

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details

•XF

Product Status	Active
Applications	USB Microcontroller
Core Processor	8051
Program Memory Type	ROMIess
Controller Series	CY7C680xx
RAM Size	16K x 8
Interface	I ² C, USB, USART
Number of I/O	26
Voltage - Supply	3V ~ 3.6V
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	56-VFQFN Exposed Pad
Supplier Device Package	56-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy7c68016a-56ltxct

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. Special Function Registers

x	8x	9x	Ax	Bx	Сх	Dx	Ex	Fx
0	IOA	IOB	IOC	IOD	SCON1	PSW	ACC	В
1	SP	EXIF	INT2CLR	IOE	SBUF1	-	-	-
2	DPL0	MPAGE	INT4CLR	OEA	-	-	-	-
3	DPH0	-	-	OEB	-	-	_	-
4	DPL1	-	-	OEC	-	-	_	-
5	DPH1	-	-	OED	-	-	—	-
6	DPS	-	-	OEE	-	-	_	-
7	PCON	-	-	-	-	-	_	-
8	TCON	SCON0	IE	IP	T2CON	EICON	EIE	EIP
9	TMOD	SBUF0	-	-	-	-	_	-
A	TL0	AUTOPTRH1	EP2468STAT	EP01STAT	RCAP2L	-	_	-
В	TL1	AUTOPTRL1	EP24FIFOFLGS	GPIFTRIG	RCAP2H	-	_	-
С	TH0	reserved	EP68FIFOFLGS		TL2	-	_	-
D	TH1	AUTOPTRH2	-	GPIFSGLDATH	TH2	_	_	_
E	CKCON	AUTOPTRL2	-	GPIFSGLDATLX	-	_	_	_
F	_	reserved	AUTOPTRSET-UP	GPIFSGLDATLNOX	_	_	_	_

USB Boot Methods

During the power-up sequence, internal logic checks the l^2C port for the connection of an EEPROM whose first byte is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM in place of the internally stored values (0xC0), or it boot-loads the EEPROM contents into internal RAM (0xC2). If no EEPROM is detected, FX2LP enumerates using internally stored descriptors. The default ID values for FX2LP are VID/PID/DID (0x04B4, 0x8613, 0xAxxx where xxx = Chip revision).^[2]

Table 2. Default ID Values for FX2LP

Default VID/PID/DID						
Vendor ID	0x04B4	Cypress Semiconductor				
Product ID	0x8613	EZ-USB FX2LP				
Device release	0xAnnn	Depends on chip revision (nnn = chip revision where first silicon = 001)				

ReNumeration

Because the FX2LP's configuration is soft, one chip can take on the identities of multiple distinct USB devices.

When first plugged into USB, the FX2LP enumerates automatically and downloads firmware and USB descriptor tables over the USB cable. Next, the FX2LP enumerates again, this time as a device defined by the downloaded information. This patented two step process called ReNumeration[™] happens instantly when the device is plugged in, without a hint that the initial download step has occurred. Two control bits in the USBCS (USB Control and Status) register control the ReNumeration process: DISCON and RENUM. To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears DISCON to 0.

Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware or the Default USB Device handles device requests over endpoint zero: if RENUM = 0, the Default USB Device handles device requests; if RENUM = 1, the firmware services the requests.

Bus-Powered Applications

The FX2LP fully supports bus-powered designs by enumerating with less than 100 mA as required by the USB 2.0 specification.

Interrupt System

INT2 Interrupt Request and Enable Registers

FX2LP implements an autovector feature for INT2 and INT4. There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF) vectors. See EZ-USB Technical Reference Manual (TRM) for more details.

USB Interrupt Autovectors

The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time that is required to identify the individual USB interrupt source, the FX2LP provides a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the FX2LP pushes the program counter to its stack, and then jumps to the address 0x0043 where it expects to find a "jump" instruction to the USB interrupt service routine.

Note

2. The I²C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.

The FX2LP jump instruction is encoded as follows:.

Table 3. INT2 USB Interrupts

USB INTERRUPT TABLE FOR INT2							
Priority	INT2VEC Value	Source	Notes				
1	00	SUDAV	Setup data available				
2	04	SOF	Start of frame (or microframe)				
3	08	SUTOK	Setup token received				
4	0C	SUSPEND	USB suspend request				
5	10	USB RESET	Bus reset				
6	14	HISPEED	Entered high speed operation				
7	18	EP0ACK	FX2LP ACK'd the CONTROL Handshake				
8	1C		reserved				
9	20	EP0-IN	EP0-IN ready to be loaded with data				
10	24	EP0-OUT	EP0-OUT has USB data				
11	28	EP1-IN	EP1-IN ready to be loaded with data				
12	2C	EP1-OUT	EP1-OUT has USB data				
13	30	EP2	IN: buffer available. OUT: buffer has data				
14	34	EP4	IN: buffer available. OUT: buffer has data				
15	38	EP6	IN: buffer available. OUT: buffer has data				
16	3C	EP8	IN: buffer available. OUT: buffer has data				
17	40	IBN	IN-Bulk-NAK (any IN endpoint)				
18	44		reserved				
19	48	EP0PING	EP0 OUT was pinged and it NAK'd				
20	4C	EP1PING	EP1 OUT was pinged and it NAK'd				
21	50	EP2PING	EP2 OUT was pinged and it NAK'd				
22	54	EP4PING	EP4 OUT was pinged and it NAK'd				
23	58	EP6PING	EP6 OUT was pinged and it NAK'd				
24	5C	EP8PING	EP8 OUT was pinged and it NAK'd				
25	60	ERRLIMIT	Bus errors exceeded the programmed limit				
26	64	-	-				
27	68	-	Reserved				
28	6C	-	Reserved				
29	70	EP2ISOERR	ISO EP2 OUT PID sequence error				
30	74	EP4ISOERR	ISO EP4 OUT PID sequence error				
31	78	EP6ISOERR	ISO EP6 OUT PID sequence error				
32	7C	EP8ISOERR	ISO EP8 OUT PID sequence error				

If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), the FX2LP substitutes its INT2VEC byte. Therefore, if the high byte ("page") of a jump table address is preloaded at the location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs the jump to the correct address out of the 27 addresses within the page.

FIFO/GPIF Interrupt (INT4)

Just as the USB Interrupt is shared among 27 individual USB interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, similar to the USB Interrupt, can employ autovectoring.

Table 4 on page 8 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources.

Default Full-Speed Alternate Settings

Table 6. Default Full Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	64 bulk	64 int	64 int
ep1in	0	64 bulk	64 int	64 int
ep2	0	64 bulk out (2×)	64 int out (2×)	64 iso out (2×)
ep4	0	64 bulk out (2×)	64 bulk out (2×)	64 bulk out (2×)
ep6	0	64 bulk in (2×)	64 int in (2×)	64 iso in (2×)
ep8	0	64 bulk in (2×)	64 bulk in (2×)	64 bulk in (2×)

Default High Speed Alternate Settings

Table 7. Default Hi-Speed Alternate Settings^[5, 6]

Alternate Setting	0	1	2	3
ep0	64	64	64	64
ep1out	0	512 bulk ^[7]	64 int	64 int
ep1in	0	512 bulk ^[7]	64 int	64 int
ep2	0	512 bulk out (2x)	512 int out (2x)	512 iso out (2x)
ep4	0	512 bulk out (2x)	512 bulk out (2x)	512 bulk out (2x)
ep6	0	512 bulk in (2×)	512 int in (2x)	512 iso in (2x)
ep8	0	512 bulk in (2×)	512 bulk in (2x)	512 bulk in (2×)

External FIFO Interface

Architecture

The FX2LP slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags).

In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms: the GPIF for internally generated control signals and the slave FIFO interface for externally controlled transfers.

Master/Slave Control Signals

The FX2LP endpoint FIFOs are implemented as eight physically distinct 256×16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between

"USB FIFOs" and "Slave FIFOs." Because they are physically the same memory, no bytes are actually transferred between buffers.

At any time, some RAM blocks are filling/emptying with the USB data under SIE control, while other RAM blocks are available to the 8051, the I/O control unit, or both. The RAM blocks operates as single-port in the USB domain, and dual-port in the 8051-I/O domain. The blocks can be configured as single-, double-, triple-, or quad-buffered as previously shown.

The I/O control unit implements either an internal master (M for Master) or external master (S for Slave) interface.

In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 MBytes/s (48

Notes

5. "0" means "not implemented."

6. "2x" means "double buffered."

^{7.} Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.

	Fig	jure 6. Si	gnal	
	Port		GPIF Master	Slave FIFO
	XTALIN XTALOUT RESET# WAKEUP# SCI 56	PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0	$\begin{array}{l} \Leftrightarrow \ FD[15] \\ \Leftrightarrow \ FD[14] \\ \Leftrightarrow \ FD[12] \\ \Leftrightarrow \ FD[12] \\ \Leftrightarrow \ FD[12] \\ \Leftrightarrow \ FD[9] \\ \Leftrightarrow \ FD[9] \\ \Leftrightarrow \ FD[9] \\ \Leftrightarrow \ FD[6] \\ \iff FD[6] \\ \iff FD[6] \\ \Leftrightarrow \ FD[6] \\ \iff $	$\begin{array}{l} \Leftrightarrow FD[15] \\ \Leftrightarrow FD[14] \\ \Leftrightarrow FD[12] \\ \Leftrightarrow FD[12] \\ \Leftrightarrow FD[10] \\ \Leftrightarrow FD[9] \\ \Leftrightarrow FD[9] \\ \Leftrightarrow FD[8] \\ \Leftrightarrow FD[6] \\ \Leftrightarrow FD[6] \\ \Leftrightarrow FD[6] \\ \Leftrightarrow FD[4] \\ \Leftrightarrow FD[4] \\ \Leftrightarrow FD[0] \end{array}$
\leftrightarrow	SDA **PE0 replaces IFCLK		RDY0 ← RDY1 ←	
←→	& PE1 replaces CLKOUT on CY7C68015A/16A **PE0		$\begin{array}{c} \text{CTL0} \rightarrow \\ \text{CTL1} \rightarrow \\ \text{CTL2} \rightarrow \end{array}$	\rightarrow FLAGA \rightarrow FLAGB \rightarrow FLAGC
	**PE1 IFCLK CLKOUT DPLUS DMINUS	INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7	INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7	INT0#/ PA0 INT1#/ PA1 ← SLOE WU2/PA3 ← FIFOADR0 ← FIFOADR1 ← PKTEND PA7/FLAGD/SLCS#
	100 BKPT PORTC7/GPIFADR7 PORTC6/GPIFADR6 PORTC5/GPIFADR5 PORTC3/GPIFADR3 PORTC2/GPIFADR3 PORTC2/GPIFADR3 PORTC2/GPIFADR3 PCTC2/GPIFADR8 PE6/T2EX PE5/INT6 PE4/RXD10UT PE3/RXD00UT PE3/RXD00UT PE3/RXD00UT PE3/RXD00UT PE3/RXD00UT D7 D6 D5 D4 D3 D2 D1 D0	RxD0 TxD0 RxD1 TxD1 INT4 INT5# INT5# INT5# INT5# I V CS# I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V CS I V S I V S I V S I S I V S I V S I V S I V S I S I	$ \rightarrow CTL3 $ $ \rightarrow CTL4 $ $ \rightarrow CTL5 $ $ \leftarrow RDY2 $ $ \leftarrow RDY3 $ $ \leftarrow RDY4 $ $ \leftarrow RDY4 $ $ \leftarrow RDY5 $	
	EA	A6 A5 A4 A3 A2 A1 A0		

Figure 10. CY7C68013A/14A/15A/16A 56-Pin QFN Pin Assignment

* denotes programmable polarity ** denotes CY7C68015A/CY7C68016A pinout

Table 11. FX2LP Pin Descriptions^[11] (continued)

128 TQFP	100 TQFP	56 SSOP	56 QFN	56 VFBGA	Name	Туре	Default	Reset ^[12]	Description
7	6	-	_	-	RDY3	Input	N/A	N/A	RDY3 is a GPIF input signal.
8	7	-	-	-	RDY4	Input	N/A	N/A	RDY4 is a GPIF input signal.
9	8	-	-	-	RDY5	Input	N/A	N/A	RDY5 is a GPIF input signal.
69	54	36	29	7H	CTL0 or FLAGA	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL0 is a GPIF control output. FLAGA is a programmable slave-FIFO output status flag signal. Defaults to programmable for the FIFO selected by the FIFOADR[1:0] pins.
70	55	37	30	7G	CTL1 or FLAGB	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL1 is a GPIF control output. FLAGB is a programmable slave-FIFO output status flag signal. Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins.
71	56	38	31	8H	CTL2 or FLAGC	O/Z	н	L	Multiplexed pin whose function is selected by the following bits: IFCONFIG[10]. CTL2 is a GPIF control output. FLAGC is a programmable slave-FIFO output status flag signal. Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins.
66	51	-	_	-	CTL3	O/Z	Н	L	CTL3 is a GPIF control output.
67	52	-	-	-	CTL4	Output	Н	L	CTL4 is a GPIF control output.
98	76	-	-	-	CTL5	Output	Н	L	CTL5 is a GPIF control output.
32	26	20	13	2G	IFCLK on CY7C68013A and CY7C68014A	I/O/Z	Z	Z	Interface Clock, used for synchronously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocking is used (IFCONFIG.7 = 1) the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally sourced, by setting the bit IFCONFIG.4 =1.
					CY7C68015A and CY7C68016A	- I/O/Z	1	Z	PE0 is a bidirectional I/O port pin.
28	22	-	_	_	INT4	Input	N/A	N/A	INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin is edge-sensitive, active HIGH.
106	84	_	_	_	INT5#	Input	N/A	N/A	INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin is edge-sensitive, active LOW.
31	25	_	_	_	Т2	Input	N/A	N/A	T2 is the active HIGH T2 input signal to 8051 Timer2, which provides the input to Timer2 when C/T2 = 1. When $C/T2 = 0$, Timer2 does not use this pin.

DC Characteristics

Table 14. DC Characteristics

Parameter	Description	Conditions	Min	Тур	Max	Unit
VCC	Supply voltage	-	3.00	3.3	3.60	V
VCC Ramp Up	0 to 3.3 V	-	200	_	-	μS
V _{IH}	Input HIGH voltage	-	2	_	5.25	V
V _{IL}	Input LOW voltage	-	-0.5	-	0.8	V
V _{IH_X}	Crystal input HIGH voltage	-	2	_	5.25	V
V _{IL_X}	Crystal input LOW voltage	-	-0.5	-	0.8	V
I _I	Input leakage current	0< V _{IN} < V _{CC}	-	-	±10	μA
V _{OH}	Output voltage HIGH	I _{OUT} = 4 mA	2.4	_	-	V
V _{OL}	Output LOW voltage	I _{OUT} = -4 mA	_	_	0.4	V
I _{ОН}	Output current HIGH	-	-	-	4	mA
I _{OL}	Output current LOW	-	_	_	4	mA
C		Except D+/D-	-	-	10	pF
		D+/D-	_	-	15	pF
	Suspend current	Connected	_	300	380 ^[18]	μA
1	CY7C68014/CY7C68016	Disconnected	-	100	150 ^[18]	μA
SUSP	Suspend current	Connected	-	0.5	1.2 ^[18]	mA
	CY7C68013/CY7C68015	Disconnected	_	0.3	1.0 ^[18]	mA
	Supply ourrent	8051 running, connected to USB HS	_	50	85	mA
'CC		8051 running, connected to USB FS	-	35	65	mA
т	Reset time after valid power	$V_{r} = min = 3.0 V$	5.0	-	-	ms
'RESET	Pin reset after powered on		200	_	-	μS

USB Transceiver

USB 2.0 compliant in Full Speed and Hi-Speed modes.

AC Electrical Characteristics

USB Transceiver

USB 2.0 compliant in Full-Speed and Hi-Speed modes.

Program Memory Read

Table 15.	Program	Memory Read	Parameters
-----------	---------	--------------------	------------

Parameter	Description	Min	Тур	Max	Unit	Notes
		_	20.83	_	ns	48 MHz
t _{CL}	1/CLKOUT frequency	_	41.66	_	ns	24 MHz
		-	83.2	_	ns	12 MHz
t _{AV}	Delay from clock to valid address	0	_	10.7	ns	-
t _{STBL}	Clock to PSEN LOW	0	_	8	ns	_
t _{STBH}	Clock to PSEN HIGH	0	_	8	ns	-
t _{SOEL}	Clock to OE LOW	-	_	11.1	ns	_
t _{SCSL}	Clock to CS LOW	-	-	13	ns	_
t _{DSU}	Data setup to clock	9.6	_	_	ns	-
t _{DH}	Data hold time	0	_	_	ns	_

Notes

19. CLKOUT is shown with positive polarity.

20. t_{ACC1} is computed from these parameters as follows: t_{ACC1}(24 MHz) = $3^{*}t_{CL} - t_{AV} - t_{DSU} = 106$ ns. t_{ACC1}(48 MHz) = $3^{*}t_{CL} - t_{AV} - t_{DSU} = 43$ ns.

CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A

Data Memory Read^[21]

Figure 13. Data Memory Read Timing Diagram

Table 16. Data Memory Read Parameters

Parameter	Description	Min	Тур	Max	Unit	Notes
		_	20.83	_	ns	48 MHz
t _{CL}	1/CLKOUT frequency	_	41.66	_	ns	24 MHz
		_	83.2	_	ns	12 MHz
t _{AV}	Delay from clock to valid address	_	_	10.7	ns	-
t _{STBL}	Clock to RD LOW	_	_	11	ns	-
t _{STBH}	Clock to RD HIGH	_	_	11	ns	_
t _{SCSL}	Clock to CS LOW	_	_	13	ns	-
t _{SOEL}	Clock to OE LOW	_	_	11.1	ns	-
t _{DSU}	Data setup to clock	9.6	-	_	ns	-
t _{DH}	Data hold time	0	-	_	ns	-

When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# is active. The address of AUTOPTR2 is active throughout the cycle and meets the address valid time for which is based on the stretch value.

Notes

21. The stretch memory cycle feature enables EZ-USB firmware to adjust the speed of data memory accesses not the program memory accesses. Details including typical strobe width timings can be found in the section 12.1.2 of the Technical Reference Manual. The address cycle width can be interpreted from these.

22. t_{ACC2} and t_{ACC3} are computed from these parameters as follows: $t_{ACC2}(24 \text{ MHz}) = 3^* t_{CL} - t_{AV} - t_{DSU} = 106 \text{ ns}$ $t_{ACC2}(24 \text{ MHz}) = 3^* t_{CL} - t_{AV} - t_{DSU} = 43 \text{ ns}$ $t_{ACC3}(24 \text{ MHz}) = 5^* t_{CL} - t_{AV} - t_{DSU} = 190 \text{ ns}$ $t_{ACC3}(48 \text{ MHz}) = 5^* t_{CL} - t_{AV} - t_{DSU} = 86 \text{ ns}$

Slave FIFO Synchronous Read

Parameter	Parameter Description Min		Max	Ту	/p	Unit
Faranteter	Description		INIAA	Min	Max	Onit
t _{IFCLK}	IFCLK period	20.83	-	_	_	ns
t _{SRD}	SLRD to clock setup time	18.7	-	-	-	ns
t _{RDH}	Clock to SLRD hold time	0	-	-	-	ns
t _{OEon}	SLOE turn on to FIFO data valid	-	10.5	_	_	ns
t _{OEoff}	SLOE turn off to FIFO data hold	-	10.5	_	_	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	9.5	-	-	ns
t _{XFD}	Clock to FIFO data output propagation delay	-	11	_	_	ns
t _{IFCLKR}	IFCLK rise time	-	-	_	900	ps
t _{IFCLKF}	IFCLK fall time	-	-	_	900	ps
t _{IFCLKOD}	IFCLK output duty cycle	_	-	49	51	%
t _{IFCLKJ}	IFCLK jitter peak to peak	-	-	_	300	ps

Parameter	Description	Min	Мах	Unit
t _{IFCLK}	IFCLK period	20.83	200	ns
t _{SRD}	SLRD to clock setup time	12.7	-	ns
t _{RDH}	Clock to SLRD hold time	3.7	-	ns
t _{OEon}	SLOE turn on to FIFO data valid	-	10.5	ns
t _{OEoff}	SLOE turn off to FIFO data hold	-	10.5	ns
t _{XFLG}	Clock to FLAGS output propagation delay	-	13.5	ns
t _{XFD}	Clock to FIFO data output propagation delay	-	15	ns

Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced $\mbox{\rm IFCLK}^{[25]}$

Slave FIFO Asynchronous Read

Table 22. Slave FIFO Asynchronous Read Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{RDpwl}	SLRD pulse width LOW	50	_	ns
t _{RDpwh}	SLRD pulse width HIGH	50	-	ns
t _{XFLG}	SLRD to FLAGS output propagation delay	_	70	ns
t _{XFD}	SLRD to FIFO data output propagation delay	_	15	ns
t _{OEon}	SLOE turn-on to FIFO data valid	_	10.5	ns
t _{OEoff}	SLOE turn-off to FIFO data hold	_	10.5	ns

Slave FIFO Synchronous Write

Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK period	20.83	_	ns
t _{SWR}	SLWR to clock setup time	10.4	-	ns
t _{WRH}	Clock to SLWR hold time	0	-	ns
t _{SFD}	FIFO data to clock setup time	9.2	-	ns
t _{FDH}	Clock to FIFO data hold time	0	_	ns
t _{XFLG}	Clock to FLAGS output propagation time	-	9.5	ns

Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	IFCLK Period	20.83	200	ns
t _{SWR}	SLWR to clock setup time	12.1	_	ns
t _{WRH}	Clock to SLWR hold time	3.6	_	ns
t _{SFD}	FIFO data to clock setup time	3.2	_	ns
t _{FDH}	Clock to FIFO data hold time	4.5	_	ns
t _{XFLG}	Clock to FLAGS output propagation time	-	13.5	ns

Slave FIFO Asynchronous Write

Figure 24. Slave FIFO Synchronous Write Sequence and Timing Diagram^[24]

Slave FIFO Asynchronous Packet End Strobe

Figure 25. Slave FIFO Asynchronous Packet End Strobe Timing Diagram^[24]

Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{PEpwl}	PKTEND pulse width LOW	50	_	ns
t _{PWpwh}	PKTEND pulse width HIGH	50	-	ns
t _{XFLG}	PKTEND to FLAGS output propagation delay	_	115	ns

Slave FIFO Output Enable

Table 29. Slave FIFO Output Enable Parameters

Parameter	Description	Min	Max	Unit
t _{OEon}	SLOE assert to FIFO DATA output		10.5	ns
t _{OEoff}	SLOE deassert to FIFO DATA hold		10.5	ns

Slave FIFO Address to Flags/Data

Table 30. Slave FIFO Address to Flags/Data Parameters

Parameter	Description	Min	Max	Unit
t _{XFLG}	FIFOADR[1:0] to FLAGS output propagation delay	-	10.7	ns
t _{XFD}	FIFOADR[1:0] to FIFODATA output propagation delay	-	14.3	ns

Slave FIFO Synchronous Address

Figure 28. Slave FIFO Synchronous Address Timing Diagram^[24]

Table 31. Slave FIFO Synchronous Address Parameters^[25]

Parameter	Description	Min	Max	Unit
t _{IFCLK}	Interface clock period	20.83	200	ns
t _{SFA}	FIFOADR[1:0] to clock setup time	25	-	ns
t _{FAH}	Clock to FIFOADR[1:0] hold time	10	_	ns

Slave FIFO Asynchronous Address

Figure 29. Slave FIFO Asynchronous Address Timing Diagram^[24]

Table 32. Slave FIFO Asynchronous Address Parameters^[27]

Parameter	Description	Min	Max	Unit
t _{SFA}	FIFOADR[1:0] to SLRD/SLWR/PKTEND setup time	10	-	ns
t _{FAH}	RD/WR/PKTEND to FIFOADR[1:0] hold time	10	_	ns

Sequence Diagram of a Single and Burst Asynchronous Read

Figure 33. Slave FIFO Asynchronous Read Sequence and Timing Diagram^[24]

Figure 34. Slave FIFO Asynchronous Read Sequence of Events Diagram

Figure 33 shows the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read.

- At t = 0, the FIFO address is stable and the SLCS signal is asserted.
- At t = 1, SLOE is asserted. This results in the data bus being driven. The data that is driven on to the bus is the previous data, the data that was in the FIFO from an earlier read cycle.
- At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of t_{RDpwl} and minimum de-active pulse width of t_{RDpwh}. If SLCS is used, then SLCS must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition.)
- The data that is driven, after asserting SLRD, is the updated data from the FIFO. This data is valid after a propagation delay of t_{XFD} from the activating edge of SLRD. In Figure 33, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle (SLRD is asserted), SLOE must be in an asserted state. SLRD and SLOE can also be tied together.

The same sequence of events is also shown for a burst read marked with T = 0 through 5.

Note In the burst read mode, during SLOE is asserted, the data bus is in a driven state and outputs the previous data. After SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented.

Sequence Diagram of a Single and Burst Asynchronous Write

Figure 35 shows the timing relationship of the SLAVE FIFO write in an asynchronous mode. The diagram shows a single write followed by a burst write of 3 bytes and committing the 4byte short packet using PKTEND.

- At t = 0 the FIFO address is applied, ensuring that it meets the setup time of t_{SFA}. If SLCS is used, it must also be asserted (SLCS may be tied LOW in some applications).
- At t = 1 SLWR is asserted. SLWR must meet the minimum active pulse of t_{WRpwl} and minimum de-active pulse width of t_{WRpwh}. If the SLCS is used, it must be asserted with SLWR or before SLWR is asserted.
- At t = 2, data must be present on the bus t_{SFD} before the deasserting edge of SLWR.
- At t = 3, deasserting SLWR causes the data to be written from the data bus to the FIFO and then increments the FIFO pointer. The FIFO flag is also updated after t_{XFLG} from the deasserting edge of SLWR.

The same sequence of events is shown for a burst write and is indicated by the timing marks of T = 0 through 5.

Note In the burst write mode, after SLWR is deasserted, the data is written to the FIFO and then the FIFO pointer is incremented to the next byte in the FIFO. The FIFO pointer is post incremented.

In Figure 35, after the four bytes are written to the FIFO and SLWR is deasserted, the short 4-byte packet can be committed to the host using PKTEND. The external device should be designed to not assert SLWR and the PKTEND signal at the same time. It should be designed to assert the PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The FIFOADDR lines have to held constant during the PKTEND assertion.

Ordering Information

Table 33. Ordering Information

Ordering Code	Package Type	RAM Size	# Prog I/Os	8051 Address /Data Bus	Serial Debug ^[28]
Ideal for Battery Powered App	olications				
CY7C68014A-128AXC	128 TQFP – Pb-free	16 K	40	16-/8-bit	Y
CY7C68014A-100AXC	100 TQFP – Pb-free	16 K	40	-	Y
CY7C68014A-56PVXC	56 SSOP – Pb-free	16 K	24	-	N
CY7C68014A-56LTXC	56 QFN - Pb-free	16 K	24	-	N
CY7C68016A-56LTXC	56 QFN - Pb-free	16 K	26	-	N
CY7C68016A-56LTXCT	56 QFN - Pb-free	16 K	26	-	N
Ideal for Non Battery Powered	Applications	•	•		
CY7C68013A-128AXC	128 TQFP – Pb-free	16 K	40	16-/8-bit	Y
CY7C68013A-128AXI	128 TQFP – Pb-free (Industrial)	16 K	40	16-/8-bit	Y
CY7C68013A-100AXC	100 TQFP – Pb-free	16 K	40	-	Y
CY7C68013A-100AXI	100 TQFP – Pb-free (Industrial)	16 K	40	-	Y
CY7C68013A-56PVXC	56 SSOP – Pb-free	16 K	24	-	N
CY7C68013A-56PVXCT	56 SSOP – Pb-free	16 K	24	-	N
CY7C68013A-56PVXI	56 SSOP – Pb-free (Industrial)	16 K	24	-	N
CY7C68013A-56BAXC	56 VFBGA – Pb-free	16 K	24	-	N
CY7C68013A-56BAXCT	56 VFBGA – Pb-free	16 K	24	-	N
CY7C68013A-56LTXC	56 QFN – Pb-free	16 K	24	-	N
CY7C68013A-56LTXCT	56 QFN – Pb-free	16 K	24	-	N
CY7C68013A-56LTXI	56 QFN – Pb-free (Industrial)	16 K	24	-	N
CY7C68015A-56LTXC	56 QFN – Pb-free	16 K	26	-	N
Development Tool Kit					
CY3684	EZ-USB FX2LP development kit				
Reference Design Kit	Reference Design Kit				
CY4611B	USB 2.0 to ATA/ATAPI reference	ISB 2.0 to ATA/ATAPI reference design using EZ-USB FX2LP			

Ordering Code Definitions

Note

28. As UART is not available in the 56-pin package of CY7C68013A, serial port debugging using Keil Monitor is not possible.

Errata

This section describes the errata for the EZ-USB[®] FX2LP™ CY7C68013A/14A/15A/16A Rev. B silicon. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Package Type	Operating Range
CY7C68013A	All	Commercial
CY7C68014A	All	Commercial
CY7C68015A	All	Commercial
CY7C68016A	All	Commercial

CY7C68013A/14A/15A/16A Qualification Status

In production

CY7C68013A/14A/15A/16A Errata Summary

This table defines the errata for available CY7C68013A/14A/15A/16A family devices. An "X" indicates that the errata pertain to the selected device.

Items	CY7C68013A/14A/15A/16A	Silicon Revision	Fix Status
[1.]. Empty Flag Assertion	Х	В	No silicon fix planned currently. Use the workaround.

1. Empty Flag Assertion

Problem Definition

In Slave FIFO Asynchronous Word Wide mode, if a single word data is transferred from the USB host to EP2, configured as OUT Endpoint (EP) in the first transaction, then the Empty flag behaves incorrectly. This does not happen if the data size is more than one word in the first transaction.

Parameters Affected

NA

■ Trigger Condition(S)

In Slave FIFO Asynchronous Word Wide Mode, after firmware boot and initialization, EP2 OUT endpoint empty flag indicates the status as 'Empty'. When data is received in EP2, the status changes to 'Not-Empty'. However, if data transferred to EP2 is a single word, then asserting SLRD with FIFOADR pointing to any other endpoint changes 'Not-Empty' status to 'Empty' for EP2 even though there is a word data (or it is untouched). This is noticed only when the single word is sent as the first transaction and not if it follows a multi-word packet as the first transaction.

Scope of Impact

External interface does not see data available in EP2 OUT endpoint and can end up waiting for data to be read.

Workaround

One of the following workarounds can be used:

- Send a pulse signal to the SLWR pin, with FIFOADR pins pointing to an endpoint other than EP2, after firmware initialization and before or after transferring the data to EP2 from the host
- · Set the length of the first data to EP2 to be more than a word
- Prioritize EP2 read from the Master for multiple OUT EPs and single word write to EP2
- Write to an IN EP, if any, from the Master before reading from other OUT EPs (other than EP2) from the Master.

Fix Status

There is no silicon fix planned for this currently; use the workarounds provided.

Document History Page (continued)

Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB [®] FX2LP™ USB Microcontroller High- Speed USB Peripheral Controller Document Number: 38-08032						
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change		
*W	3998554	GAYA	07/19/2013	Added Errata footnote (Note 3). Updated Functional Overview: Updated Interrupt System: Updated FIFO/GPIF Interrupt (INT4): Added Note 3 and referred the same note in "Endpoint 2 empty flag" in Table 4. Updated Package Diagrams: spec 51-85062 – Changed revision from *E to *F. spec 001-53450 – Changed revision from *B to *C. Added Errata. Updated in new template.		
*X	4617527	GAYA	01/15/2015	Updated Figure 13 Added a note to sections Data Memory Read ^[21] and Data Memory Write ^[23] sections Updated template to include the More Information section Updated Figure 37, Figure 38, Figure 39 Updated Table 11 with Reset state information for pins Sunset Review		
*Y	5317277	ODC	06/28/2016	Updated CY Logo and Sales Disclaimer.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2003-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-08032 Rev. *Y Revise FX2LP is a trademark and EZ-USB is a registered trademark of Cypress Semiconductor Corporation.

Revised June 28, 2016

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.