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Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Product Status Active

Core Processor PIC

Core Size 8-Bit

Speed 20MHz

Connectivity I²C, LINbus, SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 17

Program Memory Size 7KB (4K x 14)

Program Memory Type FLASH

EEPROM Size -

RAM Size 256 x 8

Voltage - Supply (Vcc/Vdd) 2.3V ~ 5.5V

Data Converters A/D 12x10b; D/A 1x5b

Oscillator Type Internal

Operating Temperature -40°C ~ 125°C (TA)

Mounting Type Through Hole

Package / Case 20-DIP (0.300", 7.62mm)
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TA
BANK 14 BANK 15

40

40

0h

Bh

Core Registers 
(Table 3-2)

780h

78Bh

Core Registers 
(Table 3-2)

40 Ch — 78Ch —
40 Dh — 78Dh —
40 Eh — 78Eh —
40 Fh — 78Fh —
41 0h — 790h —
41 1h — 791h —
41 2h — 792h —
41 3h — 793h —
41 4h — 794h —
41 5h — 795h —
41 6h — 796h —
41 7h — 797h —
41 8h — 798h —
41 9h — 799h —
41 Ah — 79Ah —
41 Bh — 79Bh —
41 Ch — 79Ch —
41 Dh — 79Dh —
41 Eh — 79Eh —
41 Fh — 79Fh —
42 0h

Unimplemented
Read as ‘0’

7A0h

Unimplemented
Read as ‘0’

46 Fh 7EFh
47 0h

Accesses
70h – 7Fh

7F0h

Accesses
70h – 7Fh

47 Fh 7FFh

BANK 22 BANK 23

80

80

0h

Bh

Core Registers 
(Table 3-2)

B80h

B8Bh

Core Registers 
(Table 3-2)

80 Ch
Unimplemented

Read as ‘0’

B8Ch
Unimplemented

Read as ‘0’

86 Fh BEFh

87 0h
Accesses
70h – 7Fh

BF0h
Accesses
70h – 7Fh

87 Fh BFFh

Le
BLE 3-5: PIC16(L)F1508/9 MEMORY MAP, BANK 8-23
BANK 8 BANK 9 BANK 10 BANK 11 BANK 12 BANK 13

0h

Bh

Core Registers 
(Table 3-2)

480h

48Bh

Core Registers 
(Table 3-2)

500h

50Bh

Core Registers 
(Table 3-2)

580h

58Bh

Core Registers 
(Table 3-2)

600h

60Bh

Core Registers 
(Table 3-2)

680h

68Bh

Core Registers 
(Table 3-2)

70

70
Ch — 48Ch — 50Ch — 58Ch — 60Ch — 68Ch — 70
Dh — 48Dh — 50Dh — 58Dh — 60Dh — 68Dh — 70
Eh — 48Eh — 50Eh — 58Eh — 60Eh — 68Eh — 70
Fh — 48Fh — 50Fh — 58Fh — 60Fh — 68Fh — 70
0h — 490h — 510h — 590h — 610h — 690h — 71
1h — 491h — 511h — 591h — 611h PWM1DCL 691h CWG1DBR 71
2h — 492h — 512h — 592h — 612h PWM1DCH 692h CWG1DBF 71
3h — 493h — 513h — 593h — 613h PWM1CON 693h CWG1CON0 71
4h — 494h — 514h — 594h — 614h PWM2DCL 694h CWG1CON1 71
5h — 495h — 515h — 595h — 615h PWM2DCH 695h CWG1CON2 71
6h — 496h — 516h — 596h — 616h PWM2CON 696h — 71
7h — 497h — 517h — 597h — 617h PWM3DCL 697h — 71
8h — 498h NCO1ACCL 518h — 598h — 618h PWM3DCH 698h — 71
9h — 499h NCO1ACCH 519h — 599h — 619h PWM3CON 699h — 71
Ah — 49Ah NCO1ACCU 51Ah — 59Ah — 61Ah PWM4DCL 69Ah — 71
Bh — 49Bh NCO1INCL 51Bh — 59Bh — 61Bh PWM4DCH 69Bh — 71
Ch — 49Ch NCO1INCH 51Ch — 59Ch — 61Ch PWM4CON 69Ch — 71
Dh — 49Dh — 51Dh — 59Dh — 61Dh — 69Dh — 71
Eh — 49Eh NCO1CON 51Eh — 59Eh — 61Eh — 69Eh — 71
Fh — 49Fh NCO1CLK 51Fh — 59Fh — 61Fh — 69Fh — 71
0h

Unimplemented
Read as ‘0’

4A0h

Unimplemented
Read as ‘0’

520h

Unimplemented
Read as ‘0’

5A0h

Unimplemented
Read as ‘0’

620h

Unimplemented
Read as ‘0’

6A0h

Unimplemented
Read as ‘0’

72

Fh 4EFh 56Fh 5EFh 66Fh 6EFh 76
0h

Accesses
70h – 7Fh

4F0h

Accesses
70h – 7Fh

570h

Accesses
70h – 7Fh

5F0h

Accesses
70h – 7Fh

670h

Accesses
70h – 7Fh

6F0h

Accesses
70h – 7Fh

77

Fh 4FFh 57Fh 5FFh 67Fh 6FFh 77

BANK 16 BANK 17 BANK 18 BANK 19 BANK 20 BANK 21

0h

Bh

Core Registers 
(Table 3-2 )

880h

88Bh

Core Registers 
(Table 3-2)

900h

90Bh

Core Registers 
(Table 3-2)

980h

98Bh

Core Registers 
(Table 3-2)

A00h

A0Bh

Core Registers 
(Table 3-2)

A80h

A8Bh

Core Registers 
(Table 3-2)

B0

B0

Ch
Unimplemented

Read as ‘0’

88Ch
Unimplemented

Read as ‘0’

90Ch
Unimplemented

Read as ‘0’

98Ch
Unimplemented

Read as ‘0’

A0Ch
Unimplemented

Read as ‘0’

A8Ch
Unimplemented

Read as ‘0’

B0

Fh 8EFh 96Fh 9EFh A6Fh AEFh B6
0h

Accesses
70h – 7Fh

8F0h
Accesses
70h – 7Fh

970h
Accesses
70h – 7Fh

9F0h
Accesses
70h – 7Fh

A70h
Accesses
70h – 7Fh

AF0h
Accesses
70h – 7Fh

B7

Fh 8FFh 97Fh 9FFh A7Fh AFFh B7

gend: = Unimplemented data memory locations, read as ‘0’.



PIC16(L)F1508/9
3.6.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR
address 0x2000 to FSR address 0x29AF. This region is
a virtual region that points back to the 80-byte blocks of
GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the
linear data memory region allows buffers to be larger
than 80 bytes because incrementing the FSR beyond
one bank will go directly to the GPR memory of the next
bank.

The 16 bytes of common memory are not included in
the linear data memory region.

FIGURE 3-10: LINEAR DATA MEMORY 
MAP

3.6.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire
program Flash memory is mapped to the upper half of
the FSR address space. When the MSb of FSRnH is
set, the lower 15 bits are the address in program
memory which will be accessed through INDF. Only the
lower eight bits of each memory location is accessible
via INDF. Writing to the program Flash memory cannot
be accomplished via the FSR/INDF interface. All
instructions that access program Flash memory via the
FSR/INDF interface will require one additional
instruction cycle to complete.

FIGURE 3-11: PROGRAM FLASH 
MEMORY MAP

0x020
Bank 0
0x06F

0x0A0
Bank 1
0x0EF

0x120
Bank 2
0x16F

0xF20
Bank 30
0xF6F

0 0 1
0 07 7FSRnH FSRnL

Location Select 0x2000

0x29AF

Rev. 10-000057A
7/31/2013

0x0000

Program 
Flash 

Memory 
(low 8 bits)

0x7FFF

1
0 07 7FSRnH FSRnL

Location Select 0x8000

0xFFFF

Rev. 10-000058A
7/31/2013
 2011-2015 Microchip Technology Inc. DS40001609E-page 39



PIC16(L)F1508/9
5.2 Clock Source Types

Clock sources can be classified as external, internal or
peripheral. 

External clock sources rely on external circuitry for the
clock source to function. Examples are: oscillator mod-
ules (ECH, ECM, ECL modes), quartz crystal resona-
tors or ceramic resonators (LP, XT and HS modes) and
Resistor-Capacitor (EXTRC) mode circuits.

Internal clock sources are contained within the oscillator
module. The internal oscillator block has two internal
oscillators that are used to generate the internal system
clock sources: the 16 MHz High-Frequency Internal
Oscillator (HFINTOSC) and the 31 kHz Low-Frequency
Internal Oscillator (LFINTOSC).

The peripheral clock source is a nominal 600 kHz
internal RC oscillator, FRC. The FRC is traditionally
used with the ADC module, but is sometimes available
to other peripherals. See Section 5.2.2.4 “Peripheral
Clock Sources”.

The system clock can be selected between external or
internal clock sources via the System Clock Select
(SCS) bits in the OSCCON register. See Section
5.3 “Clock Switching” for additional information. 

5.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device
system clock by performing one of the following
actions:

• Program the FOSC<2:0> bits in the Configuration 
Words to select an external clock source that will 
be used as the default system clock upon a 
device Reset.

• Write the SCS<1:0> bits in the OSCCON register 
to switch the system clock source to:

- Secondary oscillator during run-time, or

- An external clock source determined by the 
value of the FOSC bits.

See Section 5.3 “Clock Switching” for more informa-
tion.       

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally
generated logic level signal to be the system clock
source. When operating in this mode, an external clock
source is connected to the OSC1 input.
OSC2/CLKOUT is available for general purpose I/O or
CLKOUT. Figure 5-2 shows the pin connections for EC
mode.

EC mode has three power modes to select from through
the FOSC bits in the Configuration Words:

• ECH – High-power, 4-20 MHz

• ECM – Medium-power, 0.5-4 MHz

• ECL – Low-power, 0-0.5 MHz

The Oscillator Start-up Timer (OST) is disabled when
EC mode is selected. Therefore, there is no delay in
operation after a Power-on Reset (POR) or wake-up
from Sleep. Because the PIC® MCU design is fully
static, stopping the external clock input will have the
effect of halting the device while leaving all data intact.
Upon restarting the external clock, the device will
resume operation as if no time had elapsed.

FIGURE 5-2: EXTERNAL CLOCK (EC) 
MODE OPERATION

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz
crystal resonators or ceramic resonators connected to
OSC1 and OSC2 (Figure 5-3). The three modes select
a low, medium or high gain setting of the internal
inverter-amplifier to support various resonator types
and speed.

LP Oscillator mode selects the lowest gain setting of the
internal inverter-amplifier. LP mode current consumption
is the least of the three modes. This mode is designed to
drive only 32.768 kHz tuning-fork type crystals (watch
crystals).

XT Oscillator mode selects the intermediate gain
setting of the internal inverter-amplifier. XT mode
current consumption is the medium of the three modes.
This mode is best suited to drive resonators with a
medium drive level specification.

HS Oscillator mode selects the highest gain setting of the
internal inverter-amplifier. HS mode current consumption
is the highest of the three modes. This mode is best
suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for
quartz crystal and ceramic resonators, respectively.

Clock from
Ext. system

FOSC/4 or I/O(1)

OSC1/CLKIN

PIC® MCU

OSC2/CLKOUT

Note 1: Output depends upon the CLKOUTEN bit
of the Configuration Words.

Rev. 10-000045A
7/30/2013
DS40001609E-page 48  2011-2015 Microchip Technology Inc.



PIC16(L)F1508/9
5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscil-
lator block as the system clock by performing one of the
following actions:

• Program the FOSC<2:0> bits in Configuration 
Words to select the INTOSC clock source, which 
will be used as the default system clock upon a 
device Reset.

• Write the SCS<1:0> bits in the OSCCON register 
to switch the system clock source to the internal 
oscillator during run-time. See Section 
5.3 “Clock Switching”for more information.

In INTOSC mode, OSC1/CLKIN is available for general
purpose I/O. OSC2/CLKOUT is available for general
purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined
by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent
oscillators that provides the internal system clock
source.

1. The HFINTOSC (High-Frequency Internal
Oscillator) is factory calibrated and operates at
16 MHz.

2. The LFINTOSC (Low-Frequency Internal
Oscillator) operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is
a factory calibrated 16 MHz internal clock source.

The output of the HFINTOSC connects to a postscaler
and multiplexer (see Figure 5-1). The frequency derived
from the HFINTOSC can be selected via software using
the IRCF<3:0> bits of the OSCCON register. See
Section 5.2.2.6 “Internal Oscillator Clock Switch
Timing” for more information.

The HFINTOSC is enabled by:

• Configure the IRCF<3:0> bits of the OSCCON 
register for the desired HF frequency, and

• FOSC<2:0> = 100, or

• Set the System Clock Source (SCS) bits of the 
OSCCON register to ‘1x’.

A fast start-up oscillator allows internal circuits to
power-up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit
(HFIOFR) of the OSCSTAT register indicates when the
HFINTOSC is running.

The High-Frequency Internal Oscillator Stable bit
(HFIOFS) of the OSCSTAT register indicates when the
HFINTOSC is running within 0.5% of its final value.

5.2.2.2 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is
a 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer
(see Figure 5-1). Select 31 kHz, via software, using the
IRCF<3:0> bits of the OSCCON register. See Section
5.2.2.6 “Internal Oscillator Clock Switch Timing” for
more information. The LFINTOSC is also the frequency
for the Power-up Timer (PWRT), Watchdog Timer
(WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz
(IRCF<3:0> bits of the OSCCON register = 000) as the
system clock source (SCS bits of the OSCCON
register = 1x), or when any of the following are
enabled:

• Configure the IRCF<3:0> bits of the OSCCON 
register for the desired LF frequency, and

• FOSC<2:0> = 100, or

• Set the System Clock Source (SCS) bits of the 
OSCCON register to ‘1x’.

Peripherals that use the LFINTOSC are:

• Power-up Timer (PWRT)

• Watchdog Timer (WDT)

• Fail-Safe Clock Monitor (FSCM)

The Low-Frequency Internal Oscillator Ready bit
(LFIOFR) of the OSCSTAT register indicates when the
LFINTOSC is running.

5.2.2.3 FRC

The FRC clock is an uncalibrated, nominal 600 kHz
peripheral clock source.

The FRC is automatically turned on by the peripherals
requesting the FRC clock.

The FRC clock continues to run during Sleep.
 2011-2015 Microchip Technology Inc. DS40001609E-page 51



PIC16(L)F1508/9
             

REGISTER 7-6: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2  

R/W-0/0 R/W-0/0 R/W-0/0 U-0 R/W-0/0 R/W-0/0 U-0 U-0

OSFIF C2IF C1IF — BCL1IF NCO1IF — —

bit 7 bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’

u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets

‘1’ = Bit is set ‘0’ = Bit is cleared

bit 7 OSFIF: Oscillator Fail Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 6 C2IF: Comparator C2 Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 5 C1IF: Comparator C1 Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 4 Unimplemented: Read as ‘0’

bit 3 BCL1IF: MSSP Bus Collision Interrupt Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 2 NCO1IF: Numerically Controlled Oscillator Flag bit

1 = Interrupt is pending
0 = Interrupt is not pending

bit 1-0 Unimplemented: Read as ‘0’

Note: Interrupt flag bits are set when an interrupt
condition occurs, regardless of the state of
its corresponding enable bit or the Global
Interrupt Enable bit, GIE of the INTCON
register. User software should ensure the
appropriate interrupt flag bits are clear prior
to enabling an interrupt.
DS40001609E-page 80  2011-2015 Microchip Technology Inc.



PIC16(L)F1508/9
11.5 PORTB Registers

11.5.1 DATA REGISTER

PORTB is a 4-bit wide, bidirectional port. The
corresponding data direction register is TRISB
(Register 11-8). Setting a TRISB bit (= 1) will make the
corresponding PORTB pin an input (i.e., disable the
output driver). Clearing a TRISB bit (= 0) will make the
corresponding PORTB pin an output (i.e., enables
output driver and puts the contents of the output latch
on the selected pin). Example 11-1 shows how to
initialize an I/O port.

Reading the PORTB register (Register 11-7) reads the
status of the pins, whereas writing to it will write to the
PORT latch. All write operations are read-modify-write
operations. Therefore, a write to a port implies that the
port pins are read, this value is modified and then
written to the PORT data latch (LATB).

11.5.2 DIRECTION CONTROL

The TRISB register (Register 11-8) controls the
PORTB pin output drivers, even when they are being
used as analog inputs. The user should ensure the bits
in the TRISB register are maintained set when using
them as analog inputs. I/O pins configured as analog
input always read ‘0’.

11.5.3 ANALOG CONTROL

The ANSELB register (Register 11-10) is used to
configure the Input mode of an I/O pin to analog.
Setting the appropriate ANSELB bit high will cause all
digital reads on the pin to be read as ‘0’ and allow
analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital
output functions. A pin with TRIS clear and ANSEL set
will still operate as a digital output, but the Input mode
will be analog. This can cause unexpected behavior
when executing read-modify-write instructions on the
affected port.

11.5.4 PORTB FUNCTIONS AND OUTPUT 
PRIORITIES

Each PORTB pin is multiplexed with other functions. The
pins, their combined functions and their output priorities
are shown in Table 11-5.

When multiple outputs are enabled, the actual pin
control goes to the peripheral with the highest priority.

Analog input functions, such as ADC and comparator
inputs, are not shown in the priority lists. These inputs
are active when the I/O pin is set for Analog mode using
the ANSELx registers. Digital output functions may
control the pin when it is in Analog mode with the
priority shown below in Table 11-5.

Note: The ANSELB bits default to the Analog
mode after Reset. To use any pins as
digital general purpose or peripheral
inputs, the corresponding ANSEL bits
must be initialized to ‘0’ by user software.

TABLE 11-5: PORTB OUTPUT PRIORITY

Pin Name Function Priority(1)

RB4 SDA
RB4

RB5 RB5

RB6 SCL
SCK
RB6

RB7 CLC3
TX
RB7

Note 1: Priority listed from highest to lowest.
2: Default pin (see APFCON register).
3: Alternate pin (see APFCON register).
DS40001609E-page 112  2011-2015 Microchip Technology Inc.



PIC16(L)F1508/9
16.0 5-BIT DIGITAL-TO-ANALOG 
CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable
voltage reference, ratiometric with the input source,
with 32 selectable output levels. 

The positive input source (VSOURCE+) of the DAC can
be connected to:

• External VREF+ pin

• VDD supply voltage

The negative input source (VSOURCE-) of the DAC can
be connected to:

• Vss

The output of the DAC (DACx_output) can be selected
as a reference voltage to the following:

• Comparator positive input

• ADC input channel

• DACxOUT1 pin

• DACxOUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled
by setting the DACEN bit of the DACxCON0 register.

FIGURE 16-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM       

VREF+

VDD

DACPSS

VSOURCE+

VSOURCE-
VSS

R

32
Steps

R

R

R

R

R

R

32
-to

-1
M

U
X

To Peripherals

DACxOUT1 (1)

DACOE1

DACx_output

DACEN

DACR<4:0>
5

DACxOUT2 (1)

DACOE2

0

1

Note 1: The unbuffered DACx_output is provided on the DACxOUT pin(s).

Rev. 10-000026A
7/30/2013
DS40001609E-page 142  2011-2015 Microchip Technology Inc.



PIC16(L)F1508/9
TABLE 19-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

ANSELA — — — ANSA4 — ANSA2 ANSA1 ANSA0 110

APFCON — — — SSSEL T1GSEL — CLC1SEL NCO1SEL 107

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 75

OSCSTAT SOSCR — OSTS HFIOFR — — LFIOFR HFIOFS 60

PIE1 TMR1GIE ADIE RCIE TXIE SSP1IE — TMR2IE TMR1IE 76

PIR1 TMR1GIF ADIF RCIF TXIF SSP1IF — TMR2IF TMR1IF 79

TMR1H Holding Register for the Most Significant Byte of the 16-bit TMR1 Count 159*

TMR1L Holding Register for the Least Significant Byte of the 16-bit TMR1 Count 159*

TRISA — — TRISA5 TRISA4 —(1) TRISA2 TRISA1 TRISA0 109

T1CON TMR1CS<1:0> T1CKPS<1:0> T1OSCEN T1SYNC — TMR1ON 163

T1GCON TMR1GE T1GPOL T1GTM T1GSPM T1GGO/
DONE

T1GVAL T1GSS<1:0> 164

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used by the Timer1 module.
* Page provides register information.

Note 1: Unimplemented, read as ‘1’.
 2011-2015 Microchip Technology Inc. DS40001609E-page 165



PIC16(L)F1508/9
The I2C interface supports the following modes and
features:

• Master mode

• Slave mode

• Byte NACKing (Slave mode)

• Limited Multi-master support

• 7-bit and 10-bit addressing

• Start and Stop interrupts

• Interrupt masking

• Clock stretching

• Bus collision detection

• General call address matching

• Address masking

• Address Hold and Data Hold modes

• Selectable SDAx hold times

Figure 21-2 is a block diagram of the I2C interface mod-
ule in Master mode. Figure 21-3 is a diagram of the I2C
interface module in Slave mode.

FIGURE 21-2: MSSPX BLOCK DIAGRAM (I2C™ MASTER MODE)

Note 1: In devices with more than one MSSP
module, it is very important to pay close
attention to SSPxCONx register names.
SSPxCON1 and SSPxCON2 registers
control different operational aspects of
the same module, while SSPxCON1 and
SSP2CON1 control the same features for
two different modules.

2: Throughout this section, generic refer-
ences to an MSSPx module in any of its
operating modes may be interpreted as
being equally applicable to MSSPx or
MSSP2. Register names, module I/O sig-
nals, and bit names may use the generic
designator ‘x’ to indicate the use of a
numeral to distinguish a particular mod-
ule when required.
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21.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a
synchronous serial data communication bus that
operates in Full-Duplex mode. Devices communicate
in a master/slave environment where the master device
initiates the communication. A slave device is
controlled through a Chip Select known as Slave
Select. 

The SPI bus specifies four signal connections:

• Serial Clock (SCKx)

• Serial Data Out (SDOx)

• Serial Data In (SDIx)

• Slave Select (SSx)

Figure 21-1 shows the block diagram of the MSSP
module when operating in SPI mode.

The SPI bus operates with a single master device and
one or more slave devices. When multiple slave
devices are used, an independent Slave Select con-
nection is required from the master device to each
slave device.

Figure 21-4 shows a typical connection between a
master device and multiple slave devices.

The master selects only one slave at a time. Most slave
devices have tri-state outputs so their output signal
appears disconnected from the bus when they are not
selected.

Transmissions involve two shift registers, eight bits in
size, one in the master and one in the slave. With either
the master or the slave device, data is always shifted
out one bit at a time, with the Most Significant bit (MSb)
shifted out first. At the same time, a new Least
Significant bit (LSb) is shifted into the same register.

Figure 21-5 shows a typical connection between two
processors configured as master and slave devices.

Data is shifted out of both shift registers on the pro-
grammed clock edge and latched on the opposite edge
of the clock.

The master device transmits information out on its
SDOx output pin which is connected to, and received
by, the slave’s SDIx input pin. The slave device trans-
mits information out on its SDOx output pin, which is
connected to, and received by, the master’s SDIx input
pin.

To begin communication, the master device first sends
out the clock signal. Both the master and the slave
devices should be configured for the same clock polar-
ity. 

The master device starts a transmission by sending out
the MSb from its shift register. The slave device reads
this bit from that same line and saves it into the LSb
position of its shift register. 

During each SPI clock cycle, a full-duplex data
transmission occurs. This means that while the master
device is sending out the MSb from its shift register (on
its SDOx pin) and the slave device is reading this bit
and saving it as the LSb of its shift register, that the
slave device is also sending out the MSb from its shift
register (on its SDOx pin) and the master device is
reading this bit and saving it as the LSb of its shift
register.

After eight bits have been shifted out, the master and
slave have exchanged register values.

If there is more data to exchange, the shift registers are
loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data),
depends on the application software. This leads to
three scenarios for data transmission:

• Master sends useful data and slave sends dummy 
data.

• Master sends useful data and slave sends useful 
data.

• Master sends dummy data and slave sends useful 
data.

Transmissions may involve any number of clock
cycles. When there is no more data to be transmitted,
the master stops sending the clock signal and it dese-
lects the slave.

Every slave device connected to the bus that has not
been selected through its slave select line must disre-
gard the clock and transmission signals and must not
transmit out any data of its own.
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FIGURE 21-18: I2C SLAVE, 7-BIT ADDRESS, TRANSMISSION (AHEN = 0) 
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21.6.8 ACKNOWLEDGE SEQUENCE 
TIMING

An Acknowledge sequence is enabled by setting the
Acknowledge Sequence Enable bit, ACKEN bit of the
SSPxCON2 register. When this bit is set, the SCLx pin is
pulled low and the contents of the Acknowledge data bit
are presented on the SDAx pin. If the user wishes to
generate an Acknowledge, then the ACKDT bit should
be cleared. If not, the user should set the ACKDT bit
before starting an Acknowledge sequence. The Baud
Rate Generator then counts for one rollover period
(TBRG) and the SCLx pin is deasserted (pulled high).
When the SCLx pin is sampled high (clock arbitration),
the Baud Rate Generator counts for TBRG. The SCLx pin
is then pulled low. Following this, the ACKEN bit is auto-
matically cleared, the Baud Rate Generator is turned off
and the MSSP module then goes into Idle mode
(Figure 21-30).

21.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge
sequence is in progress, then the WCOL bit is set and
the contents of the buffer are unchanged (the write
does not occur).

21.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a
receive/transmit by setting the Stop Sequence Enable
bit, PEN bit of the SSPxCON2 register. At the end of a
receive/transmit, the SCLx line is held low after the
falling edge of the ninth clock. When the PEN bit is set,
the master will assert the SDAx line low. When the
SDAx line is sampled low, the Baud Rate Generator is
reloaded and counts down to ‘0’. When the Baud Rate
Generator times out, the SCLx pin will be brought high
and one TBRG (Baud Rate Generator rollover count)
later, the SDAx pin will be deasserted. When the SDAx
pin is sampled high while SCLx is high, the P bit of the
SSPxSTAT register is set. A TBRG later, the PEN bit is
cleared and the SSPxIF bit is set (Figure 21-31).

21.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence
is in progress, then the WCOL bit is set and the
contents of the buffer are unchanged (the write does
not occur).

FIGURE 21-30: ACKNOWLEDGE SEQUENCE WAVEFORM         

Note: TBRG = one Baud Rate Generator period.
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22.1.2.8 Asynchronous Reception Set-up:

1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section22.4 “EUSART
Baud Rate Generator (BRG)”).

2. Clear the ANSEL bit for the RX pin (if applicable).

3. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.

4. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.

5. If 9-bit reception is desired, set the RX9 bit.

6. Enable reception by setting the CREN bit.

7. The RCIF interrupt flag bit will be set when a
character is transferred from the RSR to the
receive buffer. An interrupt will be generated if
the RCIE interrupt enable bit was also set.

8. Read the RCSTA register to get the error flags
and, if 9-bit data reception is enabled, the ninth
data bit.

9. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREG
register.

10. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.

22.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems.
To set up an Asynchronous Reception with Address
Detect Enable:

1. Initialize the SPBRGH, SPBRGL register pair
and the BRGH and BRG16 bits to achieve the
desired baud rate (see Section22.4 “EUSART
Baud Rate Generator (BRG)”).

2. Clear the ANSEL bit for the RX pin (if applicable).

3. Enable the serial port by setting the SPEN bit.
The SYNC bit must be clear for asynchronous
operation.

4. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.

5. Enable 9-bit reception by setting the RX9 bit.

6. Enable address detection by setting the ADDEN
bit.

7. Enable reception by setting the CREN bit.

8. The RCIF interrupt flag bit will be set when a
character with the ninth bit set is transferred
from the RSR to the receive buffer. An interrupt
will be generated if the RCIE interrupt enable bit
was also set.

9. Read the RCSTA register to get the error flags.
The ninth data bit will always be set.

10. Get the received eight Least Significant data bits
from the receive buffer by reading the RCREG
register. Software determines if this is the
device’s address.

11. If an overrun occurred, clear the OERR flag by
clearing the CREN receiver enable bit.

12. If the device has been addressed, clear the
ADDEN bit to allow all received data into the
receive buffer and generate interrupts. 

FIGURE 22-5: ASYNCHRONOUS RECEPTION          
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22.5.2.3 EUSART Synchronous Slave 
Reception

The operation of the Synchronous Master and Slave
modes is identical (Section22.5.1.5 “Synchronous
Master Reception”), with the following exceptions:

• Sleep

• CREN bit is always set, therefore the receiver is 
never idle

• SREN bit, which is a “don’t care” in Slave mode

A character may be received while in Sleep mode by
setting the CREN bit prior to entering Sleep. Once the
word is received, the RSR register will transfer the data
to the RCREG register. If the RCIE enable bit is set, the
interrupt generated will wake the device from Sleep
and execute the next instruction. If the GIE bit is also
set, the program will branch to the interrupt vector.

22.5.2.4 Synchronous Slave Reception 
Set-up:

1. Set the SYNC and SPEN bits and clear the
CSRC bit.

2. Clear the ANSEL bit for both the CK and DT pins
(if applicable).

3. If interrupts are desired, set the RCIE bit of the
PIE1 register and the GIE and PEIE bits of the
INTCON register.

4. If 9-bit reception is desired, set the RX9 bit.

5. Set the CREN bit to enable reception.

6. The RCIF bit will be set when reception is
complete. An interrupt will be generated if the
RCIE bit was set.

7. If 9-bit mode is enabled, retrieve the Most
Significant bit from the RX9D bit of the RCSTA
register.

8. Retrieve the eight Least Significant bits from the
receive FIFO by reading the RCREG register.

9. If an overrun error occurs, clear the error by
either clearing the CREN bit of the RCSTA
register or by clearing the SPEN bit which resets
the EUSART.

TABLE 22-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE 
RECEPTION 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Register 
on Page

BAUDCON ABDOVF RCIDL — SCKP BRG16 — WUE ABDEN 235

INTCON GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF 75

PIE1 TMR1GIE ADIE RCIE TXIE SSP1IE — TMR2IE TMR1IE 76

PIR1 TMR1GIF ADIF RCIF TXIF SSP1IF — TMR2IF TMR1IF 79

RCREG EUSART Receive Data Register 228*

RCSTA SPEN RX9 SREN CREN ADDEN FERR OERR RX9D 234

TRISB TRISB7 TRISB6 TRISB5 TRISB4 TRISB3 TRISB2 TRISB1 TRISB0 113

TXSTA CSRC TX9 TXEN SYNC SENDB BRGH TRMT TX9D 233

Legend: — = unimplemented location, read as ‘0’. Shaded cells are not used for synchronous slave reception.

* Page provides register information.
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24.1.5 CLCx SETUP STEPS

The following steps should be followed when setting up
the CLCx:

• Disable CLCx by clearing the LCxEN bit.

• Select desired inputs using CLCxSEL0 and 
CLCxSEL1 registers (See Table 24-1).

• Clear any associated ANSEL bits.
• Set all TRIS bits associated with inputs.

• Clear all TRIS bits associated with outputs.

• Enable the chosen inputs through the four gates 
using CLCxGLS0, CLCxGLS1, CLCxGLS2, and 
CLCxGLS3 registers.

• Select the gate output polarities with the 
LCxPOLy bits of the CLCxPOL register.

• Select the desired logic function with the 
LCxMODE<2:0> bits of the CLCxCON register.

• Select the desired polarity of the logic output with 
the LCxPOL bit of the CLCxPOL register. (This 
step may be combined with the previous gate 
output polarity step).

• If driving a device, set the LCxOE bit in the 
CLCxCON register and also clear the TRIS bit 
corresponding to that output.

• If interrupts are desired, configure the following 
bits:

- Set the LCxINTP bit in the CLCxCON register 
for rising event.

- Set the LCxINTN bit in the CLCxCON 
register or falling event.

- Set the CLCxIE bit of the associated PIE 
registers.

- Set the GIE and PEIE bits of the INTCON 
register.

• Enable the CLCx by setting the LCxEN bit of the 
CLCxCON register.

24.2 CLCx Interrupts

An interrupt will be generated upon a change in the
output value of the CLCx when the appropriate interrupt
enables are set. A rising edge detector and a falling
edge detector are present in each CLC for this purpose.

The CLCxIF bit of the associated PIR registers will be
set when either edge detector is triggered and its asso-
ciated enable bit is set. The LCxINTP enables rising
edge interrupts and the LCxINTN bit enables falling
edge interrupts. Both are located in the CLCxCON
register.

To fully enable the interrupt, set the following bits:

• LCxON bit of the CLCxCON register

• CLCxIE bit of the associated PIE registers

• LCxINTP bit of the CLCxCON register (for a rising 
edge detection)

• LCxINTN bit of the CLCxCON register (for a 
falling edge detection)

• PEIE and GIE bits of the INTCON register

The CLCxIF bit of the associated PIR registers, must
be cleared in software as part of the interrupt service. If
another edge is detected while this flag is being
cleared, the flag will still be set at the end of the
sequence.

24.3 Output Mirror Copies

Mirror copies of all LCxCON output bits are contained
in the CLCxDATA register. Reading this register reads
the outputs of all CLCs simultaneously. This prevents
any reading skew introduced by testing or reading the
CLCxOUT bits in the individual CLCxCON registers.

24.4 Effects of a Reset

The CLCxCON register is cleared to zero as the result
of a Reset. All other selection and gating values remain
unchanged.

24.5 Operation During Sleep

The CLC module operates independently from the 
system clock and will continue to run during Sleep, 
provided that the input sources selected remain active.

The HFINTOSC remains active during Sleep when the 
CLC module is enabled and the HFINTOSC is 
selected as an input source, regardless of the system 
clock source selected. 

In other words, if the HFINTOSC is simultaneously 
selected as the system clock and as a CLC input 
source, when the CLC is enabled, the CPU will go idle 
during Sleep, but the CLC will continue to operate and 
the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.
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D016 — 215 360 A 1.8 FOSC = 500 kHz, 
HFINTOSC— 275 480 A 3.0

D016 — 270 450 A 2.3 FOSC = 500 kHz, 
HFINTOSC— 300 500 A 3.0

— 350 620 A 5.0

D017* — 410 660 A 1.8 FOSC = 8 MHz,
HFINTOSC— 630 970 A 3.0

D017* — 530 750 A 2.3 FOSC = 8 MHz,
HFINTOSC— 660 1100 A 3.0

— 730 1200 A 5.0

D018 — 600 940 A 1.8 FOSC = 16 MHz,
HFINTOSC — 970 1400 A 3.0

D018 — 780 1200 A 2.3 FOSC = 16 MHz,
HFINTOSC — 1000 1550 A 3.0

— 1090 1700 A 5.0

D019A — 1030 1500 A 3.0 FOSC = 20 MHz,
External Clock (ECH),
High-Power mode

D019A — 1060 1600 A 3.0 FOSC = 20 MHz,
External Clock (ECH),
High-Power mode

— 1220 1800 A 5.0

TABLE 29-2: SUPPLY CURRENT (IDD)(1,2) (CONTINUED)

PIC16LF1508/9 Standard Operating Conditions (unless otherwise stated)

PIC16F1508/9

Param.
No.

Device 
Characteristics

Min. Typ† Max. Units
Conditions

VDD Note

* These parameters are characterized but not tested.
† Data in “Typ” column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance 

only and are not tested.
Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, 

from rail-to-rail; all I/O pins tri-stated, pulled to VSS; MCLR = VDD; WDT disabled.
2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O 

pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have 
an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can 
be extended by the formula IR = VDD/2REXT (mA) with REXT in k.
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FIGURE 30-17: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, 
PIC16F1508/9 ONLY

FIGURE 30-18: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, 
PIC16F1508/9 ONLY
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FIGURE 30-37: IPD, BROWN-OUT RESET (BOR), BORV = 0, PIC16LF1508/9 ONLY

FIGURE 30-38: IPD, BROWN-OUT RESET (BOR), BORV = 1, PIC16LF1508/9 ONLY
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FIGURE 30-62: WDT TIME-OUT PERIOD

FIGURE 30-63: PWRT PERIOD
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