

Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	MIPS-II
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	256-BBGA
Supplier Device Package	256-PBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/idt79rc32v334-100bbi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4 DMA Channels

- 4 general purpose DMA, each with endianess swappers and byte lane data alignment
- Supports scatter/gather, chaining via linked lists of records
- Supports memory-to-memory, memory-to-I/O, memory-to-PCI, PCI-to-PCI, and I/O-to-I/O transfers
- Supports unaligned transfers
- Supports burst transfers
- Programmable DMA bus transactions burst size (up to 16 bytes)

PCI Bus Interface

- 32-bit PCI, up to 66 MHz
- Revision 2.2 compatible
- Target or master
- Host or satellite
- Three slot PCI arbiter
- Serial EEPROM support, for loading configuration registers
- Off-the-shelf development tools
- JTAG Interface (IEEE Std. 1149.1 compatible)
- 256-ball BGA (1.0mm spacing)
- 3.3V operation with 5V tolerant I/O
- EJTAG in-circuit emulator interface

Device Overview

The IDT RC32334 device is an integrated processor based on the RC32300 CPU core. This product incorporates a high-performance, low-cost 32-bit CPU core with functionality common to a large number of embedded applications. The RC32334 integrates these functions to enable the use of low-cost PC commodity market memory and I/O devices, allowing the aggressive price/performance characteristics of the CPU to be realized quickly into low-cost systems.

CPU Execution Core

The RC32334 integrates the RISCore32300, the same CPU core found in the award-winning RC32364 microprocessor.

The RISCore32300 implements the Enhanced MIPS-II ISA. Thus, it is upwardly compatible with applications written for a wide variety of MIPS architecture processors, and it is kernel compatible with the modern operating systems that support IDT's 64-bit RISController product family.

The RISCore32300 was explicitly defined and designed for integrated processor products such as the RC32334. Key attributes of the execution core found within this product include:

- High-speed, 5-stage scalar pipeline executes to 150MHz. This high performance enables the RC32334 to perform a variety of performance intensive tasks, such as routing, DSP algorithms, etc.
- 32-bit architecture with enhancements of key capabilities. Thus, the RC32334 can execute existing 32-bit programs, while enabling designers to take advantage of recent advances in CPU architecture.
- Count leading-zeroes/ones. These instructions are common to a wide variety of tasks, including modem emulation, voice over IP compression and decompression, etc.
- Cache PREFetch instruction support, including a specialized form intended to help memory coherency. System programmers can allocate and stage the use of memory bandwidth to achieve maximum performance.
- 8kB of 2-way set associative instruction cache

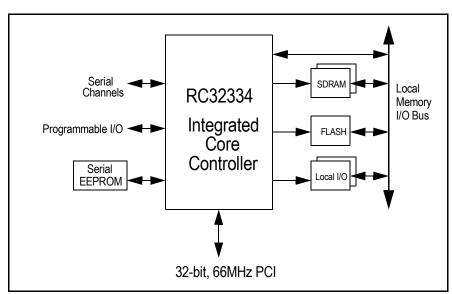


Figure 2 RC32334 Based System Diagram

- 2KB of 2-way set associative data cache, capable of write-back and write-through operation.
- Cache locking per line to speed real-time systems and critical system functions
- On-chip TLB to enable multi-tasking in modern operating systems
- EJTAG interface to enable sophisticated low-cost in-circuit emulation.

Synchronous-DRAM Interface

The RC32334 integrates a SDRAM controller which provides direct control of system SyncDRAM running at speeds to 75MHz.

Key capabilities of the SDRAM controller include:

- Direct control of 4 banks of SDRAM (up to 2 64-bit wide DIMMs)
- On-chip page comparators optimize access latency.
- ◆ Speeds to 75MHz
- Programmable address map.
- Supports 16, 64, 128, 256, or 512Mb SDRAM devices
- Automatic refresh generation driven by on-chip timer
- Support for discrete devices, SODIMM, or DIMM modules.

Thus, systems can take advantage of the full range of commodity memory that is available, enabling system optimization for cost, realestate, or other attributes.

Local Memory and I/O Controller

The local memory and I/O controller implements direct control of external memory devices, including the boot ROM as well as other memory areas, and also implements direct control of external peripherals.

The local memory controller is highly flexible, allowing a wide range of devices to be directly controlled by the RC32334 processor. For example, a system can be built using an 8-bit boot ROM, 16-bit FLASH cards (possibly on PCMCIA), a 32-bit SRAM or dual-port memory, and a variety of low-cost peripherals.

Key capabilities include:

- Direct control of EPROM, FLASH, RAM, and dual-port memories
- 6 chip-select outputs, supporting up to 64MB per memory space
- ◆ Supports mixture of 8-, 16-, and 32-bit wide memory regions
- Flexible timing protocols allow direct control of a wide variety of devices
- Programmable address map for 2 chip selects
- Automatic wait state generation.

PCI Bus Bridge

In order to leverage the wide availability of low-cost peripherals for the PC market as well as to simplify the design of add-in functions, the RC32334 integrates a full 32-bit PCI bus bridge. Key attributes of this bridge include:

- 66 MHz operation
- PCI revision 2.2 compliant
- Programmable address mappings between CPU/Local memory and PCI memory and I/O
- On-chip PCI arbiter
- Extensive buffering allows PCI to operate concurrently with local memory transfers
- Selectable byte-ordering swapper
- ◆ 5V tolerant I/O.

On-Chip DMA Controller

To minimize CPU exception handling and maximize the efficiency of system bandwidth, the RC32334 integrates a very sophisticated 4-channel DMA controller on chip.

The RC32334 DMA controller is capable of:

- Chaining and scatter/gather support through the use of a flexible, linked list of DMA transaction descriptors
- Capable of memory<->memory, memory<->I/O, and PCI<->memory DMA
- Unaligned transfer support
- Byte, halfword, word, quadword DMA support.

On-Chip Peripherals

The RC32334 also integrates peripherals that are common to a wide variety of embedded systems.

- Dual channel 16550 compatible UARTs, with modem control interface on one channel.
- SPI master mode interface for direct interface to EEPROM, A/D, etc.
- Interrupt Controller to speed interrupt decode and management
- Four 32-bit on-chip Timer/Counters
- Programmable I/O module

Debug Support

To facilitate rapid time to market, the RC32334 provides extensive support for system debug.

First and foremost, this product integrates an EJTAG in-circuit emulation module, allowing a low-cost emulator to interoperate with programs executing on the controller. By using an augmented JTAG interface, the RC32334 is able to reuse the same low-cost emulators developed around the RC32364 CPU.

Secondly, the RC32334 implements additional reporting signals intended to simplify the task of system debugging when using a logic analyzer. This product allows the logic analyzer to differentiate transactions initiated by DMA from those initiated by the CPU and further allows CPU transactions to be sorted into instruction fetches vs. data fetches.

Finally, the RC32334 implements a full boundary scan capability, allowing board manufacturing diagnostics and debug.

Pin Description Table

The following table lists the pins provided on the RC32334. Note that those pin names followed by "_n" are active-low signals. All external pull-ups and pull-downs require $10 \text{ k}\Omega$ resistor.

Name	Туре	Reset State Status	Drive Strength Capability			Descripti	on	
Local System Inter	face			ı				
mem_data[31:0]	I/O	Z	High	Local System I Primary data bu	Data Bus s for memory. I/O and SD	DRAM.		
mem_addr[25:2]	I/O	[25:10] Z [9:2] L	[25:17] Low [16:2] High	each word data,	rovide the Memory or DR, the address increments of ble below indicates how t	either in linear or	sub-block ordering,	M bus transaction. During depending on the transacused to address discreet
				Port Width	Pin Signals mem_we_n[3]	mem_we_n[2]	mem_we_n[1]	mem_we_n[0]
				DMA (32-bit)	mem_we_n[3]	mem_we_n[2]	mem_we_n[1]	mem_we_n[0]
				32-bit	mem_we_n[3]	mem_we_n[2]	mem_we_n[1]	mem_we_n[0]
				16-bit	Byte High Write Enable	mem_addr[1]	Not Used (Driven Low)	Byte Low Write Enable
				8-bit	Not Used (Driven High)	mem_addr[1]	mem_addr[0]	Byte Write Enable
				mem_addr[19] A mem_addr[11] A mem_addr[16] A mem_addr[16] A mem_addr[13] A mem_addr[13] A mem_addr[10] A mem_addr[10] A mem_addr[8] Al mem_addr[7] Al mem_addr[6] Al mem_addr[5] Al mem_addr[4] Al mem_addr[3] Al mem_addr[3] Al mem_addr[3] Al mem_addr[3] Al	Alternate function: reset_p Alternate function: modebi Alternate function: modebi Alternate function: sdram_ Alternate function: sdram_ Alternate function: sdram_ Alternate function: sdram_ Alternate function: sdram_ atternate function: sdram_	it [9]. it [8]. it [8]. addr[16]. addr[15]. addr[14]. addr[13]. addr[11]. addr[9]. addr[8]. addr[6]. addr[6]. addr[6]. addr[6]. addr[4]. addr[4]. addr[3].		
mem_cs_n[5:0]	Output	Н	Low with internal pull-up	Memory Chip S Recommend ex Signals that a M		elected.		
mem_oe_n	Output	Н	High	Recommend ex	t Enable Negated ternal pull-up. lemory Bank can output it	ts data lines onto	the cpu_ad bus.	

Table 1 Pin Description (Part 1 of 7)

Name	Туре	Reset State Status	Drive Strength Capability	Description
pci_rst_n	Input	L	_	PCI Reset Negated Host mode: Resets all PCI related logic. Satellite mode: Resets all PCI related logic and also warm resets the 32334.
pci_devsel_n	I/O	Z	PCI	PCI Device Select Negated Driven by the target to indicate that the target has decoded the present address as a target address.
pci_req_n[2]	Input	Z	_	PCI Bus Request #2 Negated Requires external pull-up. Host mode: pci_req_n[2] is an input indicating a request from an external device. Satellite mode: used as pci_idsel pin which selects this device during a configuration read or write. Alternate function: pci_idsel (satellite).
pci_req_n[1]	Input	Z	_	PCI Bus Request #1 Negated Requires external pull-up. Host mode: pci_req_n[1] is an input indicating a request from an external device. Alternate function: Unused (satellite).
pci_req_n[0]	I/O	Z	High	PCI Bus Request #0 Negated Requires external pull-up for burst mode. Host mode: pci_req_n[0] is an input indicating a request from an external device. Satellite mode: pci_req_n[0] is an output indicating a request from this device.
pci_gnt_n[2]	Output	Z ¹	High	PCI Bus Grant #2 Negated Recommend external pull-up. Host mode: pci_gnt_n[2] is an output indicating a grant to an external device. Satellite mode: pci_gnt_n[2] is used as the pci_inta_n output pin. Alternate function: pci_inta_n (satellite).
pci_gnt_n[1] / pci_eeprom_cs	I/O	X for 1 pci clock then H ²	High	PCI Bus Grant #1 Negated Recommend external pull-up. Host mode: pci_gnt_n[1] is an output indicating a grant to an external device. Satellite mode: Used as pci_eprom_cs output pin for Serial Chip Select for loading PCI Configuration Registers in the RC32334 Reset Initialization Vector PCI boot mode. Defaults to the output direction at reset time. 1st Alternate function: pci_eeprom_cs (satellite). 2nd Alternate function: PIO[11].
pci_gnt_n[0]	I/O	Z	High	PCI Bus Grant #0 Negated Host mode: pci_gnt_n[0] is an output indicating a grant to an external device. Recommend external pull-up. Satellite mode: pci_gnt_n[0] is an input indicating a grant to this device. Require external pull-up.
pci_inta_n	Output Open- collector		PCI	PCI Interrupt #A Negated Uses pci_gnt_n[2]. See the PCI subsection.
pci_lock_n	Input		_	PCI Lock Negated Driven by the Bus Master to indicate that an exclusive operation is occurring.

SDRAM Control Interface

sdram_addr_12	Output	L	High	SDRAM Address Bit 12 and Precharge All SDRAM mode: Provides SDRAM address bit 12 (10 on the SDRAM chip) during row address and "pre-charge all" signal during refresh, read and write command.
sdram_ras_n	Output	Н	High	SDRAM RAS Negated SDRAM mode: Provides SDRAM RAS control signal to all SDRAM banks.

Table 1 Pin Description (Part 3 of 7)

¹ Z in host mode; L in satellite non-boot mode; Z in satellite boot mode.
² H in host mode; L in satellite non-boot and boot modes. X = unknown.

Name	Туре	Reset State Status	Drive Strength Capability	Description
uart_tx[1:0]	I/O	Z	Low	UART Transmit Data Bus UART mode: Each UART channel sends data on their respective output pin. Note that these pins default to inputs at reset time and must be programmed via the PIO interface before being used as UART outputs. uart_tx[0] Alternate function: PIO[5]. uart_tx[1] Alternate function: PIO[3].
uart_cts_n[0] uart_dsr_n[0] uart_dtr_n[0] uart_rts_n[0]	I/O	Z	Low	UART Transmit Data Bus UART mode: Data bus modem control signal pins for UART channel 0. uart_cts_n[0] Alternate function: PIO[15]. uart_dsr_n[0] Alternate function: PIO[14]. uart_dtr_n[0] Alternate function: PIO[13]. uart_rts_n[0] Alternate function: PIO[12].
spi_mosi	I/O	L	Low	SPI Data Output Serial mode: Output pin from RC32334 as an Input to a Serial Chip for the Serial data input stream. In PCI satellite mode, acts as an Output pin from RC32334 that connects as an Input to a Serial Chip for the Serial data input stream for loading PCI Configuration Registers in the RC32334 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[10]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_mdo.
spi_miso	I/O	Z	Low	SPI Data Input Serial mode: Input pin to RC32334 from the Output of a Serial Chip for the Serial data output stream. In PCI satellite mode, acts as an Input pin from RC32334 that connects as an output to a Serial Chip for the Serial data output stream for loading PCI Configuration Registers in the RC32334 Reset Initialization Vector PCI boot mode. Defaults to input direction at reset time. 1st Alternate function: PIO[7]. 2nd Alternate function: pci_eeprom_mdi.
spi_sck	I/O	L	Low	SPI Clock Serial mode: Output pin for Serial Clock. In PCI satellite mode, acts as an Output pin for Serial Clock for loading PCI Configuration Registers in the RC323334 Reset Initialization Vector PCI boot mode. 1st Alternate function: PIO[9]. Defaults to the output direction at reset time. 2nd Alternate function: pci_eeprom_sk.
spi_ss_n	I/O	Н	Low	SPI Chip Select Output pin selecting the serial protocol device as opposed to the PCI satellite mode EEPROM device. Alternate function: PIO[8]. Defaults to the output direction at reset time.
CPU Core Specific	Signals			
cpu_nmi_n	Input		_	CPU Non-Maskable Interrupt Requires external pull-up. This interrupt input is active low to the CPU.
cpu_masterclk	Input		_	CPU Master System Clock Provides the basic system clock.
cpu_int_n[5:4], [2:0]	Input		_	CPU Interrupt Requires external pull-up. These interrupt inputs are active low to the CPU.
cpu_coldreset_n	Input	L	_	

Table 1 Pin Description (Part 5 of 7)

Name	Туре	Reset State Status	Drive Strength Capability	Description
cpu_dt_r_n	Output	Z	_	CPU Direction Transmit/Receive This active-low signal controls the DT/R pin of an optional FCT245 transceiver bank. It is asserted during read operations. 1st Alternate function: mem_245_dt_r_n. 2nd Alternate function: sdram_245_dt_r_n.
JTAG Interface Sig	ınals			
jtag_tck	Input		_	JTAG Test Clock Requires external pull-down. An input test clock used to shift into or out of the Boundary-Scan register cells. jtag_tck is independent of the system and the processor clock with nominal 50% duty cycle.
jtag_tdi, ejtag_dint_n	Input		_	JTAG Test Data In Requires an external pull-up on the board. On the rising edge of jtag_tck, serial input data are shifted into either the Instruction or Data register, depending on the TAP controller state. During Real Mode, this input is used as an interrupt line to stop the debug unit from Real Time mode and return the debug unit back to Run Time Mode (standard JTAG). This pin is also used as the ejtag_dint_n signal in the EJTAG mode.
jtag_tdo, ejtag_tpc	Output	Z	High	JTAG Test Data Out The jtag_tdo is serial data shifted out from instruction or data register on the falling edge of jtag_tck. When no data is shifted out, the jtag_tdo is tri-stated. During Real Time Mode, this signal provides a non-sequential program counter at the processor clock or at a division of processor clock. This pin is also used as the ejtag_tpc signal in the EJTAG mode.
jtag_tms	Input		_	JTAG Test Mode Select Requires external pull-up. The logic signal received at the jtag_tms input is decoded by the TAP controller to control test operation. jtag_tms is sampled on the rising edge of the jtag_tck.
jtag_trst_n	Input	L	_	JTAG Test Reset When neither JTAG nor EJTAG are being used, jtag_trst_n must be driven low (pulled down) or the jtag_tms/ejtag_tms signals must be pulled up and jtag_clk actively clocked.
ejtag_dclk	Output	Z	_	EJTAG Test Clock Processor Clock. During Real Time Mode, this signal is used to capture address and data from the ejtag_tpc signal at the processor clock speed or any division of the internal pipeline.
ejtag_pcst[2:0]	I/O	Z	Low	EJTAG PC Trace Status Information 111 (STL) Pipe line Stall 110 (JMP) Branch/Jump forms with PC output 101 (BRT) Branch/Jump forms with no PC output 100 (EXP) Exception generated with an exception vector code output 011 (SEQ) Sequential performance 010 (TST) Trace is outputted at pipeline stall time 001 (TSQ) Trace trigger output at performance time 000 (DBM) Run Debug Mode Alternate function: modebit[2:0].
ejtag_debugboot	Input		Requires external pull- down	EJTAG DebugBoot The ejtag_debugboot input is used during reset and forces the CPU core to take a debug exception at the end of the reset sequence instead of a reset exception. This enables the CPU to boot from the ICE probe without having the external memory working. This input signal is level sensitive and is not latched internally. This signal will also set the JtagBrk bit in the JTAG_Control_Register[12].
ejtag_tms	Input		— Requires external pull- up	EJTAG Test Mode Select An external pull-up on the board is required. The ejtag_tms is sampled on the rising edge of jtag_tck.

Table 1 Pin Description (Part 6 of 7)

Pin	Mode Bit	Value	Mode Setting	
mem_addr[19:18]	9:8 MSB (9)	Boot-Prom Width specifies the memory port	00	8 bits
		width of the memory space which contains the boot prom.	01	16 bits
		the boot prom.	10	32 bits
			11	Reserved

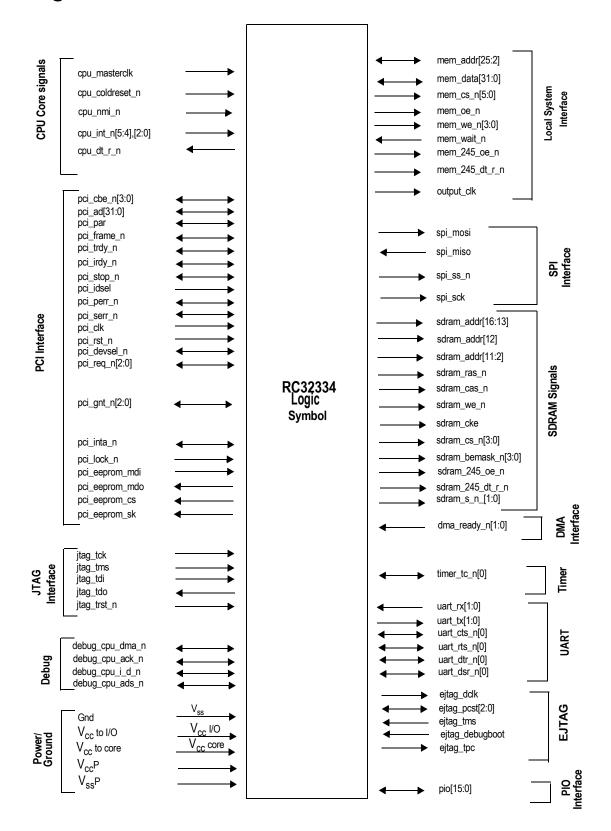
Table 2 Boot-Mode Configuration Settings (Part 2 of 2)

reset_boot_mode Settings

By using the non-boot mode cold reset initialization mode the user can change the internal register addresses from base 1800_0000 to base 1900_0000, as required. The RC32334 cold reset-boot mode initialization setting values and mode descriptions are listed below.

Pin	Reset Boot Mode	Description	Value	Mode Settings
mem_addr[22:21]	1:0 MSB (1)	Tri-state memory bus and EEPROM bus during cold reset_n assertion	11	Tri-state_bus_mode
		Reserved	10	
		PCI-boot mode (pci_host_mode must be in satellite mode) RC32334 will reset either from a cold reset or from a PCI reset. Boot code is provided via PCI.	01	PCI_boot_mode
		Standard-boot mode Boot from the RC32334's memory controller (typical system).	00	standard_boot_mode

Table 3 RC32334 reset_boot_mode Initialization Settings


pci_host_mode Settings

During cold reset initialization, the RC32334's PCI interface can be set to the Satellite or Host mode settings. When set to the Host mode, the CPU must configure the RC32334's PCI configuration registers, including the read-only registers. If the RC32334's PCI is in the PCI-boot mode Satellite mode, read-only configuration registers are loaded by the serial EEPROM.

Pin	Reset Boot Mode	Description	Value	Mode Settings
mem_addr[20]	PCI host mode	PCI is in satellite mode	1	PCI_satellite
		PCI is in host mode (typical system)	0	PCI_host

Table 4 RC32334 pci_host_mode Initialization Settings

Logic Diagram — RC32334

Clock Parameters — RC32334

(Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, V_{cc} I/O = +3.3V±5%, V_{cc} Core = +3.3V±5%)

Parameter	Symbol	Test Conditions	RC32334 100MHz		RC32334 133MHz		RC32334 150MHz		Units
			Min	Max	Min	Max	Min	Max	
cpu_masterclock HIGH	t _{MCHIGH}	Transition ≤ 2ns	8	_	6.75	_	6	_	ns
cpu_masterclock LOW	t _{MCLOW}	Transition ≤ 2ns	8	_	6.75	_	6	_	ns
cpu_masterclock period ¹	tMCP	_	20	66.6	15	66.6	13.33	66.6	ns
cpu_masterclock Rise & Fall Time ²	t _{MCRise} , t _{MCFall}	_		3	_	3	_	3	ns
cpu_masterclock Jitter	t _{JITTER}	_		<u>+</u> 250	_	<u>+</u> 250	_	<u>+</u> 200	ps
pci_clk Rise & Fall Time	t _{PCRise} , t _{PCFall}	PCI 2.2	_	1.6	_	1.6	_	1.6	ns
pci_clk Period ¹	t _{PCP}		15	_	15	_	15	_	ns
jtag_tck Rise & Fall Time	t _{JCRise} , t _{JCFall}	_	_	5	_	5	_	5	ns
ejtag_dck period	t _{DCK} , t ₁₁		10	_	10	_	10	_	ns
jtag_tck clock period	t _{TCK,} t ₃		100	_	100	_	100	_	ns
ejtag_dclk High, Low Time	t _{DCK High} , t ₉ t _{DCK Low} , t ₁₀		4	_	4	_	4	_	ns
ejtag_dclk Rise, Fall Time	t _{DCK Rise} , t ₉ t _{DCK Fall} , t ₁₀		_	1	_	1	_	1	ns
output_clk ³	Tdo21		N/A	N/A	N/A	N/A	N/A	N/A	_
cpu_coldreset_n Asserted during power-up		power-on sequence	120	_	120	_	120	_	ms
cpu_coldreset_n Rise Time	t _{CRRise}		_	5	_	5	_	5	ns

Table 5 Clock Parameters - RC32334

Reset Specification

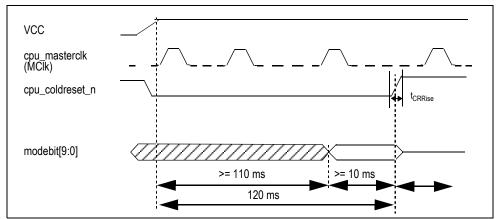


Figure 3 Mode Configuration Interface Cold Reset Sequence

^{1.} cpu_masterclock frequency should never be below pci_clk frequency if PCI interface is used.

^{2.} Rise and fall times are measured between 10% and 90%

^{3.} Output_clk should not be used in a system. Only the cpu_masterclock or its derivative must be used to drive all the subsystems with designs based on the RC32334 device. Refer to the RC3233x Device Errata for more information.

Signal	Symbol Reference			RC32334 ¹ 100MHz		RC32334 ¹ 133MHz		2334 ¹ MHz	Unit	User Manual Timing	
Jigilai		Edge	Min	Max	Min	Max	Min	Max		Diagram Reference	
UARTs											
uart_rx[1:0], uart_tx[1:0], uart_cts_n[0], T uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0] T	su7	cpu_masterclk rising	15	_	12	_	10	_	ns	Chapter 17,	
uart_rx[1:0], uart_tx[1:0], uart_cts_n[0], T uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0]	hld9	cpu_masterclk rising	15		12		10	_	ns	Figure 17.16	
uart_rx[1:0], uart_tx[1:0], uart_cts_n[0], T uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0]	do16	cpu_masterclk rising	_	15	_	12	-	10	ns		
uart_rx[1:0], uart_tx[1:0], uart_cts_n[0], T uart_dsr_n[0], uart_dtr_n[0], uart_rts_n[0]	doh8	cpu_masterclk rising	1	_	1		1	_	ns		
SPI Interface			<u> </u>	Ц	J	l l		1			
spi_clk, spi_mosi, spi_miso	su7	cpu_masterclk rising	15	_	12	_	10	_	ns		
spi_clk, spi_mosi, spi_miso	hld9	cpu_masterclk rising	15	_	12	_	10	_	ns	Chapter 18, Figures 18.8	
spi_clk, spi_mosi, spi_miso	do16	cpu_masterclk rising	_	15	_	12	_	10	ns	and 18.9	
spi_clk, spi_mosi, spi_miso	doh8	cpu_masterclk rising	1	_	1	_	1	_	ns		
Reset											
mem_addr[19:17]	su10	cpu_coldreset_n rising	10	_	10	_	10	_	ms	Chapter 19	
mem_addr[19:17]	hld10	cpu_coldreset_n rising	1	_	1	_	1	_	ns	Figures 19.8 and 19.9	
mem_addr[22:20],	su22	cpu_masterclk rising	9	_	7	_	6	_	ns	and 10.0	
mem_addr[22:20]	hld22	cpu_masterclk rising	1	_	1	_	1	_	ns		
Debug Interface											
debug_cpu_dma_n, debug_cpu_ack_n, debug_cpu_ads_n, debug_cpu_i_d_n, ejtag_pcst[2:0]	su20	cpu_coldreset_n rising	10	-	10	_	10	_	ms		
debug_cpu_dma_n, debug_cpu_ack_n, T debug_cpu_ads_n, debug_cpu_i_d_n, ejtag_pcst[2:0]	hld20	cpu_coldreset_n rising	1	_	1	1	1	_	ns	Chapter 19, Figure 19.9 and Chapter 9,	
debug_cpu_dma_n, debug_cpu_ack_n, T debug_cpu_ads_n, debug_cpu_i_d_n	do20	cpu_masterclk rising	_	15	_	12	_	10	ns	Figure 9.2	
debug_cpu_dma_n, debug_cpu_ack_n, T debug_cpu_ads_n, debug_cpu_i_d_n	doh20	cpu_masterclk rising	1	_	1	_	1	_	ns		
JTAG Interface		· '									
jtag_tms, jtag_tdi, jtag_trst_n t	5	jtag_tck rising	10	_	10	_	10	_	ns		
jtag_tms, jtag_tdi, jtag_trst_n t	6	jtag_tck rising	10	_	10	_	10	_	ns	See Figure 4 below.	
jtag_tdo t	4	jtag_tck falling	_	10	_	10	_	10	ns	DOIOVV.	

Table 6 AC Timing Characteristics - RC32334 (Part 3 of 4)

Signal	Symbol	Reference	RC32334 ¹ 100MHz		RC32334 ¹ 133MHz		RC32334 ¹ 150MHz		Unit	User Manual Timing
· ·		Edge	Min	Max	Min	Max	Min	Max		Diagram Reference
EJTAG Interface	•									
ejtag_tms, ejtag_debugboot	t ₅	jtag_tclk rising	4	_	4	_	4	_	ns	See Figure 4
ejtag_tms, ejtag_debugboot	t ₆	jtag_clk rising	2	_	2	_	2	_	ns	below.
jtag_tdo Output Delay Time	t _{TDODO} , t ₄	jtag_tck falling	_	6	_	6	_	6	ns	
jtag_tdi Input Setup Time	t _{TDIS} , t ₅	jtag_tck rising	4	_	4	_	4	_	ns	
jtag_tdi Input Hold Time	t _{TDIH} , t ₆	jtag_tck rising	2	_	2	_	2	_	ns	
jtag_trst_n Low Time	t _{TRSTLow} , t ₁₂	_	100	_	100	_	100	_	ns	
jtag_trst_n Removal Time	t _{TRSTR} , t ₁₃	jtag_tck rising	3	_	3	_	3	_	ns	
ejtag_tpc Output Delay Time	t _{TPCDO} , t ₈	ejtag_dclk rising	-1	3	-1	3	-1	3	ns	
ejtag_pcst Output Delay Time	t _{PCSTDO} , t ₇	ejtag_dclk rising	-1	3	-1	3	-1	3	ns	

Table 6 AC Timing Characteristics - RC32334 (Part 4 of 4)

August 31, 2004

^{1.} At all pipeline frequencies.

^{2.} Guaranteed by design.

^{3.} pci_rst_n is tested per PCI 2.2 as an asynchronous signal.

Standard EJTAG Timing — RC32334

Figure 4 represents the timing diagram for the EJTAG interface signals.

The standard JTAG connector is a 10-pin connector providing 5 signals and 5 ground pins. For Standard EJTAG, a 24-pin connector has been chosen providing 12 signals and 12 ground pins. This guarantees elimination of noise problems by incorporating signal-ground type arrangement. Refer to the RC32334 User Reference Manual for connector pinout and mechanical specifications.

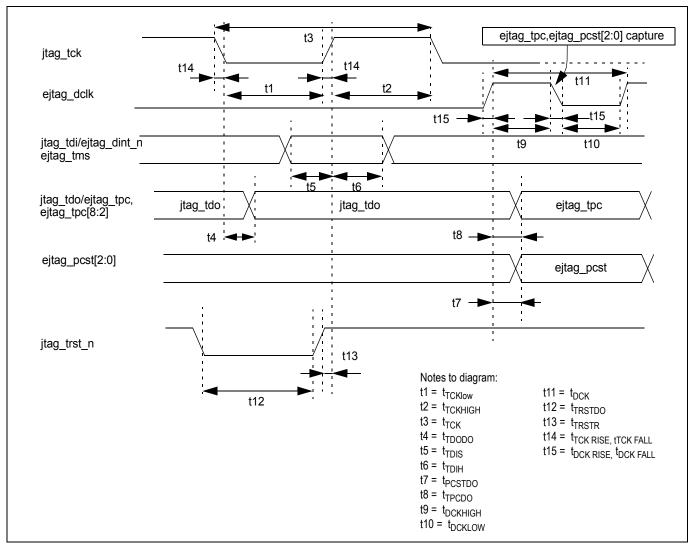
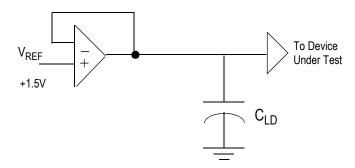



Figure 4 Standard EJTAG Timing

Output Loading for AC Testing

Signal	Cld
All High Drive Signals	50 pF
All Low Drive Signals	25 pF

Figure 5 Output Loading for AC Testing

Note: PCI pins have been correlated to PCI 2.2.

Recommended Operation Temperature and Supply Voltage

Grade	Temperature	Gnd	V _{cc} IO	V _{cc} Core	V _{cc} P
Commercial	0°C to +70°C (Ambient)	0V	3.3V±5%	3.3V±5%	3.3V±5%
Industrial	-40°C to +85°C (Ambient)	0V	3.3V±5%	3.3V±5%	3.3V±5%

Table 7 Temperature and Voltage

DC Electrical Characteristics — RC32334

Commercial Temperature Range—RC32334

(Ta = 0°C to +70°C Commercial, Ta = -40°C to +85°C Industrial, V_{cc} I/O = +3.3V±5%, V_{cc} Core = +3.3V±5%)

	Parameter	RC32	2334 ¹	Pin Numbers	Conditions
	Parameter	Minimum	Maximum	Pin Numbers	Conditions
Input Pads	V _{IL}		0.8V	B14, E13, F4, K1, L2, M1, M3, M4, M14, N1-N3, P14, R2, R16	_
	V _{IH}	2.0V	_		
LOW Drive	V _{OL}	_	0.4V	A1, A12, A15, A16, B1, B2, B12, B15, C1-C3, C12, C13, C14,	I _{OUT} = 6mA
Output Pads	V _{OH}	V _{cc} - 0.4V	_	D12, D13, E1- E4, F1, F2, G1-G4, H1, H2, J1, J2, K2-K4, L1, L3, L4, P3, P14, R2, R15, R16, T16	I _{OUT} = 8mA
	V _{IL}	_	0.8V	, _ , _ , _ , _ , _ , _ , _ , _ , _	_
	V _{IH}	2.0V	_		_
HIGH	V _{OL}	_	0.4V	A2-A4, A6-A11, A13, A14, B3, B4, B6-B11, B13, B16, C4, C6-C8,	I _{OUT} = 7mA
Drive Out- put Pads	V _{OH}	V _{cc} - 0.4V	_	C10, C11, C15, C16, D1-D4, D6, D7, D10, D11, D14-D16, E14, E15, F3, F13-F16, G13-G16, H15, H16, J13, J14, K5, K13, K14,	I _{OUT} = 16mA
par. au	V _{IL}	_	0.8V	K16, L13-L16, M2, M13, M16, P2, P4, R1, R3, R4	_
	V _{IH}	2.0V	_		_
PCI Drive	$V_{\rm IL}$	_	_	P1, R1, R10, T2, T3	Per PCI 2.2
Input Pads	V _{IH}				

Table 8 DC Electrical Characteristics - RC32334 (Part 1 of 2)

	D 4	RC32	2334 ¹	Pin Name	Conditions	
	Parameter	Minimum	Maximum	Pin Numbers	Conditions	
PCI Drive	V _{OL}	_	_	M15, N4-N7, N10-N16, P5-P13, P15, P16, R5-R9, R11-R14, T4-	Per PCI 2.2	
Output Pads	V _{OH}	_	_	1 T15		
1 445	V _{IL}	_	_			
	V _{IH}	_	_			
All Pads	C _{IN}	_	10pF	All input pads except T3 and R3	_	
	C _{IN} ²	5pF	12pF	Т3	Per PCI 2.2	
	C _{IN} ³	_	8pF	R3	Per PCI 2.2	
	C _{OUT} — 10pF I/O _{LEAK} — 10μA		10pF	All output pads	_	
			10μΑ	All non-internal pull-up pins	Input/Output Leakage	
	I/O _{LEAK}	_	50μΑ	All internal pull-up pins	Input/Output Leakage	

Table 8 DC Electrical Characteristics - RC32334 (Part 2 of 2)

Capacitive Load Deration — RC32334

Refer to the IDT document 79RC32334 IBIS Model located on the company's web site.

Power Consumption — RC32334

Note: This table is based on a 2:1 pipeline-to-bus clock ratio.

Pa	arameter		100MHz RC32334		MHz 2334		MHz 2334	Unit	Conditions
		Typical	Max.	Typical	Max.	Typical	Max.		
I _{CC}	Normal mode	360	480	480	630	550	700	mA	C _L = (See Figure 5, Output Loading for
	Standby mode ¹	250	370	330	480	390	540	mA	AC Testing) T _a = 25°C
Power	Normal mode	1.2	1.7	1.5	2.2	1.7	2.4	W	V _{cc} core = 3.46V (for max. values)
Dissipation	Standby mode ¹	.87	1.3	1.1	1.7	1.3	1.9	W	V_{cc} I/O = 3.46V (for max. values) V_{cc} core = 3.3V (for typical values) V_{cc} I/O = 3.3V (for typical values)

Table 9 Power Consumption

Power Ramp-up

There is no special requirement for how fast V_{cc} I/O ramps up to 3.3V. However, all timing references are based on a stable V_{cc} I/O.

^{1.} At all pipeline frequencies.

^{2.} Applies only to pad T3.

^{3.} Applies only to pad R3.

^{1.} RISCore 32300 CPU core enters Standby mode by executing WAIT instructions. On-chip logic outside the CPU core continues to function.

Absolute Maximum Ratings

Symbol	Parameter	Min ¹	Max ¹	Unit
V _{cc}	Supply Voltage	-0.3	4.0	V
Vi	Input Voltage	-0.3	5.5	V
Vimin	Input Voltage - undershoot ²	-0.6	_	V
Tstg	Storage Temperature	-40	125	degrees C

Table 10 Absolute Maximum Ratings

Package Pin-out — 256-PBGA Pinout for RC32334

The following table lists the pin numbers and signal names for the RC32334. Signal names ending with an "_n" are active when low.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
A1	uart_cts_n[0]	1	E1	mem_cs_n[4]		J1	debug_cpu_dma_n	1	N1	cpu_int_n[1]	
A2	sdram_245_oe_n		E2	mem_cs_n[5]		J2	debug_cpu_ack_n	1	N2	cpu_int_n[0]	
A3	sdram_cas_n		E3	mem_cs_n[3]		J3	V _{cc} IO		N3	jtag_tdi	
A4	sdram_bemask_n[1]		E4	mem_cs_n[2]		J4	V _{ss}		N4	pci_ad[30]	
A5	sdram_ras_n		E5	V _{cc} IO		J5	V _{cc} IO		N5	pci_ad[26]	
A6	mem_addr[3]	1	E6	V _{cc} IO		J6	V _{ss}		N6	pci_ad[23]	
A7	mem_addr[7]	1	E7	V _{cc} IO		J7	V _{ss}		N7	pci_ad[19]	
A8	mem_addr[11]	1	E8	V _{cc} IO		J8	V _{ss}		N8	V _{cc} core	
A9	sdram_cke		E9	V _{cc} IO		J9	V _{ss}		N9	V _{ss}	
A10	sdram_bemask_n[2]		E10	V _{cc} IO		J10	V _{ss}		N10	pci_trdy_n	
A11	mem_addr[15]	1	E11	V _{cc} IO		J11	V _{ss}		N11	pci_perr_n	
A12	mem_addr[19]	1	E12	V _{cc} IO		J12	V _{cc} IO		N12	pci_ad[15]	
A13	mem_data[10]		E13	cpu_masterclk		J13	mem_data[26]		N13	pci_ad[1]	
A14	mem_data[20]		E14	mem_data[15]		J14	mem_data[5]		N14	pci_ad[3]	
A15	mem_addr[23]		E15	mem_data[16]		J15	V _{cc} core		N15	pci_ad[4]	
A16	timer_tc_n[0]	2	E16	V _{cc} core		J16	V _{ss}		N16	pci_ad[2]	
B1	uart_rts_n[0]	1	F1	mem_cs_n[0]		K1	ejtag_debugboot		P1	pci_rst_n	
B2	uart_dsr_n[0]	1	F2	mem_cs_n[1]		K2	ejtag_dclk		P2	pci_gnt_n[2]	1
В3	sdram_we_n		F3	mem_oe_n		K3	debug_cpu_i_d_n	1	P3	dma_ready_n[1]	2
B4	sdram_bemask_n[0]		F4	mem_wait_n	1	K4	debug_cpu_ads_n	1	P4	pci_req_n[0]	
B5	sdram_cs_n[1]		F5	V _{cc} IO		K5	V _{cc} IO		P5	pci_ad[27]	
B6	mem_addr[2]	1	F6	V _{ss}		K6	V _{ss}		P6	pci_cbe_n[3]	
B7	mem_addr[6]	1	F7	V _{ss}		K7	V _{ss}		P7	pci_ad[20]	
B8	mem_addr[10]	1	F8	V _{ss}		K8	V _{ss}		P8	pci_ad[16]	

Table 11 RC32334 256-pin PBGA Package Pin-Out (Part 1 of 3)

^{1.} Functional and tested operating conditions are given in Table 7. Absolute maximum ratings are stress ratings only, and functional operation is not guaranteed beyond recommended operating voltages and temperatures. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

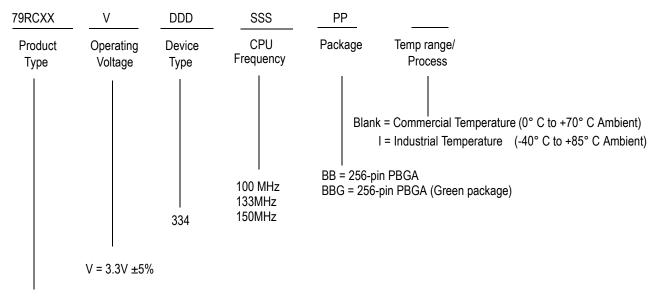
 $^{^{2\}cdot}$ All PCI pads are fully compatible with PCI Specification version 2.2.

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
В9	sdram_addr_12		F9	V _{ss}		K9	V _{ss}		P9	pci_cbe_n[2]	
B10	sdram_bemask_n[3]		F10	V _{ss}		K10	V _{ss}		P10	pci_devsel_n	
B11	mem_addr[16]	1	F11	V _{ss}		K11	V _{ss}		P11	pci_serr_n	
B12	mem_addr[20]	1	F12	V _{cc} IO		K12	V _{cc} IO		P12	pci_ad[14]	
B13	mem_data[11]		F13	mem_data[1]		K13	cpu_dt_r_n	2	P13	pci_ad[11]	
B14	cpu_coldreset_n		F14	mem_data[30]		K14	mem_data[6]		P14	cpu_int_n[5]	
B15	mem_addr[25]		F15	mem_data[31]		K15	mem_data[24]		P15	pci_ad[6]	
B16	mem_data[12]		F16	mem_data[0]		K16	mem_data[25]		P16	pci_ad[5]	
C1	uart_rx[0]	1	G1	dma_ready_n[0]	2	L1	ejtag_pcst[0]		R1	pci_req_n[2]	1
C2	uart_tx[0]	1	G2	mem_245_oe_n		L2	jtag_trst_n		R2	cpu_int_n[2]	
C3	uart_dtr_n[0]	1	G3	spi_mosi	2	L3	ejtag_pcst[1]	1	R3	pci_gnt_n[1]	2
C4	sdram_cs_n[0]		G4	spi_miso	2	L4	ejtag_pcst[2]	1	R4	pci_gnt_n[0]	
C5	sdram_s_n[0]		G5	V _{cc} IO		L5	V _{cc} IO		R5	pci_ad[29]	
C6	mem_addr[4]	1	G6	V _{ss}		L6	V _{ss}		R6	pci_ad[25]	
C7	mem_addr[9]	1	G7	V _{ss}		L7	V _{ss}		R7	pci_ad[22]	
C8	output_clk		G8	V _{ss}		L8	V _{ss}		R8	pci_ad[18]	
C9	mem_addr[12]		G9	V _{ss}		L9	V _{ss}		R9	pci_irdy_n	
C10	sdram_cs_n[3]		G10	V _{ss}		L10	V _{ss}		R10	pci_lock_n	
C11	mem_addr[14]	1	G11	V _{ss}		L11	V _{ss}		R11	pci_cbe_n[1]	
C12	mem_addr[18]	1	G12	V _{cc} IO		L12	V _{cc} IO		R12	pci_ad[12]	
C13	mem_addr[22]	1	G13	mem_data[3]		L13	mem_data[7]		R13	pci_ad[10]	
C14	mem_addr[24]		G14	mem_data[28]		L14	mem_data[8]		R14	pci_cbe_n[0]	
C15	mem_data[19]		G15	mem_data[29]		L15	mem_data[22]		R15	uart_tx[1]	1
C16	mem_data[13]		G16	mem_data[2]		L16	mem_data[23]		R16	cpu_int_n[4]	
D1	mem_we_n[1]		H1	spi_ss_n	1	M1	jtag_tms		T1	V _{ss}	
D2	mem_we_n[3]		H2	spi_sck	2	M2	jtag_tdo		T2	pci_req_n[1]	1
D3	mem_we_n[2]		Н3	V _{cc} IO		М3	ejtag_tms		Т3	pci_clk	
D4	mem_we_n[0]		H4	V _{cc} core		M4	jtag_tck		T4	pci_ad[31]	
D5	sdram_s_n[1]		H5	V _{cc} IO		M5	V _{cc} IO		T5	pci_ad[28]	
D6	mem_addr[5]	1	H6	V _{ss}		M6	V _{cc} IO		T6	pci_ad[24]	
D7	mem_addr[8]	1	H7	V _{ss}		M7	V _{cc} IO		T7	pci_ad[21]	
D8	V _{ss}		H8	V _{ss}		M8	V _{cc} IO		T8	pci_ad[17]	
D9	V _{cc} core		Н9	V _{ss}		М9	V _{cc} IO		Т9	pci_frame_n	
D10	sdram_cs_n[2]		H10	V _{ss}		M10	V _{cc} IO		T10	pci_stop_n	
D11	mem_addr[13]	1	H11	V _{ss}		M11	V _{cc} IO		T11	pci_par	
D12	mem_addr[17]	1	H12	V _{cc} IO		M12	V _{cc} IO		T12	pci_ad[13]	
D13	mem_addr[21]	1	H13	V _{ss} P		M13	mem_data[9]		T13	pci_ad[9]	

Table 11 RC32334 256-pin PBGA Package Pin-Out (Part 2 of 3)

Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt	Pin	Function	Alt
D14	mem_data[17]		H14	V _{cc} P		M14	cpu_nmi_n		T14	pci_ad[8]	
D15	mem_data[14]		H15	mem_data[27]		M15	pci_ad[0]		T15	pci_ad[7]	
D16	mem_data[18]		H16	mem_data[4]		M16	mem_data[21]		T16	uart_rx[1]	1

Table 11 RC32334 256-pin PBGA Package Pin-Out (Part 3 of 3)


RC32334 Alternate Signal Functions

Pin	Alt #1	Alt #2	Pin	Alt #1	Alt #2	Pin	Alt #1	Alt #2
A1	PIO[15]		C3	PIO[13]	C3	H2	PIO[9]	pci_eeprom_sk
A6	sdram_addr[3]		C6	sdram_addr[4]		J1	modebit[6]	
A7	sdram_addr[7]		C7	sdram_addr[9]		J2	modebit[4]	
A8	sdram_addr[11]		C11	sdram_addr[14]		K3	modebit[3]	
A11	sdram_addr[15]		C12	modebit[8]		K4	modebit[5]	
A12	modebit[9]		C13	reset_boot_mode[1]		K13	mem_245_dt_r_n	sdram_245_dt_r_n
A16	PIO[2]	timer_gate_n[0]	D6	sdram_addr[5]		L1	modebit[0]	
B1	PIO[12]		D7	sdram_addr[8]		L3	modebit[1]	
B2	PIO[14]		D11	sdram_addr[13]		L4	modebit[2]	
В6	sdram_addr[2]		D12	modebit[7]		P2	pci_inta_n (satellite)	
В7	sdram_addr[6]		D13	reset_boot_mode[0]		P3	PIO[0]	dma_done_n[1]
B8	sdram_addr[10]		F4	sdram_wait_n		R1	pci_idsel (satellite)	
B11	sdram_addr[16]		G1	PIO[1]	dma_done_n[0]	R3	pci_eeprom_cs (satellite)	PIO[11]
B12	reset_pci_host_mode		G3	PIO[10]	pci_eeprom_mdo	R15	PIO[3]	
C1	PIO[6]		G4	PIO[7]	pci_eeprom_mdi	T2	Unused (satellite)	
C2	PIO[5]		H1	PIO[8]		T16	PIO[4]	

RC32334 Package Drawing — Page Two

Ordering Information

79RC32 = 32-bit family product

Valid Combinations

79RC32V334 - 100BB, 133BB, 150BB

79RC32V334 - 100BBG, 133BBG, 150BBG

79RC32V334 - 100BBI, 133BBI, 150BBI 79RC32V334 - 100BBGI, 133BBGI, 150BBGI Commercial Green

Industrial Industrial Green

6024 Silver Creek Valley Road San Jose, CA 95138

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support:

email: rischelp@idt.com phone: 408-284-8208