

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1508-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1508/9

PIN ALLOCATION TABLE

									,						
OI	20-Pin PDIP/SOIC/SSOP	20-Pin QFN/UQFN	ADC	Reference	Comparator	Timers	EUSART	MSSP	CWG	NCO	CLC	MWG	Interrupt	Pull-up	Basic
RA0	19	16	AN0	DAC1OUT1	C1IN+	—	—	—	—	-	—	—	IOC	Y	ICSPDAT ICDDAT
RA1	18	15	AN1	VREF+	C1IN0- C2IN0-	—	-	—	—	—	CLC4IN1	—	IOC	Y	ICSPCLK ICDCLK
RA2	17	14	AN2	DAC1OUT2	C10UT	TOCKI	-	—	CWG1FLT	_	CLC1	PWM3	INT/ IOC	Y	—
RA3	4	1	-	_	_	T1G ⁽¹⁾	_	<u>SS</u> (1)	_	_	CLC1IN0	_	IOC	Y	MCLR VPP
RA4	3	20	AN3	_	—	SOSCO T1G	—	—	_	_	—	_	IOC	Y	CLKOUT OSC2
RA5	2	19	-	_	—	SOSCI T1CKI	—	—	—	NCO1CLK	—	—	IOC	Y	CLKIN OSC1
RB4	13	10	AN10	_	_	_	_	SDA/SDI		_	CLC3IN0	_	IOC	Y	_
RB5	12	9	AN11	_	_	—	RX/DT	_	_	_	CLC4IN0	—	IOC	Y	_
RB6	11	8	_	_	_	_	—	SCL/SCK	_	_	_	_	IOC	Y	_
RB7	10	7	_	—	_	_	TX/CK	—	_	-	CLC3	_	IOC	Y	—
RC0	16	13	AN4	—	C2IN+	—	_	_	—	_	CLC2	_		_	—
RC1	15	12	AN5	_	C1IN1- C2IN1-	—	—	—	—	NCO1	—	PWM4		-	—
RC2	14	11	AN6	_	C1IN2- C2IN2-	—	—	—	_	_	_	—	—	—	—
RC3	7	4	AN7	_	C1IN3- C2IN3-	_	—	—	—	—	CLC2IN0	PWM2	_	—	—
RC4	6	3	-	—	C2OUT	—	—	—	CWG1B	—	CLC4 CLC2IN1	—		—	—
RC5	5	2	_	_	_	_	_	_	CWG1A	_	CLC1 ⁽¹⁾	PWM1	_	_	_
RC6	8	5	AN8	—	—	—	—	SS	—	NCO1 ⁽¹⁾	CLC3IN1	—	—	—	—
RC7	9	6	AN9	—	_	—	_	SDO	_	_	CLC1IN1	_	_	_	_
VDD	1	18	_	—	—	—	_	—	_	_	—	—	_	_	Vdd
Vss	20	17	_	_	—	—	_	—	_	_	—	—	_	—	Vss

TABLE 1: 20-PIN ALLOCATION TABLE (PIC16(L)F1508/9)

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

3.3.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- the arithmetic status of the ALU
- · the Reset status

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

REGISTER 3-1: STATUS: STATUS REGISTER

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to **Section 28.0 "Instruction Set Summary"**).

Note 1: The <u>C</u> and <u>DC</u> bits operate as Borrow and <u>Digit</u> Borrow out bits, respectively, in subtraction.

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u
		_	TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾
bit 7					•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							ther Resets
'1' = Bit is set '0' = Bit is cleared q = Value depends on condition							

bit 7-5	Unimplemented: Read as '0'
bit 4	TO: Time-Out bit
	 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 3	PD: Power-Down bit
	 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction
bit 2	Z: Zero bit
	 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero
bit 1	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the 4th low-order bit of the result occurred 0 = No carry-out from the 4th low-order bit of the result
bit 0	C: Carry/Borrow bit ⁽¹⁾ (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order bit of the source register.

TABLE 3-5: PIC16(L)F1508/9 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h		480h		500h		580h		600h		680h		700h		780h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	—	48Ch	_	50Ch	_	58Ch	—	60Ch	—	68Ch	-	70Ch		78Ch	—
40Dh	_	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	_	48Eh	_	50Eh	_	58Eh	_	60Eh	_	68Eh	_	70Eh		78Eh	—
40Fh	_	48Fh	_	50Fh	_	58Fh	_	60Fh	_	68Fh	_	70Fh		78Fh	—
410h	_	490h	_	510h	_	590h	_	610h	—	690h	_	710h		790h	—
411h	—	491h	_	511h	_	591h		611h	PWM1DCL	691h	CWG1DBR	711h	_	791h	
412h	—	492h	—	512h	—	592h	—	612h	PWM1DCH	692h	CWG1DBF	712h	—	792h	—
413h	—	493h	_	513h	_	593h		613h	PWM1CON	693h	CWG1CON0	713h	_	793h	
414h	—	494h	—	514h	—	594h	—	614h	PWM2DCL	694h	CWG1CON1	714h	—	794h	—
415h	—	495h	—	515h	—	595h	—	615h	PWM2DCH	695h	CWG1CON2	715h	—	795h	—
416h	—	496h	—	516h	—	596h	—	616h	PWM2CON	696h	—	716h	—	796h	—
417h	—	497h	_	517h	_	597h		617h	PWM3DCL	697h		717h	_	797h	
418h		498h	NCO1ACCL	518h	_	598h	_	618h	PWM3DCH	698h		718h	_	798h	_
419h	_	499h	NCO1ACCH	519h	_	599h		619h	PWM3CON	699h	_	719h	_	799h	_
41Ah	_	49Ah	NCO1ACCU	51Ah	_	59Ah		61Ah	PWM4DCL	69Ah	_	71Ah	_	79Ah	_
41Bh		49Bh	NCO1INCL	51Bh	—	59Bh	—	61Bh	PWM4DCH	69Bh	—	71Bh	—	79Bh	
41Ch	—	49Ch	NCO1INCH	51Ch	_	59Ch		61Ch	PWM4CON	69Ch		71Ch	_	79Ch	
41Dh		49Dh	—	51Dh	—	59Dh	—	61Dh	_	69Dh	—	71Dh	—	79Dh	
41Eh	_	49Eh	NCO1CON	51Eh	_	59Eh		61Eh	_	69Eh	_	71Eh	_	79Eh	_
41Fh		49Fh	NCO1CLK	51Fh	—	59Fh	—	61Fh	_	69Fh	—	71Fh	—	79Fh	
4200		4A011		5200		SAUN		62011		6A01		72011		7 AUN	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4FFh		56Fh		5EFh		66Fh		6FFh		76Fh		7FFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	٨٥٥٥٥٥٥		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
47 C b	/011 //11	455h		FZEN		FFFh		675h	7011 7111	655h	7011 7111	7756		7556	7011 7111
47 FD		4660		57FN		SEEU		07FI		огги		//F0		7660	
_	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
86Fb		8FFh		96Fh		9EFh		A6Fh		AEFh		B6Fb		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BE0h	
01011	Accesses	51 511	Accesses	57011	Accesses	51 511	Accesses		Accesses		Accesses	5, 011	Accesses	5.01	Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fb		BEEh	
01111		21.1.1				21111						2		2	

Legend: = Unimplemented data memory locations, read as '0'.

3.3.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-8 can be addressed from any Bank.

TABLE 3-8: CORE FUNCTION REGISTERS SUMMARY

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank	0-31											
x00h or x80h	INDF0	Addressing (not a phys	ddressing this location uses contents of FSR0H/FSR0L to address data memory not a physical register)									
x01h or x81h	INDF1	Addressing (not a phys	ddressing this location uses contents of FSR1H/FSR1L to address data memory not a physical register)									
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000	
x03h or x83h	STATUS	—	_		TO	PD	Z	DC	С	1 1000	q quuu	
x04h or x84h	FSR0L	Indirect Da	ta Memory A	ddress 0 Lo	w Pointer					0000 0000	uuuu uuuu	
x05h or x85h	FSR0H	Indirect Da	ta Memory A	ddress 0 Hig	gh Pointer					0000 0000	0000 0000	
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu	
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000	
x08h or x88h	BSR	—	_				BSR<4:0>			0 0000	0 0000	
x09h or x89h	WREG	Working Re	egister							0000 0000	uuuu uuuu	
x0Ahor x8Ah	PCLATH	_	Write Buffer		-000 0000	-000 0000						
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

PIC16(L)F1508/9

CDE CIAL FUNC

TABLE	: 3-9: 5			N REGIS	1ER 301						
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banks	14-29		•	•		•					<u>.</u>
x0Ch/ x8Ch	_	Unimplemen	ited							_	-
x1Fh/ x9Fh											
Bank 3	30										
F0Ch to F0Eh	_	Unimplemen	ited							_	-
F0Fh	CLCDATA	_	_	_	_	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	0000	0000
F10h	CLC1CON	LC1EN	LC10E	LC10UT	LC1INTP	LC1INTN		LC1MODE<2	:0>	0000 0000	0000 0000
F11h	CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	0 xxxx	0 uuuu
F12h	CLC1SEL0	_	L	_C1D2S<2:0	>	_		LC1D1S<2:0)>	-xxx -xxx	-uuu -uuu
F13h	CLC1SEL1	_	L	_C1D4S<2:0	>	_		LC1D3S<2:0)>	-xxx -xxx	-uuu -uuu
F14h	CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	xxxx xxxx	uuuu uuuu
F15h	CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	xxxx xxxx	uuuu uuuu
F16h	CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	xxxx xxxx	uuuu uuuu
F17h	CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	xxxx xxxx	uuuu uuuu
F18h	CLC2CON	LC2EN	LC2OE	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2	:0>	0000 0000	0000 0000
F19h	CLC2POL	LC2POL	—	—	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	0 xxxx	0 uuuu
F1Ah	CLC2SEL0	—	L	_C2D2S<2:0	>	—		LC2D1S<2:0)>	-xxx -xxx	-uuu -uuu
F1Bh	CLC2SEL1	—	L	_C2D4S<2:0	>	—		LC2D3S<2:0)>	-xxx -xxx	-uuu -uuu
F1Ch	CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	xxxx xxxx	uuuu uuuu
F1Dh	CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	xxxx xxxx	uuuu uuuu
F1Eh	CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	XXXX XXXX	uuuu uuuu
F1Fh	CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	XXXX XXXX	uuuu uuuu
F20h	CLC3CON	LC3EN	LC3OE	LC3OUT	LC3INTP	LC3INTN		LC3MODE<2	:0>	0000 0000	0000 0000
F21h	CLC3POL	LC3POL	-	—	—	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	0 xxxx	0 uuuu
F22h	CLC3SEL0	—	L	_C3D2S<2:0	>	-		LC3D1S<2:0)>	-xxx -xxx	-uuu -uuu
F23h	CLC3SEL1	—	L	_C3D4S<2:0	>	—		LC3D3S<2:0)>	-xxx -xxx	-uuu -uuu
F24h	CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	XXXX XXXX	uuuu uuuu
F25h	CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	XXXX XXXX	uuuu uuuu
F26h	CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	XXXX XXXX	uuuu uuuu
F27h	CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	XXXX XXXX	uuuu uuuu
F28h	CLC4CON	LC4EN	LC40E	LC40UT	LC4INTP	LC4INTN		LC4MODE<2	:0>	0000 0000	0000 0000
F29h	CLC4POL	LC4POL	-		—	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	0 xxxx	0 uuuu
F2Ah	CLC4SEL0	_	L	_C4D2S<2:0	>	_		LC4D1S<2:0)>	-xxx -xxx	-uuu -uuu
F2Bh	CLC4SEL1	—		_C4D4S<2:0		—		LC4D3S<2:0)>	-xxx -xxx	-uuu -uuu
F2Ch	CLC4GLS0	LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	XXXX XXXX	uuuu uuuu
F2Dh	CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	XXXX XXXX	uuuu uuuu
F2Eh	CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D11	LC4G3D1N	XXXX XXXX	uuuu uuuu
F2Fh	CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	XXXX XXXX	uuuu uuuu
F20h	CLC3CON	LC3EN	LC30E	LC3OUT	LC3INTP	LC3INTN	1.00000000	LC3MODE<2	:U>	0000 0000	0000 0000
F21h	CLC3POL	LC3POL	—	-	-	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	U xxxx	0 uuuu
F2Fh	CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	XXXX XXXX	uuuu uuuu
F30h to F6Fh	-	Unimplemen	ited							-	-

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

17.8 Register Definitions: Comparator Control

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0				
CxON	CxOUT	CxOE	CxPOL		CxSP	CxHYS	CxSYNC				
bit 7							bit 0				
											
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	e at POR and BC	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
hit 7	CYON: Com	parator Englia	hit								
DIL 7			DIL								
	1 = Compara 0 = Compara	itor is disabled	and consumes	no active po	wer						
bit 6	CxOUT: Com	parator Output	bit	·							
	<u>If CxPOL = 1</u>	(inverted polar	<u>ity):</u>								
	1 = CxVP <	CxVN									
	0 = CxVP > 0	CxVN	oclority):								
	1 = CxVP > 1	<u>(non-inverteu j</u> CxVN	<u>Jolanty).</u>								
	0 = CxVP <	CxVN									
bit 5	CxOE: Comp	parator Output I	Enable bit								
	1 = CxOUT i	is present on th	e CxOUT pin. F	Requires that	the associated T	RIS bit be clea	red to actually				
	drive the	pin. Not affect	ed by CxON.								
h:+ 4	0 = CXOOT	is internal only		1							
DIT 4		nparator Output	Polarity Selec	t Dit							
	1 = Compara0 = Compara	itor output is inv	t inverted								
bit 3	Unimplemer	nted: Read as '	0'								
bit 2	CxSP: Comp	arator Speed/F	ower Select bi	t							
	1 = Compara	tor mode in no	rmal power, hig	her speed							
	0 = Compara	itor mode in lov	v-power, low-sp	beed							
bit 1	CxHYS: Con	nparator Hyster	esis Enable bit								
	1 = Compara	ator hysteresis	enabled								
	0 = Compara	ator hysteresis	disabled								
bit 0	CXSYNC: Co	omparator Outp	ut Synchronou	s Mode bit		T					
	⊥ = Compara	ator output to I	falling edge of	pin is synch Timer1 clock	ironous to chang source	jes on Timer1	CIOCK SOURCE.				
	0 = Compara	ator output to T	imer1 and I/O	bin is asynchi	ronous						
		P		- ,							

REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

The I^2C interface supports the following modes and features:

- Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited Multi-master support
- · 7-bit and 10-bit addressing
- · Start and Stop interrupts
- Interrupt masking
- Clock stretching
- Bus collision detection
- General call address matching
- Address masking
- · Address Hold and Data Hold modes
- · Selectable SDAx hold times

Figure 21-2 is a block diagram of the I^2C interface module in Master mode. Figure 21-3 is a diagram of the I^2C interface module in Slave mode.

Note 1: In devices with more than one MSSP module, it is very important to pay close attention to SSPxCONx register names. SSPxCON1 and SSPxCON2 registers control different operational aspects of the same module, while SSPxCON1 and SSP2CON1 control the same features for two different modules.

2: Throughout this section, generic references to an MSSPx module in any of its operating modes may be interpreted as being equally applicable to MSSPx or MSSP2. Register names, module I/O signals, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module when required.

FIGURE 21-2: MSSPX BLOCK DIAGRAM (I²C[™] MASTER MODE)

FIGURE 21-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

21.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control Register 1 (SSPxCON1)
- MSSP Control Register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section21.7 "Baud Rate Generator**".

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

23.2 Register Definitions: PWM Control

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	U-0	U-0	U-0	U-0
PWMxEN	PWMxOE	PWMxOUT	PWMxPOL	—	_	_	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	PWMxEN: PV	VM Module En	able bit				
	1 = PWM mo	dule is enable	b				
	0 = PWM mo	dule is disable	d				
bit 6	PWMxOE: P\	NM Module Ou	itput Enable bi	t			
	1 = Output to	PWMx pin is e	enabled				
	0 = Output to	PWMx pin is a	disabled				
bit 5	PWMxOUT: F	PWM Module C	output Value bi	t			
bit 4	PWMxPOL: F	PWMx Output F	Polarity Select	bit			
	1 = PWM out	put is active-lo	W				
	0 = PWM out	tput is active-hi	gh				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER 23-1: PWMxCON: PWM CONTROL REGISTER

25.2 Fixed Duty Cycle (FDC) Mode

In Fixed Duty Cycle (FDC) mode, every time the accumulator overflows (NCO_overflow), the output is toggled. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see Figure 25-2.

The FDC mode is selected by clearing the NxPFM bit in the NCOxCON register.

25.3 Pulse Frequency (PF) Mode

In Pulse Frequency (PF) mode, every time the accumulator overflows (NCO_overflow), the output becomes active for one or more clock periods. Once the clock period expires, the output returns to an inactive state. This provides a pulsed output.

The output becomes active on the rising clock edge immediately following the overflow event. For more information, see Figure 25-2.

The value of the active and inactive states depends on the polarity bit, NxPOL in the NCOxCON register.

The PF mode is selected by setting the NxPFM bit in the NCOxCON register.

25.3.1 OUTPUT PULSE WIDTH CONTROL

When operating in PF mode, the active state of the output can vary in width by multiple clock periods. Various pulse widths are selected with the NxPWS<2:0> bits in the NCOxCLK register.

When the selected pulse width is greater than the accumulator overflow time frame, the output of the NCOx operation is indeterminate.

25.4 Output Polarity Control

The last stage in the NCOx module is the output polarity. The NxPOL bit in the NCOxCON register selects the output polarity. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

The NCOx output can be used internally by source code or other peripherals. Accomplish this by reading the NxOUT (read-only) bit of the NCOxCON register.

The NCOx output signal is available to the following peripherals:

- CLC
- CWG

25.5 Interrupts

When the accumulator overflows (NCO_overflow), the NCOx Interrupt Flag bit, NCOxIF, of the PIRx register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set:

- NxEN bit of the NCOxCON register
- · NCOxIE bit of the PIEx register
- · PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt must be cleared by software by clearing the NCOxIF bit in the Interrupt Service Routine.

25.6 Effects of a Reset

All of the NCOx registers are cleared to zero as the result of a Reset.

25.7 Operation In Sleep

The NCO module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the NCO module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO clock source, when the NCO is enabled, the CPU will go idle during Sleep, but the NCO will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

25.8 Alternate Pin Locations

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 11.1 "Alternate Pin Function**" for more information.

29.2 Standard Operating Conditions

The standard operating conditions for any device are defined as:

Operating Voltage: Operating Temperature:	$\label{eq:VDDMAX} \begin{array}{l} V \text{DDMIN} \leq V \text{DD} \leq V \text{DDMAX} \\ \text{Ta}_\text{MIN} \leq \text{Ta} \leq \text{Ta}_\text{MAX} \end{array}$	
VDD — Operating Supply	v Voltage ⁽¹⁾	
PIC16LF1508/9		
Vddmin (F	osc ≤ 16 MHz)	
VDDMIN (1	6 MHz < Fosc ≤ 20 MHz)	
VDDMAX		
PIC16F1508/9		
VDDMIN (F	$osc \leq 16 MHz$)	
VDDMIN (1	6 MHz < Fosc ≤ 20 MHz)	
VDDMAX		+5.5V
TA — Operating Ambient	Temperature Range	
Industrial Temperat	ure	
TA_MIN		40°C
Та_мах		+85°C
Extended Temperat	ure	
TA_MIN		-40°C
Та_мах		+125°C

Note 1: See Parameter D001, DC Characteristics: Supply Voltage.

29.3 DC Characteristics

TABLE 29-1:SUPPLY VOLTAGE

PIC16LF	1508/9		Standard	d Opera	ating Con	ditions (unless otherwise stated)
PIC16F1	508/9						
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D001	Vdd	Supply Voltage					
			VDDMIN 1.8 2.5	_	VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾					
			1.5		—	V	Device in Sleep mode
D002*			1.7	_	—	V	Device in Sleep mode
D002A*	VPOR	Power-on Reset Release Voltage	2)				
			—	1.6	—	V	
D002A*			_	1.6	—	V	
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾					
			—	0.8	_	V	
D002B*				1.5		V	
D003	VFVR	Fixed Voltage Reference Voltage					
		1x gain (1.024V nominal) 2x gain (2.048V nominal) 4x gain (4.096V nominal)	-4 -3	_	+4 +7	%	$\label{eq:VDD} \begin{array}{l} VDD \geq 2.5V, \ -40^{\circ}C \leq TA \leq +85^{\circ}C \\ VDD \geq 2.5V, \ -40^{\circ}C \leq TA \leq +85^{\circ}C \\ VDD \geq 4.75V, \ -40^{\circ}C \leq TA \leq +85^{\circ}C \\ \end{array}$
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	_	V/ms	Ensures that the Power-on Reset signal is released properly.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 29-3, POR and POR REARM with Slow Rising VDD.

Note 1:If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts. This allows the SLEEP instruction to be executed.

TABLE 29-20: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Symbol	Charac	Characteristic		Тур	Max.	Units	Conditions		
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated		
		Setup time	400 kHz mode	600	_			Start condition		
SP91*	THD:STA	Start condition	100 kHz mode	4000		—	ns	After this period, the first		
		Hold time	400 kHz mode	600		—		clock pulse is generated		
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700			ns			
		Setup time	400 kHz mode	600	_	-				
SP93	THD:STO	Stop condition	100 kHz mode	4000			ns			
		Hold time	400 kHz mode	600						
* These parameters are characterized but not tested.										

St. -1-. 1. -1 ~ - 1

These parameters are characterized but not tested.

I²C BUS DATA TIMING **FIGURE 29-21:**

FIGURE 30-15: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1508/9 ONLY

FIGURE 30-16: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1508/9 ONLY

PIC16(L)F1508/9

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820