

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1508-e-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-4: PIC16(L)F1509 MEMORY MAP, BANK 0-7

= Unimplemented data memory locations, read as '0'.

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers												
	(Table 3-2)		(Table 3-2)												
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	—	30Ch	—	38Ch	—
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	—	38Dh	—
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	—	28Eh	_	30Eh	—	38Eh	—
00Fh	—	08Fh	—	10Fh	—	18Fh	—	20Fh	—	28Fh	—	30Fh	—	38Fh	—
010h	-	090n	-	110n	-	190n	-	210n	-	290h		310h		390n	-
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	SSPIBUE	291h	_	311h		391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	SSPIADD	292h	_	312h	_	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	SSP1MSK	293h	_	313h	_	393h	IOCAF
014h	_	094h	—	114h	CM2CON1	194h	PMDATH	214h	SSP1STAT	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	SSP1CON1	295h	_	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	—	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON	217h	SSP1CON3	297h	_	317h	_	397h	_
018h	T1CON	098h	—	118h	DAC1CON0	198h	—	218h	_	298h	—	318h	—	398h	—
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RCREG	219h	_	299h	_	319h	_	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah		29Ah	—	31Ah	—	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	SPBRG	21Bh	—	29Bh	—	31Bh	-	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch		19Ch	SPBRGH	21Ch		29Ch	—	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh		29Dh	—	31Dh	_	39Dh	—
01Eh	—	09Eh	ADCON1	11Eh		19Eh	TXSTA	21Eh		29Eh	—	31Eh	_	39Eh	—
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh		39Fh	—
		0A0h						1				320h	General Purpose		
													Register		
020h	General		General	120h	General	1A0h	General	220h	General	2A0h	General		16Bytes	3A0h	
	Purpose				Unimplemented										
	Register		Unimplemented		Read as '0'										
	80 Bytes		Read as '0'												
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses		Accesses										
	COMMON RAW		70h – 7Fh		70h – 7Fh										
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

DS40001609E-page 22

Legend:

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-9:**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets			
Bank 1	0									_				
50Ch to 51Fh	_	Unimplemen	ted							_	—			
Bank 1	1													
58Ch to 59Fh	_	Unimplemen	ted							_	_			
Bank 1	Bank 12													
60Ch to 610h	_	Unimplemen	nimplemented											
611h	PWM1DCL	PWM1D	CL<7:6>	—	_	_	—	—	_	00	00			
612h	PWM1DCH				PWM1	DCH<7:0>				xxxx xxxx	uuuu uuuu			
613h	PWM1CON0	PWM1EN	PWM10E	PWM10UT	PWM1POL	_	_	—		0000	0000			
614h	PWM2DCL	PWM2D	CL<7:6>	—	—	_	_	—		00	00			
615h	PWM2DCH				PWM2	DCH<7:0>				xxxx xxxx	uuuu uuuu			
616h	PWM2CON0	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	—	—	—	—	0000	0000			
617h	PWM3DCL	PWM3D	CL<7:6>	—	—	—	—	—	—	00	00			
618h	PWM3DCH				PWM3	DCH<7:0>				xxxx xxxx	uuuu uuuu			
619h	PWM3CON0	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	—	—	—	—	0000	0000			
61Ah	PWM4DCL	PWM4D	CL<7:6>	—	—	_	_	—		00	00			
61Bh	PWM4DCH				PWM4	DCH<7:0>				xxxx xxxx	uuuu uuuu			
61Ch	PWM4CON0	PWM4EN	PWM40E	PWM4OUT	PWM4POL	—	—	—	—	0000	0000			
61Dh to 61Fh	_	Unimplemen	ted							_	—			
Bank 1	3													
68Ch to 690h	_	Unimplemented									_			
691h	CWG1DBR	—	—			CWG1	DBR<5:0>			00 0000	00 0000			
692h	CWG1DBF	—	—			CWG1	IDBF<5:0>			xx xxxx	xx xxxx			
693h	CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	—	—	G1CS0	0000 00	0000 00			
694h	CWG1CON1	G1ASD	LB<1:0>	G1ASD	LA<1:0>	_		G1IS<2:0>		0000 -000	0000 -000			
695h	CWG1CON2	G1ASE	G1ARSEN	_	—	G1ASDSC2	G1ASDSC1	G1ASDSFLT	G1ASDSCLC2	00 0000	00 0000			
696h to 69Fh	_	Unimplemen	ted							_	_			

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

R/W-0/U	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	_	TMR2IE	TMR1IE
bit 7							bit 0
Legena:	hit	M = M/ritabla	hit	II – Unimplon	nantad hit raa	d aa 'O'	
	DIL				t DOD and DC		thar Deasta
u = Dit is unch	angeu	x = Dit is ullki			IL FOR and BC		iner Resels
I = BILIS SEL		0 = Bit is cie	ared				
bit 7	TMR1GIE: Ti	mer1 Gate Inte	errupt Enable I	oit			
	1 = Enables t	he Timer1 gate	e acquisition ir	nterrupt			
	0 = Disables	the Timer1 gat	e acquisition i	nterrupt			
bit 6	ADIE: Analog	g-to-Digital Con	verter (ADC)	Interrupt Enable	e bit		
	1 = Enables t	he ADC interru	ıpt				
	0 = Disables	the ADC interro	upt				
bit 5	RCIE: USAR	T Receive Inter	rrupt Enable b	it			
	1 = Enables t 0 = Disables	the USART rec	eive interrupt				
hit 4		Transmit Inte	rrunt Enable h	it			
bit i	1 = Enables t	he USART tra	nsmit interrupt				
	0 = Disables	the USART tra	nsmit interrup	t			
bit 3	SSP1IE: Syn	chronous Seria	al Port (MSSP) Interrupt Enat	ole bit		
	1 = Enables t	he MSSP inter	rupt				
	0 = Disables	the MSSP inte	rrupt				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	TMR2IE: TM	R2 to PR2 Mat	ch Interrupt Ei	nable bit			
	1 = Enables t 0 = Disables	he Timer2 to P the Timer2 to F	R2 match inte R2 match inte	errupt errupt			
bit 0	TMR1IE: Tim	er1 Overflow Ir	nterrupt Enabl	e bit			
	1 = Enables t	he Timer1 ove	rflow interrupt				
	0 = Disables	the Timer1 ove	rflow interrunt	•			

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

15.3 Register Definitions: ADC Control

REGISTER 15-1: ADCON0: ADC CONTROL REGISTER 0

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—			CHS<4:0>			GO/DONE	ADON
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	OR/Value at all c	ther Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-2	CHS<4:0>: /	Analog Channel	Select bits				
	00000 = AN	0					
	00001 = AN	1					
	00010 = AN	2					
	00011 = AN	3					
	00100 = AN	5					
	00110 = AN	6					
	00111 = AN	7					
	01000 = AN	8					
	01001 = AN	9					
	01010 = AN	10					
	01011 - AN	served No cha	nel connecte	d			
	•			G .			
	•						
	•						
	11100 = Re	served. No cha	nnel connecte	d.			
	11101 = 100	C (Digital to An	alog Converte	r)(3)			
	11110 = DA	R (Fixed Voltage	e Reference) E	Buffer 1 Output ⁽	2)		
bit 1	GO/DONE: /		n Status bit	·			
	1 = ADC con	version cycle ir	progress. Se	tting this bit sta	rts an ADC co	nversion cycle.	
	This bit is	s automatically	cleared by har	dware when the	e ADC conver	sion has comple	ted.
	0 = ADC con	version comple	ted/not in prog	gress			
bit 0	ADON: ADC	Enable bit					
	1 = ADC is e	nabled					
	0 = ADC is d	lisabled and cor	nsumes no ope	erating current			
Note 1:	See Section 14.0) "Temperature	Indicator Mo	odule" for more	information.		
2:	See Section 13.0) "Fixed Voltag	e Reference ((FVR)" for more	e information.		

3: See Section 16.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information.

19.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

19.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-tohigh pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

19.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 19-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

19.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/ DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/ DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 19-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 19-6 for timing details.

19.6.5 TIMER1 GATE VALUE STATUS

When Timer1 Gate Value Status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

19.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

21.5.3 SLAVE TRANSMISSION

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPxSTAT register is set. The received address is loaded into the SSPxBUF register, and an ACK pulse is sent by the slave on the ninth bit.

Following the ACK, slave hardware clears the CKP bit and the SCLx pin is held low (see **Section21.5.6 "Clock Stretching"** for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data.

The transmit data must be loaded into the SSPxBUF register which also loads the SSPxSR register. Then the SCLx pin should be released by setting the CKP bit of the SSPxCON1 register. The eight data bits are shifted out on the falling edge of the SCLx input. This ensures that the SDAx signal is valid during the SCLx high time.

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCLx input pulse. This ACK value is copied to the ACKSTAT bit of the SSPxCON2 register. If ACKSTAT is set (not ACK), then the data transfer is complete. In this case, when the not ACK is latched by the slave, the slave goes idle and waits for another occurrence of the Start bit. If the SDAx line was low (ACK), the next transmit data must be loaded into the SSPxBUF register. Again, the SCLx pin must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPxIF bit must be cleared by software and the SSPxSTAT register is used to determine the status of the byte. The SSPxIF bit is set on the falling edge of the ninth clock pulse.

21.5.3.1 Slave Mode Bus Collision

A slave receives a Read request and begins shifting data out on the SDAx line. If a bus collision is detected and the SBCDE bit of the SSPxCON3 register is set, the BCLxIF bit of the PIRx register is set. Once a bus collision is detected, the slave goes idle and waits to be addressed again. User software can use the BCLxIF bit to handle a slave bus collision.

21.5.3.2 7-bit Transmission

A master device can transmit a read request to a slave, and then clock data out of the slave. The list below outlines what software for a slave will need to do to accomplish a standard transmission. Figure 21-18 can be used as a reference to this list.

- 1. Master sends a Start condition on SDAx and SCLx.
- 2. S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/W bit set is received by the slave setting SSPxIF bit.
- 4. Slave hardware generates an ACK and sets SSPxIF.
- 5. SSPxIF bit is cleared by user.
- 6. Software reads the received address from SSPxBUF, clearing BF.
- 7. R/\overline{W} is set so CKP was automatically cleared after the ACK.
- 8. The slave software loads the transmit data into SSPxBUF.
- 9. CKP bit is set releasing SCLx, allowing the master to clock the data out of the slave.
- 10. SSPxIF is set after the ACK response from the master is loaded into the ACKSTAT register.
- 11. SSPxIF bit is cleared.
- 12. The slave software checks the ACKSTAT bit to see if the master wants to clock out more data.

Note 1: If the master ACKs the clock will be stretched.

- ACKSTAT is the only bit updated on the rising edge of SCLx (ninth) rather than the falling.
- 13. Steps 9-13 are repeated for each transmitted byte.
- 14. If the master sends a not ACK; the clock is not held, but SSPxIF is still set.
- 15. The master sends a Restart condition or a Stop.
- 16. The slave is no longer addressed.

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0				
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set					
bit 7	GCEN: Gene	eral Call Enable	e bit (in I ² C Sla	ve mode only)							
	1 = Enable in	iterrupt when a	general call a	ddress (0x00 d	or 00h) is receiv	ed in the SSP>	κSR				
1.11 O		call address dis									
DIT 6	ACKSTAT: A	cknowledge St	atus dit (in I-C	mode only)							
	0 = Acknowle	edge was not recei	ved								
bit 5	ACKDT: Ack	nowledge Data	bit (in I ² C mo	de only)							
	In Receive m	ode:									
	Value transm	itted when the	user initiates a	an Acknowledg	je sequence at t	the end of a re	ceive				
	1 = Not Acknowle	owledge									
hit 4		suye mowledge Seg	uence Enable	hit (in I ² C Mas	ter mode only)						
	In Master Re	ceive mode:			ter mode omy)						
	1 = Initiate /	Acknowledge	sequence on	SDAx and S	CLx pins, and	transmit ACI	KDT data bit.				
	Automat	ically cleared b	y hardware.								
	0 = Acknowl	edge sequence	e idle								
bit 3	RCEN: Rece	ive Enable bit (in I ² C Master	mode only)							
	\perp = Enables I 0 = Receive i	Receive mode	tor I-C								
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	V)						
2	SCKx Releas	se Control:			<i>,</i>						
	1 = Initiate St	top condition or	n SDAx and S	CLx pins. Auto	matically cleare	d by hardware					
	0 = Stop cond	dition idle									
bit 1	RSEN: Repe	ated Start Con	dition Enable b	oit (in I ² C Mast	er mode only)						
	1 = Initiate R 0 = Repeate	Repeated Start d Start condition	condition on S n idle	DAx and SCL>	c pins. Automati	cally cleared b	y hardware.				
bit 0	SEN: Start C	ondition Enable	e/Stretch Enab	le bit							
	In Master mo	de:		o							
	1 = Initiate St0 = Start cond	art condition of	n SDAx and S	CLx pins. Auto	matically cleare	d by hardware					
	In Slave mod	e:									
	1 = Clock stre	<u>et</u> ching is enab	led for both sla	ave transmit ar	nd slave receive	e (stretch enabl	ed)				
	0 = Clock stre	etching is disat	oled								
				-							

REGISTER 21-3: SSPxCON2: SSP CONTROL REGISTER 2⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

22.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 22-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

22.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

22.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section22.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no additional characters will be received until the overrun										
	condition is	cleared	d. See								
	Section22.1.2.5	"Receive	Overrun								
	Error" for more	information	on overrun								
	errors.										

22.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- · RCIE, Interrupt Enable bit of the PIE1 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

					SYNC	C = 0, BRGH	l = 0, BRC	G16 = 0					
BAUD	Foso	c = 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	_	_	_	_		_	_	_	_	
1200	1221	1.73	255	1200	0.00	239	1202	0.16	207	1200	0.00	143	
2400	2404	0.16	129	2400	0.00	119	2404	0.16	103	2400	0.00	71	
9600	9470	-1.36	32	9600	0.00	29	9615	0.16	25	9600	0.00	17	
10417	10417	0.00	29	10286	-1.26	27	10417	0.00	23	10165	-2.42	16	
19.2k	19.53k	1.73	15	19.20k	0.00	14	19.23k	0.16	12	19.20k	0.00	8	
57.6k	_	_	_	57.60k	0.00	7	—	—	_	57.60k	0.00	2	
115.2k	—	_	_	—	_	—	—	_	_	—	_	_	

TABLE 22-5: BAUD RATES FOR ASYNCHRONOUS MODES

BAUD	Fos	c = 8.00	0 MHz	Fosc = 4.000 MHz			Fosc	= 3.686	4 MHz	Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—	
9600	9615	0.16	12	—	_	_	9600	0.00	5	—	_	_	
10417	10417	0.00	11	10417	0.00	5	_	_	_	—	_	_	
19.2k		_	_	—	_	_	19.20k	0.00	2	_	_	_	
57.6k	_	_	_	—	_	_	57.60k	0.00	0	—	_	_	
115.2k	—	—	_	—	_		_	—	_	—	—	_	

		SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc	: = 20.00	0 MHz	Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc = 11.0592 MHz				
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)		
300	—	—	—	—	_	_		—	—	_	—	_		
1200	—	—	—	—	—	—	—	—	—	—	—	—		
2400	—	—	—	—	—	—	—	—	—	—	_	_		
9600	9615	0.16	129	9600	0.00	119	9615	0.16	103	9600	0.00	71		
10417	10417	0.00	119	10378	-0.37	110	10417	0.00	95	10473	0.53	65		
19.2k	19.23k	0.16	64	19.20k	0.00	59	19.23k	0.16	51	19.20k	0.00	35		
57.6k	56.82k	-1.36	21	57.60k	0.00	19	58.82k	2.12	16	57.60k	0.00	11		
115.2k	113.64k	-1.36	10	115.2k	0.00	9	111.1k	-3.55	8	115.2k	0.00	5		

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
LCxG4D4T	LCxG4D4N	LCxG4D3T	LCxG4D3N	LCxG4D2T	LCxG4D2N	LCxG4D1T	LCxG4D1N			
bit 7			•			•	bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	LCxG4D4T: (Gate 4 Data 4 1	rue (non-inve	rted) bit						
	1 = lcxd4T is	gated into loxo	<u>1</u> 4							
	0 = 1cxd41 is	not gated into	lcxg4							
bit 6	LCxG4D4N:	Gate 4 Data 4	Negated (invei	rted) bit						
	1 = 1CX04N is 0 = 1CX04N is	s gated into icx	J4 Jexa4							
bit 5		Sate 4 Data 3 1	True (non-inve	rted) hit						
bit 0	1 = lcxd3T is	aated into loxo	14							
	0 = lcxd3T is	not gated into	lcxg4							
bit 4	LCxG4D3N:	Gate 4 Data 3 I	Negated (inve	rted) bit						
	1 = Icxd3N is	gated into lcx	g4							
	0 = Icxd3N is	not gated into	lcxg4							
bit 3	LCxG4D2T: (Gate 4 Data 2 1	rue (non-inve	rted) bit						
	1 = lcxd2T is	gated into loxo	<u>1</u>							
1.11.0	0 = 100021 is	not gated into	ICXg4							
DIT 2	LCXG4D2N:	Gate 4 Data 2	Negated (Invel	rted) bit						
	$\perp = 10002 \text{N} \text{ is}$ 0 = 10002 N is	s galed into icx	J4 Jexa4							
hit 1		Gate 4 Data 1 1	rue (non-inve	rted) hit						
Sit	1 = lcxd1T is	aated into Icxo	14							
	0 = lcxd1T is	not gated into	lcxg4							
bit 0	LCxG4D1N:	Gate 4 Data 1	Negated (inver	rted) bit						
	1 = Icxd1N is	gated into lcxg	g4							
	0 = Icxd1N is	not gated into	lcxg4							

REGISTER 24-8: CLCxGLS3: GATE 4 LOGIC SELECT REGISTER

R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
GxASE	GxARSEN	_	_	GxASDSC2	GxASDSC1	GxASDSFLT	GxASDSCLC2			
bit 7							bit 0			
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
u = Bit is unch	nanged	x = Bit is unk	known	-n/n = Value a	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set '0' = Bit is cleared q = Value depends on condition										
bit 7	GxASE: Auto	o-Shutdown Ev	ent Status b	it						
	1 = An auto-	shutdown eve	nt has occuri	red						
h # 0	0 = No auto-	snutdown eve	nt nas occuri	rea						
DIT 6	GXARSEN: A	Auto-Restart E	nable bit							
	0 = Auto-res	tart is disabled	ł							
bit 5-4	Unimplemen	ted: Read as	' 0'							
bit 3	GxASDSC2:	CWG Auto-sh	utdown on C	omparator C2 I	Enable bit					
	1 = Shutdow	n when Comp	arator C2 ou	tput (C2OUT_a	sync) is high					
	0 = Compara	ator C2 output	has no effec	t on shutdown						
bit 2	GxASDSC1:	CWG Auto-sh	utdown on C	comparator C1 I	Enable bit					
	1 = Shutdow	n when Comp	arator C1 ou	tput (C1OUT_a	sync) is high					
b :4 4										
DIC	Dit I GXASDSFLI: CWG Auto-shutdown on FLI Enable bit									
	0 = CWG1FL	T input has n	o effect on sh	nutdown						
bit 0	GxASDSCLO	2: CWG Auto	-shutdown o	n CLC2 Enable	bit					
	1 = Shutdow	n when CLC2	output (LC2	_out) is high						
	0 = CLC2 ou	itput has no ef	fect on shutd	lown						

REGISTER 26-3: CWGxCON2: CWG CONTROL REGISTER 2

28.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte Oriented
- · Bit Oriented
- · Literal and Control

The literal and control category contains the most varied instruction word format.

Table 28-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

28.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

TABLE 28-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
х	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 28-2: ABBREVIATION DESCRIPTIONS

Field	Description				
PC	Program Counter				
TO	Time-Out bit				
С	Carry bit				
DC	Digit Carry bit				
Z	Zero bit				
PD	Power-Down bit				

CALL	Call Subroutine				
Syntax:	[<i>label</i>] CALL k				
Operands:	$0 \leq k \leq 2047$				
Operation:	$\begin{array}{l} (PC)+ 1 \rightarrow TOS, \\ k \rightarrow PC<10:0>, \\ (PCLATH<6:3>) \rightarrow PC<14:11> \end{array}$				
Status Affected:	None				
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.				

CLRWDT	Clear Watchdog Timer				
Syntax:	[label] CLRWDT				
Operands:	None				
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ 0 \rightarrow \underline{\text{WDT}} \text{ prescaler,} \\ 1 \rightarrow \underline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$				
Status Affected:	TO, PD				
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.				

CALLW	Subroutine Call With W				
Syntax:	[label] CALLW				
Operands:	None				
Operation:	$\begin{array}{l} (PC) +1 \rightarrow TOS, \\ (W) \rightarrow PC <7:0>, \\ (PCLATH <6:0>) \rightarrow PC <14:8> \end{array}$				
Status Affected:	None				
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.				

COMF	Complement f					
Syntax:	[<i>label</i>] COMF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(\overline{f}) \rightarrow (destination)$					
Status Affected:	Z					
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.					

CLRF	Clear f				
Syntax:	[<i>label</i>] CLRF f				
Operands:	$0 \leq f \leq 127$				
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Description:	The contents of register 'f' are cleared and the Z bit is set.				

CLRW	Clear W				
Syntax:	[label] CLRW				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Description:	W register is cleared. Zero bit (Z) is set.				

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

FIGURE 29-5: CLOCK TIMING

TABLE 29-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC		0.5	MHz	External Clock (ECL)
			DC	—	4	MHz	External Clock (ECM)
			DC	—	20	MHz	External Clock (ECH)
		Oscillator Frequency ⁽¹⁾	_	32.768	_	kHz	LP Oscillator
			0.1	—	4	MHz	XT Oscillator
			1	—	4	MHz	HS Oscillator
			1	—	20	MHz	HS Oscillator, VDD > 2.7V
			DC	—	4	MHz	EXTRC, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27		×	μs	LP Oscillator
			250	—	∞	ns	XT Oscillator
			50	—	∞	ns	HS Oscillator
			50	—	∞	ns	External Clock (EC)
		Oscillator Period ⁽¹⁾	_	30.5	_	μs	LP Oscillator
			250	—	10,000	ns	XT Oscillator
			50	—	1,000	ns	HS Oscillator
			250	—	—	ns	EXTRC
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High	2	_	_	μs	LP Oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT Oscillator
			20	—	—	ns	HS Oscillator
OS05*	TosR,	External CLKIN Rise	0	—	—	ns	LP Oscillator
	TosF	External CLKIN Fall	0	—	—	ns	XT Oscillator
			0	—	—	ns	HS Oscillator

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 30-31: IPD BASE, LOW-POWER SLEEP MODE, PIC16LF1508/9 ONLY

FIGURE 30-51: VOH vs. IOH OVER TEMPERATURE, VDD = 1.8V, PIC16LF1508/9 ONLY

20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX
Number of Pins N		20		
Pitch	е	0.65 BSC		
Overall Height	Α	_	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	Е	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	6.90	7.20	7.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	-	0.25
Foot Angle	φ	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B