9] \\ \Leftrightarrow \ FD[6] \\ \Leftrightarrow \ FD[6] \\ \Leftrightarrow \ FD[6] \\ \Leftrightarrow \ FD[5] \\ \Leftrightarrow \ FD[6] \\ \iff FD[6] \\ \Leftrightarrow \ FD[6] \\ \iff $	$\begin{array}{l} \Leftrightarrow FD[15] \\ \Leftrightarrow FD[14] \\ \Leftrightarrow FD[12] \\ \Leftrightarrow FD[12] \\ \Leftrightarrow FD[10] \\ \Leftrightarrow FD[9] \\ \Leftrightarrow FD[9] \\ \Leftrightarrow FD[8] \\ \Leftrightarrow FD[6] \\ \Leftrightarrow FD[6] \\ \Leftrightarrow FD[6] \\ \Leftrightarrow FD[4] \\ \Leftrightarrow FD[4] \\ \Leftrightarrow FD[0] \end{array}$					
\leftrightarrow	SDA **PE0 replaces IFCLK		RDY0 ← RDY1 ←						
←→	& PE1 replaces CLKOUT on CY7C68015A/16A **PE0		$\begin{array}{c} \text{CTL0} \rightarrow \\ \text{CTL1} \rightarrow \\ \text{CTL2} \rightarrow \end{array}$	\rightarrow FLAGA \rightarrow FLAGB \rightarrow FLAGC					
	**PE1 IFCLK CLKOUT DPLUS DMINUS	INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7	INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7	INT0#/ PA0 INT1#/ PA1 ← SLOE WU2/PA3 ← FIFOADR0 ← FIFOADR1 ← PKTEND PA7/FLAGD/SLCS#					
	100 BKPT PORTC7/GPIFADR7 PORTC6/GPIFADR6 PORTC5/GPIFADR5 PORTC3/GPIFADR3 PORTC2/GPIFADR3 PORTC2/GPIFADR3 PORTC2/GPIFADR3 PCTC2/GPIFADR8 PE6/T2EX PE5/INT6 PE4/RXD10UT PE3/RXD00UT PE3/RXD00UT PE3/RXD00UT PE3/RXD00UT PE3/RXD00UT D7 D6 D5 D4 D3 D2 D1 D0	RxD0 TxD0 RxD1 TxD1 INT4 INT5# INT5# INT5# INT5# I V CS# I V CS I V S I V S I V S I V S I S I V S I V S I V S I S I	$ \rightarrow CTL3 $ $ \rightarrow CTL4 $ $ \rightarrow CTL5 $ $ \leftarrow RDY2 $ $ \leftarrow RDY3 $ $ \leftarrow RDY4 $ $ \leftarrow RDY4 $ $ \leftarrow RDY5 $						
	EA	A6 A5 A4 A3 A2 A1 A0							

CY7C68013A/15A Pin Descriptions

Table 11. FX2LP Pin Descriptions^[11]

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description		
10	9	10	3	2D	AVCC	Power	N/A	N/A	Analog VCC . Connect this pin to the 3.3 V power source. This signal provides power to the analog section of the chip.		
17	16	14	7	1D	AVCC	Power	N/A	N/A	Analog VCC . Connect this pin to the 3.3 V power source. This signal provides power to the analog section of the chip.		
13	12	13	6	2F	AGND	Ground	N/A	N/A	Analog Ground . Connect to ground with as short a path as possible.		
20	19	17	10	1F	AGND	Ground	N/A	N/A	Analog Ground . Connect to ground with as short a path as possible.		
19	18	16	9	1E	DMINUS	I/O/Z	Z	N/A	USB D- Signal. Connect to the USB D- signal.		
18	17	15	8	2E	DPLUS	I/O/Z	Z	N/A	USB D+ Signal. Connect to the USB D+ signal.		
94	-	-	—	-	A0	Output	L	L			
95	-	-	—	-	A1	Output	L	L			
96	-	-	—	-	A2	Output	L	L			
97	_	_	_	-	A3	Output	L	L			
117	-	-	—	-	A4	Output	L	L			
118	_	-	—	-	A5	Output	L	L			
119	_	_	_	-	A6	Output	L	L			
120	_	-	—	-	A7	Output	L	L	8051 Address Bus . This bus is driven at all times.		
126	_	-	—	-	A8	Output	L	L	reflects the internal address.		
127	_	_	_	-	A9	Output	L	L			
128	—	-	—	-	A10	Output	L	L			
21	_	-	—	-	A11	Output	L	L			
22	_	-	—	-	A12	Output	L	L			
23	_	-	—	-	A13	Output	L	L			
24	_	-	—	-	A14	Output	L	L			
25	_	-	—	-	A15	Output	L	L			
59	—	-	—	-	D0	I/O/Z	Z	Z			
60	—	-	—	-	D1	I/O/Z	Z	Z			
61	_	-	—	-	D2	I/O/Z	Z	Z	8051 Data Bus. This bidirectional bus is		
62	_	-	—	-	D3	I/O/Z	Z	Z	and output for bus writes. The data bus is used for		
63	-	-	—	-	D4	I/O/Z	Z	Z	external 8051 program and data memory. The data		
86	_	-	—	-	D5	I/O/Z	Z	Z	driven LOW in suspend.		
87	_	-	—	-	D6	I/O/Z	Z	Z			
88	-	-	—	-	D7	I/O/Z	Z	Z			
39	_	_	_	_	PSEN#	Output	н	н	Program Store Enable . This active LOW signal indicates an 8051 code fetch from external memory. It is active for program memory fetches from 0x4000–0xFFFF when the EA pin is LOW, or from 0x0000–0xFFFF when the EA pin is HIGH.		

 Notes

 11. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in standby. Note also that no pins should be driven while the device is powered down.

 12. The Reset column indicates the state of signals during reset (RESET# asserted) or during Power on Reset (POR).

 Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFF	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
110	88	_	_	_	PE2 or T2OUT	I/O/Z	l (PE2)	Z (PE2)	Multiplexed pin whose function is selected by the PORTECFG.2 bit. PE2 is a bidirectional I/O port pin. T2OUT is the active HIGH output signal from 8051 Timer2. T2OUT is active (HIGH) for one clock cycle when Timer/Counter 2 overflows.
111	89	_	_	_	PE3 or RXD0OUT	I/O/Z	l (PE3)	Z (PE3)	Multiplexed pin whose function is selected by the PORTECFG.3 bit. PE3 is a bidirectional I/O port pin. RXDOOUT is an active HIGH signal from 8051 UART0. If RXD0OUT is selected and UART0 is in Mode 0, this pin provides the output data for UART0 only when it is in sync mode. Otherwise it is a 1.
112	90	_	_	-	PE4 or RXD1OUT	I/O/Z	l (PE4)	Z (PE4)	Multiplexed pin whose function is selected by the PORTECFG.4 bit. PE4 is a bidirectional I/O port pin. RXD1OUT is an active-HIGH output from 8051 UART1. When RXD1OUT is selected and UART1 is in Mode 0, this pin provides the output data for UART1 only when it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.
113	91	_	_	_	PE5 or INT6	I/O/Z	l (PE5)	Z (PE5)	Multiplexed pin whose function is selected by the PORTECFG.5 bit. PE5 is a bidirectional I/O port pin. INT6 is the 8051 INT6 interrupt request input signal. The INT6 pin is edge-sensitive, active HIGH.
114	92	_	_	_	PE6 or T2EX	I/O/Z	l (PE6)	Z (PE6)	Multiplexed pin whose function is selected by the PORTECFG.6 bit. PE6 is a bidirectional I/O port pin. T2EX is an active HIGH input signal to the 8051 Timer2. T2EX reloads timer 2 on its falling edge. T2EX is active only if the EXEN2 bit is set in T2CON.
115	93	_	_	_	PE7 or GPIFADR8	I/O/Z	l (PE7)	Z (PE7)	Multiplexed pin whose function is selected by the PORTECFG.7 bit. PE7 is a bidirectional I/O port pin. GPIFADR8 is a GPIF address output pin.
4	3	8	1	1A	RDY0 or SLRD	Input	N/A	N/A	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. RDY0 is a GPIF input signal. SLRD is the input-only read strobe with program- mable polarity (FIFOPINPOLAR.3) for the slave FIFOs connected to FD[70] or FD[150].
5	4	9	2	1B	RDY1 or SLWR	Input	N/A	N/A	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. RDY1 is a GPIF input signal. SLWR is the input-only write strobe with programmable polarity (FIFOPINPOLAR.2) for the slave FIFOs connected to FD[70] or FD[150].
6	5	-	-	-	RDY2	Input	N/A	N/A	RDY2 is a GPIF input signal.

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
E65D	1	USBIRQ ^[14]	USB Interrupt Requests	0	EPOACK	HSGRANT	URES	SUSP	SUTOK	SOF	SUDAV	0xxxxxxx	rbbbbbbb
E65E	1	EPIE	Endpoint Interrupt	EP8	EP6	EP4	EP2	EP1OUT	EP1IN	EP0OUT	EPOIN	00000000	RW
E65F	1	EPIRQ ^[14]	Endpoint Interrupt	EP8	EP6	EP4	EP2	EP1OUT	EP1IN	EP0OUT	EP0IN	0	RW
EGGO	1		CBIE Interrupt Enchlo	0	0	0	0	0	0			0000000	DW/
E000	4		CDIF Interrupt Degruget	0	0	0	0	0	0	GEIEWE	GFIFDONE	00000000	
E001	4		GPIF Interrupt Request					0	0	GPIFWF	GPIFDONE	00000000	RW
E002	1	USBERRIE	Enables	ISUEP8	ISOEP6	ISOEP4	ISOEP2	0	0	0	ERRLINIT	0000000	RVV
E663	1	USBERRIRQ ^[14]	USB Error Interrupt Requests	ISOEP8	ISOEP6	ISOEP4	ISOEP2	0	0	0	ERRLIMIT	0000000x	bbbbrrrb
E664	1	ERRCNTLIM	USB Error counter and limit	EC3	EC2	EC1	EC0	LIMIT3	LIMIT2	LIMIT1	LIMIT0	xxxx0100	rrrrbbbb
E665	1	CLRERRCNT	Clear Error Counter EC3:0	х	x	x	x	х	x	х	x	XXXXXXXX	W
E666	1	INT2IVEC	Interrupt 2 (USB) Autovector	0	I2V4	I2V3	I2V2	I2V1	I2V0	0	0	00000000	R
E667	1	INT4IVEC	Interrupt 4 (slave FIFO & GPIF) Autovector	1	0	14V3	14V2	I4V1	I4V0	0	0	10000000	R
E668	1	INTSET-UP	Interrupt 2&4 setup	0	0	0	0	AV2EN	0	INT4SRC	AV4EN	00000000	RW
E669	7	reserved											
		INPUT / OUTPUT											
E670	1	PORTACFG	I/O PORTA Alternate Configuration	FLAGD	SLCS	0	0	0	0	INT1	INT0	00000000	RW
E671	1	PORTCCFG	I/O PORTC Alternate Configuration	GPIFA7	GPIFA6	GPIFA5	GPIFA4	GPIFA3	GPIFA2	GPIFA1	GPIFA0	00000000	RW
E672	1	PORTECFG	I/O PORTE Alternate Configuration	GPIFA8	T2EX	INT6	RXD1OUT	RXD0OUT	T2OUT	T1OUT	TOOUT	00000000	RW
E673	4	reserved											
E677	1	reserved											
E678	1	I ² CS	I ² C Bus Control & Status	START	STOP	LASTRD	ID1	ID0	BERR	ACK	DONE	000xx000	bbbrrrrr
E679	1	I2DAT	I²C Bus Data	d7	d6	d5	d4	d3	d2	d1	d0	xxxxxxx	RW
E67A	1	I ² CTL	I ² C Bus Control	0	0	0	0	0	0	STOPIE	400KHZ	00000000	RW
E67B	1	XAUTODAT1	Autoptr1 MOVX access, when APTREN=1	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
E67C	1	XAUTODAT2	Autoptr2 MOVX access, when APTREN=1	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
		UDMA CRC											
E67D	1	UDMACRCH ^[13]	UDMA CRC MSB	CRC15	CRC14	CRC13	CRC12	CRC11	CRC10	CRC9	CRC8	01001010	RW
E67E	1	UDMACRCL ^[13]	UDMA CRC LSB	CRC7	CRC6	CRC5	CRC4	CRC3	CRC2	CRC1	CRC0	10111010	RW
E67F	1	UDMACRC- QUALIFIER	UDMA CRC Qualifier	QENABLE	0	0	0	QSTATE	QSIGNAL2	QSIGNAL1	QSIGNAL0	00000000	brrrbbbb
		USB CONTROL											
E680	1	USBCS	USB Control & Status	HSM	0	0	0	DISCON	NOSYNSOF	RENUM	SIGRSUME	x0000000	rrrrbbbb
E681	1	SUSPEND	Put chip into suspend	x	x	x	x	x	x	x	x	XXXXXXXX	W
E682	1		Wakeup Control & Status		WU	WI I2POI	WUPOL	0		WI12EN	WUEN	xx000101	hhhhrhhh
E683	1	TOGCTI	Toggle Control	0	s	R	1/0	EP3	EP2	FP1	EP0	x0000101	rrrhhhhhh
E684	1	USBERAMEH	USB Frame count H	0	0	0	0	0	EC10	FC9	EC8	000000000	R
E685	1		USB Frame count I	0 FC7	5 FC6	5 EC5	6 EC4	EC3	FC2	FC1	FCO	*****	R
E686	1		Microframe count 0-7	0	0	0	0	0	ME2	ME1	MEO	00000vvv	D
E607	1		USB Eurotion address	0	5 EAG	EAE		5 EA2			EAO	00000	D
E699	2	reserved	COD F UNCTION AUGIESS	0	1 70	1.43		1.75	1.72	101		~~~~~	r.
L000	2	leselved											
		ENDPOINTS											
E68A	1	EP0BCH ^[13]	Endpoint 0 Byte Count H	(BC15)	(BC14)	(BC13)	(BC12)	(BC11)	(BC10)	(BC9)	(BC8)	XXXXXXX	RW
E68B	1	EP0BCL ^[13]	Endpoint 0 Byte Count L	(BC7)	BC6	BC5	BC4	BC3	BC2	BC1	BC0	xxxxxxx	RW
E68C	1	reserved											
E68D	1	EP1OUTBC	Endpoint 1 OUT Byte Count	0	BC6	BC5	BC4	BC3	BC2	BC1	BC0	0xxxxxx	RW
E68E	1	reserved											
E68F	1	EP1INBC	Endpoint 1 IN Byte Count	0	BC6	BC5	BC4	BC3	BC2	BC1	BC0	0xxxxxxx	RW
E690	1	EP2BCH ^[13]	Endpoint 2 Byte Count H	0	0	0	0	0	BC10	BC9	BC8	00000xxx	RW
E691	1	EP2BCL ^[13]	Endpoint 2 Byte Count L	BC7/SKIP	BC6	BC5	BC4	BC3	BC2	BC1	BC0	XXXXXXXX	RW
E692	2	reserved											
E694	1	EP4BCH ^[13]	Endpoint 4 Byte Count H	0	0	0	0	0	0	BC9	BC8	000000xx	RW
E695	1	EP4BCL ^[13]	Endpoint 4 Byte Count L	BC7/SKIP	BC6	BC5	BC4	BC3	BC2	BC1	BC0	xxxxxxx	RW
E696	2	reserved	, , ,									<u> </u>	
E698	1	EP6BCH ^[13]	Endpoint 6 Byte Count H	0	0	0	0	0	BC10	BC9	BC8	00000xxx	RW
E699	1	EP6BCL ^[13]	Endpoint 6 Byte Count L	BC7/SKIP	BC6	BC5	BC4	BC3	BC2	BC1	BC0	XXXXXXXX	RW
E69A	2	reserved	, , ,									<u> </u>	
E69C	1	EP8BCH ^[13]	Endpoint 8 Byte Count H	0	0	0	0	0	0	BC9	BC8	000000xx	RW
E69D	1	EP8BCL ^[13]	Endpoint 8 Byte Count I	BC7/SKIP	BC6	BC5	BC4	BC3	BC2	BC1	BC0	XXXXXXXX	RW
E69E	2	reserved	, , ,									<u> </u>	

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Table 12. FX2LP Register Summary (continued)

Hex	Size	Name	Description	b7	b6	b5	b4	b3	b2	b1	b0	Default	Access
хххх		I ² C Configuration Byte		0	DISCON	0	0	0	0	0	400KHZ	XXXXXXXX	n/a
	_	Provid Eurotian Deat	atora (SERa)										
00		Special Function Regis	sters (SFRS)	D7	D.	Dr	D.4	Do	Do	D4	D.		D)A/
00	1		Port A (bit addressable)	D7	Do	D5	D4	D3	D2		D0	XXXXXXXXX 00000111	
82	1		Data Pointer 0 I	Δ7	A6	Δ5	Δ4 Δ4	D3 43	Δ2 Δ2	Δ1	A0	00000111	RW
02 83	1	DPH0	Data Pointer 0 L	A15	A0 A14	A3 A13	Δ12	A11	A10	ΔQ	A0 A8	000000000	RW
84	1	DPI 1 ^[15]	Data Pointer 1 I	Δ7	A6	A13 A5	Δ1 Δ1	Δ3	A10	Δ1	A0	000000000	RW
85	1	DPH1 ^[15]	Data Pointer 1 H	A15	A0 A14	A13	A12	Δ11	A10	Δ9	A8	000000000	RW
86	1	DPS ^[15]	Data Pointer 0/1 select	0	0	0	0	0	0	0	SEL	00000000	RW
87	1	PCON	Power Control	SMOD0	x	1	1	x	x	x	IDLE	00110000	RW
88	1	TCON	Timer/Counter Control	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000	RW
89	1	TMOD	(bit addressable) Timer/Counter Mode	GATE	СТ	M1	MO	GATE	СТ	M1	M0	00000000	RW
8A	1	TLO	Timer 0 reload I	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
8B	1	TI 1	Timer 1 reload L	D7	D6	D5	D4	D3	D2	D1	D0	000000000	RW
8C	1	THO	Timer 0 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8D	1	TH1	Timer 1 reload H	D15	D14	D13	D12	D11	D10	D9	D8	00000000	RW
8E	1	CKCON ^[15]	Clock Control	x	x	T2M	T1M	TOM	MD2	MD1	MD0	00000001	RW
8F	1	reserved											
90	1	IOB ^[15]	Port B (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	xxxxxxx	RW
91	1	EXIF ^[15]	External Interrupt Flag(s)	IE5	IE4	I ² CINT	USBNT	1	0	0	0	00001000	RW
92	1	MPAGE ^[15]	Upper Addr Byte of MOVX using @R0 / @R1	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
93	5	reserved											
98	1	SCON0	Serial Port 0 Control (bit addressable)	SM0_0	SM1_0	SM2_0	REN_0	TB8_0	RB8_0	TI_0	RI_0	00000000	RW
99	1	SBUF0	Serial Port 0 Data Buffer	D7	D6	D5	D4	D3	D2	D1	D0	00000000	RW
9A	1	AUTOPTRH1 ^[15]	Autopointer 1 Address H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
9B	1	AUTOPTRL1 ^[15]	Autopointer 1 Address L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
9C	1	reserved											
9D	1	AUTOPTRH2 ^[15]	Autopointer 2 Address H	A15	A14	A13	A12	A11	A10	A9	A8	00000000	RW
9E	1	AUTOPTRL2 ^[15]	Autopointer 2 Address L	A7	A6	A5	A4	A3	A2	A1	A0	00000000	RW
9F	1	reserved											
A0	1	IOC ^[15]	Port C (bit addressable)	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXX	RW
A1	1	INT2CLR ^[15]	Interrupt 2 clear	x	x	x	x	х	х	х	х	XXXXXXXX	W
A2	1	INT4CLR ^[15]	Interrupt 4 clear	x	x	x	x	х	x	x	x	XXXXXXXX	W
A3	5	reserved							-		=		
A8	1		(bit addressable)	EA	ESI	E12	ESU	EI1	EX1	EIU	EXU	00000000	RW
A9 AA	1	ED2469STAT 15	Endpoint 2.4.6.9 status	EDQE	EDOE	EDGE	EDGE	EDIE	EDIE	ED2E	ED2E	01011010	D
	1		flags		EPOE			0		EP2E	EP2E	00100010	D
AD	1		status flags	0				0				00100010	R.
AC	1	[15]	status flags	0	EP8PF	EPSEF	EPOFF	0	EP6PF	EPGEF	EPOFF	01100110	ĸ
	∠ 1		Autopointor 192 cotur	0	0	0	0	0				00000110	DW/
	1	100[15]	Port D (bit addressable)		De	0 D5	0 D4	0				00000110	DW/
B0 B1	1	IOE ^[15]	Port E	D7	D6	D5	D4 D4	D3	D2	D1	D0	******	RW
P2	1	054[15]	(NOT bit addressable)	D7	De	Df	D4	D2	D2	D1	DO	00000000	DW/
BZ D2	1		Port A Output Enable	D7	D6	D5	D4	D3	D2	D1	DU	00000000	RW
DJ D4	1		Port & Output Enable	D7	D6	D5	D4	D3	D2		DO	00000000	
D4	1		Port C Output Enable	D7	D6	D5	D4	D3	D2		DU	00000000	RW
DO DC	1		Port D Output Enable	D7	Do	D5	D4	D3	D2		D0	00000000	
B7	1	reserved	Fort E Output Enable	וט	00	00	U4	60	02	וט	00	00000000	INVV
B8	1	IP	Interrupt Priority (bit ad-	1	PS1	PT2	PS0	PT1	PX1	PT0	PX0	1000000	RW
B9	1	reserved	dressable)										
BA	1	EP01STAT ^[15]	Endpoint 0&1 Status	0	0	0	0	0	EP1INBSY	EP10UTBSY	EP0BSY	00000000	R
BB	1	GPIFTRIG ^[15, 13]	Endpoint 2,4,6,8 GPIF slave FIFO Trigger	DONE	0	0	0	0	RW	EP1	EP0	10000xxx	brrrrbbb
BC	1	reserved		-		1	1	1	1		-	1	
BD	1	GPIFSGLDATH ^[15]	GPIF Data H (16-bit mode only)	D15	D14	D13	D12	D11	D10	D9	D8	ххххххх	RW

Notes

15. SFRs not part of the standard 8051 architecture.16. If no EEPROM is detected by the SIE then the default is 00000000.

DC Characteristics

Table 14. DC Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
VCC	Supply voltage	-	3.00	3.3	3.60	V
VCC Ramp Up	0 to 3.3 V	-	200	_	-	μS
V _{IH}	Input HIGH voltage	-	2	_	5.25	V
V _{IL}	Input LOW voltage	-	-0.5	-	0.8	V
V _{IH_X}	Crystal input HIGH voltage	-	2	_	5.25	V
V _{IL_X}	Crystal input LOW voltage	-	-0.5	-	0.8	V
I _I	Input leakage current	0< V _{IN} < V _{CC}	-	-	±10	μA
V _{OH}	Output voltage HIGH	I _{OUT} = 4 mA	2.4	_	-	V
V _{OL}	Output LOW voltage	I _{OUT} = -4 mA	_	_	0.4	V
I _{ОН}	Output current HIGH	-	-	-	4	mA
I _{OL}	Output current LOW	-	_	_	4	mA
C		Except D+/D-	-	-	10	pF
		D+/D-	_	-	15	pF
	Suspend current	Connected	_	300	380 ^[18]	μA
1	CY7C68014/CY7C68016	Disconnected	-	100	150 ^[18]	μA
SUSP	Suspend current	Connected	-	0.5	1.2 ^[18]	mA
	Input leakage current $0 < V_{IN} < V_{CC}$ Output voltage HIGH $I_{OUT} = 4 \text{ mA}$ Output LOW voltage $I_{OUT} = -4 \text{ mA}$ Output current HIGH-Output current LOW-Input pin capacitanceExcept D+/D-D+/D-D+/D-Suspend currentConnectedCY7C68014/CY7C68016DisconnectedSuspend currentConnectedSuspend currentBisconnectedCY7C68013/CY7C68015DisconnectedSupply current8051 running, connected to USB HSReset time after valid power V_{CC} min = 3.0 V	_	0.3	1.0 ^[18]	mA	
	Supply ourrent	8051 running, connected to USB HS	_	50	85	mA
'CC		8051 running, connected to USB FS	-	35	65	mA
т	Reset time after valid power	$V_{r} = min = 3.0 V$	5.0	-	-	ms
'RESET	Pin reset after powered on		200	_	-	μS

USB Transceiver

USB 2.0 compliant in Full Speed and Hi-Speed modes.

PORTC Strobe Feature Timings

The RD# and WR# are present in the 100-pin version and the 128-pin package. In these 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from or writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register.

The RD# and WR# strobes are asserted for two CLKOUT cycles when PORTC is accessed.

The WR# strobe is asserted two clock cycles after PORTC is updated and is active for two clock cycles after that, as shown in Figure 16.

As for read, the value of PORTC three clock cycles before the assertion of RD# is the value that the 8051 reads in. The RD# is pulsed for two clock cycles after three clock cycles from the point when the 8051 has performed a read function on PORTC.

The RD# signal prompts the external logic to prepare the next data byte. Nothing gets sampled internally on assertion of the RD# signal itself; it is just a prefetch type signal to get the next data byte prepared. So, using it with that in mind easily meets the setup time to the next read.

The purpose of this pulsing of RD# is to allow the external peripheral to know that the 8051 is done reading PORTC and the data was latched into PORTC three CLKOUT cycles before asserting the RD# signal. After the RD# is pulsed, the external logic can update the data on PORTC.

Following is the timing diagram of the read and write strobing function on accessing PORTC. Refer to Data Memory Read^[21] and Data Memory Write^[23] for details on propagation delay of RD# and WR# signals.

Figure 16. WR# Strobe Function when PORTC is Accessed by 8051

Figure 17. RD# Strobe Function when PORTC is Accessed by 8051

Slave FIFO Synchronous Read

Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced $\ensuremath{\mathsf{IFCLK}}^{[25]}$

Parameter	Description	Min	Max	Ту	Unit	
Faranteter	Description	WIIII	IVIAN	Min	Min Max	
t _{IFCLK}	IFCLK period	20.83	-	_	-	ns
t _{SRD}	SLRD to clock setup time	18.7	-	_	-	ns
t _{RDH}	Clock to SLRD hold time	0	-	_	-	ns
t _{OEon}	SLOE turn on to FIFO data valid	-	10.5	_	-	ns
t _{OEoff}	SLOE turn off to FIFO data hold	-	10.5	-	-	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	9.5	-	-	ns
t _{XFD}	Clock to FIFO data output propagation delay	-	11	_	-	ns
t _{IFCLKR}	IFCLK rise time	-	-	_	900	ps
t _{IFCLKF}	IFCLK fall time	-	-	_	900	ps
t _{IFCLKOD}	IFCLK output duty cycle	-	-	49	51	%
t _{IFCLKJ}	IFCLK jitter peak to peak	_	_	-	300	ps

Slave FIFO Synchronous Write

Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	_	ns
t _{SWR}	SLWR to clock setup time	10.4	-	ns
t _{WRH}	Clock to SLWR hold time	0	-	ns
t _{SFD}	FIFO data to clock setup time	9.2	-	ns
t _{FDH}	Clock to FIFO data hold time	0	_	ns
t _{XFLG}	Clock to FLAGS output propagation time	-	9.5	ns

Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK Period	20.83	200	ns
t _{SWR}	SLWR to clock setup time	12.1	_	ns
t _{WRH}	Clock to SLWR hold time	3.6	_	ns
t _{SFD}	FIFO data to clock setup time	3.2	_	ns
t _{FDH}	Clock to FIFO data hold time	4.5	_	ns
t _{XFLG}	Clock to FLAGS output propagation time	-	13.5	ns

Slave FIFO Asynchronous Write

Parameter	Description	Min	Max	Unit
t _{WRpwl}	SLWR pulse LOW	50	_	ns
t _{WRpwh}	SLWR pulse HIGH	70	-	ns
t _{SFD}	SLWR to FIFO DATA setup time	10	-	ns
t _{FDH}	FIFO DATA to SLWR hold time	10	_	ns
t _{XFD}	SLWR to FLAGS output propagation delay	-	70	ns

Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK^[27]

Slave FIFO Synchronous Packet End Strobe

Figure 23. Slave FIFO Synchronous Packet End Strobe Timing Diagram^[24]

Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	_	ns
t _{SPE}	PKTEND to clock setup time	14.6	_	ns
t _{PEH}	Clock to PKTEND hold time	0	-	ns
t _{XFLG}	Clock to FLAGS output propagation delay	_	9.5	ns

Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	200	ns
t _{SPE}	PKTEND to clock setup time	8.6	-	ns
t _{PEH}	Clock to PKTEND hold time	2.5	-	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	13.5	ns

There is no specific timing requirement that should be met for asserting the PKTEND pin to asserting SLWR. PKTEND can be asserted with the last data value clocked into the FIFOs or thereafter. The setup time t_{SPE} and the hold time t_{PEH} must be met.

Although there are no specific timing requirements for PKTEND assertion, there is a specific corner-case condition that needs attention while using the PKTEND pin to commit a one byte or word packet. There is an additional timing requirement that needs to be met when the FIFO is configured to operate in auto mode and it is required to send two packets back to back: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin. In this scenario, the user must ensure to assert PKTEND, at least one clock cycle after the rising edge that

caused the last byte or word to be clocked into the previous auto committed packet. Figure 24 shows this scenario. X is the value the AUTOINLEN register is set to when the IN endpoint is configured to be in auto mode.

Figure 24 shows a scenario where two packets are committed. The first packet gets committed automatically when the number of bytes in the FIFO reaches X (value set in AUTOINLEN register) and the second one byte/word short packet being committed manually using PKTEND.

Note that there is at least one IFCLK cycle timing between the assertion of PKTEND and clocking of the last byte of the previous packet (causing the packet to be committed automatically). Failing to adhere to this timing results in the FX2 failing to send the one byte or word short packet.

Figure 24. Slave FIFO Synchronous Write Sequence and Timing Diagram^[24]

Slave FIFO Asynchronous Packet End Strobe

Figure 25. Slave FIFO Asynchronous Packet End Strobe Timing Diagram^[24]

Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{PEpwl}	PKTEND pulse width LOW	50	-	ns
t _{PWpwh}	PKTEND pulse width HIGH	50	-	ns
t _{XFLG}	PKTEND to FLAGS output propagation delay	_	115	ns

Slave FIFO Output Enable

Table 29. Slave FIFO Output Enable Parameters

Parameter	Description	Min	Max	Unit
t _{OEon}	SLOE assert to FIFO DATA output		10.5	ns
t _{OEoff}	SLOE deassert to FIFO DATA hold		10.5	ns

Single and Burst Synchronous Write

Figure 32. Slave FIFO Synchronous Write Sequence and Timing Diagram^[24]

Figure 32 shows the timing relationship of the SLAVE FIFO signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst write of three bytes and committing all four bytes as a short packet using the PKTEND pin.

- At t = 0 the FIFO address is stable and the signal SLCS is asserted. (SLCS may be tied LOW in some applications) Note that t_{SFA} has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle.
- At t = 1, the external master/peripheral must outputs the data value onto the data bus with a minimum set up time of t_{SFD} before the rising edge of IFCLK.
- At t = 2, SLWR is asserted. The SLWR must meet the setup time of t_{SWR} (time from asserting the SLWR signal to the rising edge of IFCLK) and maintain a minimum hold time of t_{WRH} (time from the IFCLK edge to the deassertion of the SLWR signal). If the SLCS signal is used, it must be asserted with SLWR or before SLWR is asserted (The SLCS and SLWR signals must both be asserted to start a valid write condition).
- While the SLWR is asserted, data is written to the FIFO and on the rising edge of the IFCLK, the FIFO pointer is incremented. The FIFO flag is also updated after a delay of t_{XFLG} from the rising edge of the clock.

The same sequence of events are also shown for a burst write and are marked with the time indicators of T = 0 through 5.

Note For the burst mode, SLWR and SLCS are left asserted for the entire duration of writing all the required data values. In this burst write mode, after the SLWR is asserted, the data on the FIFO data bus is written to the FIFO on every rising edge of IFCLK. The FIFO pointer is updated on each rising edge of IFCLK. In Figure 32, after the four bytes are written to the FIFO, SLWR is deasserted. The short 4 byte packet can be committed to the host by asserting the PKTEND signal.

There is no specific timing requirement that should be met for asserting PKTEND signal with regards to asserting the SLWR signal. PKTEND can be asserted with the last data value or thereafter. The only requirement is that the setup time t_{SPE} and the hold time t_{PEH} must be met. In the scenario of Figure 32, the number of data values committed includes the last value written to the FIFO. In this example, both the data value and the PKTEND signal are clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subsequent clock cycles. The FIFOADDR lines should be held constant during the PKTEND assertion.

Although there are no specific timing requirement for the PKTEND assertion, there is a specific corner-case condition that needs attention while using the PKTEND to commit a one byte/word packet. Additional timing requirements exist when the FIFO is configured to operate in auto mode and it is desired to send two packets: a full packet ('full' defined as the number of bytes in the FIFO meeting the level set in the AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin.

In this case, the external master must ensure to assert the PKTEND pin at least one clock cycle after the rising edge that caused the last byte or word that needs to be clocked into the previous auto committed packet (the packet with the number of bytes equal to what is set in the AUTOINLEN register). Refer to Figure 24 on page 50 for further details on this timing.

Sequence Diagram of a Single and Burst Asynchronous Write

Figure 35 shows the timing relationship of the SLAVE FIFO write in an asynchronous mode. The diagram shows a single write followed by a burst write of 3 bytes and committing the 4byte short packet using PKTEND.

- At t = 0 the FIFO address is applied, ensuring that it meets the setup time of t_{SFA}. If SLCS is used, it must also be asserted (SLCS may be tied LOW in some applications).
- At t = 1 SLWR is asserted. SLWR must meet the minimum active pulse of t_{WRpwl} and minimum de-active pulse width of t_{WRpwh}. If the SLCS is used, it must be asserted with SLWR or before SLWR is asserted.
- At t = 2, data must be present on the bus t_{SFD} before the deasserting edge of SLWR.
- At t = 3, deasserting SLWR causes the data to be written from the data bus to the FIFO and then increments the FIFO pointer. The FIFO flag is also updated after t_{XFLG} from the deasserting edge of SLWR.

The same sequence of events is shown for a burst write and is indicated by the timing marks of T = 0 through 5.

Note In the burst write mode, after SLWR is deasserted, the data is written to the FIFO and then the FIFO pointer is incremented to the next byte in the FIFO. The FIFO pointer is post incremented.

In Figure 35, after the four bytes are written to the FIFO and SLWR is deasserted, the short 4-byte packet can be committed to the host using PKTEND. The external device should be designed to not assert SLWR and the PKTEND signal at the same time. It should be designed to assert the PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The FIFOADDR lines have to held constant during the PKTEND assertion.

Package Diagrams

The FX2LP is available in five packages:

- 56-pin SSOP
- 56-pin QFN
- 100-pin TQFP
- 128-pin TQFP
- 56-ball VFBGA

Figure 36. 56-Pin Shrunk Small Outline Package O56 (51-85062)

TOP VIEW

 \overline{O}

REFERENCE JEDEC: MO-195C PACKAGE WEIGHT: 0.02 grams

001-03901 *F

U.3U DMII D730

Quad Flat Package No Leads (QFN) Package Design Notes

Electrical contact of the part to the PCB is made by soldering the leads on the bottom surface of the package to the PCB. Therefore, special attention is required to the heat transfer area below the package to provide a good thermal bond to the circuit board. Design a copper (Cu) fill in the PCB as a thermal pad under the package. Heat is transferred from the FX2LP through the device's metal paddle on the bottom side of the package. Heat from here is conducted to the PCB at the thermal pad. It is then conducted from the thermal pad to the PCB inner ground plane by a 5×5 array of via. A via is a plated-through hole in the PCB with a finished diameter of 13 mil. The QFN's metal die paddle must be soldered to the PCB's thermal pad. Solder mask is placed on the board top side over each via to resist solder flow into the via. The mask on the top side also minimizes outgassing during the solder reflow process.

For further information on this package design, refer to application notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages. You can find this on Amkor's website http://www.amkor.com.

This application note provides detailed information about board mounting guidelines, soldering flow, rework process, etc.

Figure 41 shows a cross-sectional area underneath the package. The cross section is of only one via. The solder paste template should be designed to allow at least 50% solder coverage. The thickness of the solder paste template should be 5 mil. Use the No Clean type 3 solder paste for mounting the part. Nitrogen purge is recommended during reflow.

Figure 42 is a plot of the solder mask pattern and Figure 43 displays an X-Ray image of the assembly (darker areas indicate solder).

Figure 41. Cross-section of the Area Underneath the QFN Package

the Ground Plane

Figure 42. Plot of the Solder Mask (White Area)

0	•		•	0
0	°0	0		•
0	0	•	0	
Ő.	۲	0	۲	0
10	0	0	۲	0