

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1508t-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-4: PIC16(L)F1509 MEMORY MAP, BANK 0-7

= Unimplemented data memory locations, read as '0'.

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers		Core Registers												
	(Table 3-2)		(Table 3-2)												
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	—	30Ch	—	38Ch	—
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	—	38Dh	—
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	—	28Eh	_	30Eh	—	38Eh	—
00Fh	—	08Fh	—	10Fh	—	18Fh	—	20Fh	—	28Fh	—	30Fh	—	38Fh	—
010h	-	090n	-	110n	-	190n	-	210n	-	290h		310h		390n	-
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	SSPIBUE	291h	_	311h		391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	SSPIADD	292h	_	312h	_	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	SSP1MSK	293h	_	313h	_	393h	IOCAF
014h	_	094h	—	114h	CM2CON1	194h	PMDATH	214h	SSP1STAT	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	SSP1CON1	295h	_	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	—	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON	217h	SSP1CON3	297h	_	317h	_	397h	_
018h	T1CON	098h	—	118h	DAC1CON0	198h	—	218h	_	298h	—	318h	—	398h	—
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RCREG	219h	_	299h	_	319h	_	399h	_
01Ah	TMR2	09Ah	OSCSTAT	11Ah	_	19Ah	TXREG	21Ah		29Ah	—	31Ah	_	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	_	19Bh	SPBRG	21Bh	—	29Bh	—	31Bh	-	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch		19Ch	SPBRGH	21Ch		29Ch	—	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh		29Dh	—	31Dh	_	39Dh	—
01Eh	—	09Eh	ADCON1	11Eh		19Eh	TXSTA	21Eh		29Eh	—	31Eh	_	39Eh	—
01Fh	_	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Fh	—	29Fh	—	31Fh		39Fh	—
		0A0h						1				320h	General Purpose		
													Register		
020h	General		General	120h	General	1A0h	General	220h	General	2A0h	General		16Bytes	3A0h	
	Purpose				Unimplemented										
	Register		Unimplemented		Read as '0'										
	80 Bytes		Read as '0'												
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses		Accesses										
	COMMON RAW		70h – 7Fh		70h – 7Fh										
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

DS40001609E-page 22

Legend:

PIC16(L)F1508/9

FIGURE 3-7:	ACCESSING THE STA	CK EXAMPLE	4
			Rev. 10-00043D 7/592013
			~
	0x0F	Return Address	_
	0x0E	Return Address	
	0x0D	Return Address	
	0x0C	Return Address	
	0x0B	Return Address	
	0x0A	Return Address	When the stack is full, the next CALL or
	0x09	Return Address	an interrupt will set the Stack Pointer to
	0x08	Return Address	the stack will wrap and overwrite the
	0x07	Return Address	return address at 0x00. If the Stack
	0x06	Return Address	Reset will occur and location 0x00 will
	0x05	Return Address	not be overwritten.
	0x04	Return Address	
	0x03	Return Address	
	0x02	Return Address	1
	0x01	Return Address	
TO	SH:TOSL 0x00	Return Address	STKPTR = 0x10
		L	\neg \neg \neg

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

5.2 Clock Source Types

Clock sources can be classified as external, internal or peripheral.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL modes), quartz crystal resonators or ceramic resonators (LP, XT and HS modes) and Resistor-Capacitor (EXTRC) mode circuits.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate the internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The peripheral clock source is a nominal 600 kHz internal RC oscillator, FRC. The FRC is traditionally used with the ADC module, but is sometimes available to other peripherals. See **Section 5.2.2.4** "**Peripheral Clock Sources**".

The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching**" for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Secondary oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See **Section 5.3 "Clock Switching**" for more information.

5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through the Fosc bits in the Configuration Words:

- ECH High-power, 4-20 MHz
- ECM Medium-power, 0.5-4 MHz
- ECL Low-power, 0-0.5 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

5.2.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 5-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification.

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting.

Figure 5-3 and Figure 5-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

Note: When FSCM is enabled, Two-Speed Start-up will automatically be enabled.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the CPU is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator. See Table 5-2.

TABLE 5-3: OSCILLATOR SWITCHING DELAYS

Switch From	Switch To	Oscillator Delay	
	LFINTOSC	1 cycle of each clock source	
	HFINTOSC	2 μs (approx.)	
Any clock source	ECH, ECM, ECL, EXTRC	2 cycles	
	LP, XT, HS	1024 Clock Cycles (OST)	
	Secondary Oscillator	1024 Secondary Oscillator Cycles	

FIGURE 5-8: TWO-SPEED START-UP

PIC16(L)F1508/9

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-Out Reset Enable bit <u>If BOREN <1:0> in Configuration Words = 01</u> : 1 = BOR Enabled 0 = BOR Disabled <u>If BOREN <1:0> in Configuration Words ≠ 01</u> : SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾ <u>If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):</u> 1 = Band gap is forced on always (covers sleep/wake-up/operating cases) 0 = Band gap operates normally, and may turn off <u>If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)</u> BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive
Note 1:	BOREN<1:0> bits are located in Configuration Words.

Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: For minimum width of INT pulse, refer to AC specifications in Section 29.0 "Electrical Specifications".

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

	11_1		P/M/)/O	P/W/_0/0			P/M/_0/0		P/S/HC_0/0
	(1)		CFG	,,0 C		EREE		W/REN	W/P	RD
bit 7	hit 7			LWLO	TREE	WILLIAN	WILLIN	WIX	hit 0	
DIC 1										bit 0
Legen	d:									
R = Re	eada	ble bit			W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'	
S = Bit	t can	only b	e set		x = Bit is unkno	wn	-n/n = Value at	POR and BOR/\	/alue at all other F	Resets
'1' = B	it is s	set			'0' = Bit is clear	ed	HC = Bit is clea	red by hardware	9	
bit 7			Unimple	mente	d: Read as '1'					
bit 6			CFGS: C	onfigu	ration Select bit					
			1 = Acc	ess Co	onfiguration, Use	r ID and Device	ID Registers			
6.4 F					asn program me	mory				
DIT 5			1 = Only	oad vv	rite Latches Oni	y bitter	a latch is loaded/	undated on the r	ext W/P comman	Ч
			0 = The	addre	ssed program m	emory write latcl	h is loaded/updat	ed and a write of	all program memo	ory write latches
			will I	be initi	ated on the next	WR command			1 0	,
bit 4			FREE: P	rogram	n Flash Erase Er	nable bit				
			1 = Perf	orms a	an erase operati	on on the next V	VR command (ha	ardware cleared	upon completion)	
			0 = Pert	orms a	a write operation		R command			
bit 3			WRERR:	Progr	ani/Erase Error Flag Dit ndicates an improper program or erase sequence attempt or termination (bit is set automatically					
			on a	any set	attempt (write '1') of the WR bit).					
			0 = The	progra	am or erase ope	ration completed	d normally.			
bit 2			WREN: F	Program	m/Erase Enable	bit				
			1 = Allow	ws pro	gram/erase cycl	es	-leeh			
L:1 4				ons pro	ogramming/erasi	ing of program F	lasn			
DIT			1 = Initia	e Com ates a	iroi dit program Flash r	rogram/erase o	neration			
			The	opera	tion is self-timed	and the bit is c	leared by hardwa	are once operation	on is complete.	
			The	WR bi	it can only be se	t (not cleared) ir	n software.			
			0 = Prog	gram/e	rase operation t	o the Flash is co	omplete and inac	tive.		
bit 0			RD: Read	d Cont	rol bit	and Deed to be				
			⊥ = Initia (not	ates a cleare	program ⊢iash r ad) in software	eau. Read takes	s one cycle. RD is	s cleared in hard	iware. The RD bit	can only be set
			0 = Doe	s not i	nitiate a progran	n Flash read.				
Note	1:	Unim	plemente	d bit, r	ead as '1'.					
	2:	The V	VRERR b	it is au	itomatically set b	y hardware whe	en a program mei	mory write or era	ase operation is st	arted (WR = 1).

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

3: The LWLO bit is ignored during a program memory erase operation (FREE = 1).

17.2.5 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 17-2 shows the output state versus input conditions, including polarity control.

TABLE 17-2: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

17.2.6 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the Normal-Speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

17.3 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 17-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

R/W-0/0	R/W-0/0	W-0/0 R/W-0/0 R/W-0/0		U-0	R/W-0/0	R/W-0/0	R/W-0/0		
CxINTP	NTP CXINTN CxPCH<1:0>		H<1:0>	—		CxNCH<2:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	CxINTP: Con	nparator Interru	pt on Positive	Going Edge E	Enable bits				
	1 = The CxIF	interrupt flag	will be set upo	n a positive go	oing edge of the	CxOUT bit			
	0 = No interr	upt flag will be	set on a positi	ve going edge	of the CxOUT	bit			
bit 6	CxINTN: Con	nparator Interru	pt on Negative	e Going Edge	Enable bits				
	1 = The CxIF	interrupt flag v upt flag will be	will be set upo	n a negative g	oing edge of the	e CxOUT bit			
bit 5-4		· Comparator I	Set Un a negal Positivo Input (Channel Selec	t bite	Dit			
bit 3-4	11 = C x V/P c	onnects to Vss							
	10 = CxVP c	onnects to FVR Voltage Reference							
	01 = CxVP c	= CxVP connects to DAC Voltage Reference							
	00 = CxVP co	onnects to CxII	N+ pin						
bit 3	Unimplemen	ted: Read as '	0'						
bit 2-0	CxNCH<2:0>	: Comparator I	Negative Input	Channel Sele	ect bits				
	111 = Reser	ved							
	110 = Reser	ved							
	100 = CxVN connects to FVR Voltage reference								
011 = CxVN connects to CxIN3- pin									
	010 = CxVN	connects to C	kIN2- pin						
	001 = CXVN	connects to C	(IN1- pin (IN0- pin						
			nino- pin						

REGISTER 17-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 17-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
	—	—	—	—	—	MC2OUT	MC10UT
bit 7				•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-2 Unimplemented: Read as '0'
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

21.2.4 SPI SLAVE MODE

In Slave mode, the data is transmitted and received as external clock pulses appear on SCKx. When the last bit is latched, the SSPxIF interrupt flag bit is set.

Before enabling the module in SPI Slave mode, the clock line must match the proper Idle state. The clock line can be observed by reading the SCKx pin. The Idle state is determined by the CKP bit of the SSPxCON1 register.

While in Slave mode, the external clock is supplied by the external clock source on the SCKx pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. The shift register is clocked from the SCKx pin input and when a byte is received, the device will generate an interrupt. If enabled, the device will wake-up from Sleep.

21.2.4.1 Daisy-Chain Configuration

The SPI bus can sometimes be connected in a daisy-chain configuration. The first slave output is connected to the second slave input, the second slave output is connected to the third slave input, and so on. The final slave output is connected to the master input. Each slave sends out, during a second group of clock pulses, an exact copy of what was received during the first group of clock pulses. The whole chain acts as one large communication shift register. The daisy-chain feature only requires a single Slave Select line from the master device.

Figure 21-7 shows the block diagram of a typical daisy-chain connection when operating in SPI mode.

In a daisy-chain configuration, only the most recent byte on the bus is required by the slave. Setting the BOEN bit of the SSPxCON3 register will enable writes to the SSPxBUF register, even if the previous byte has not been read. This allows the software to ignore data that may not apply to it.

21.2.5 SLAVE SELECT SYNCHRONIZATION

The Slave Select can also be used to synchronize communication. The Slave Select line is held high until the master device is ready to communicate. When the Slave Select line is pulled low, the slave knows that a new transmission is starting.

If the slave fails to receive the communication properly, it will be reset at the end of the transmission, when the Slave Select line returns to a high state. The slave is then ready to receive a new transmission when the Slave Select line is pulled low again. If the Slave Select line is not used, there is a risk that the slave will eventually become out of sync with the master. If the slave misses a bit, it will always be one bit off in future transmissions. Use of the Slave Select line allows the slave and master to align themselves at the beginning of each transmission.

The \overline{SSx} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 0100).

When the $\overline{\text{SSx}}$ pin is low, transmission and reception are enabled and the SDOx pin is driven.

When the \overline{SSx} pin goes high, the SDOx pin is no longer driven, even if in the middle of a transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When the SPI is in Slave mode with \overline{SSx} pin control enabled (SSPxCON1<3:0> = 0100), the SPI module will reset if the \overline{SSx} pin is set to VDD.
2:	When the SPI is used in Slave mode with CKE set; the user must enable \overline{SSx} pin control.
3:	While operated in SPI Slave mode the SMP bit of the SSPxSTAT register must remain clear.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the SSx pin to a high level or clearing the SSPEN bit.

21.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 21-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCLx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

21.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are the same. Figure 21-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 21-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

FIGURE 22-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

0803	ur Noriel Noriel a ved sea SB) Alf Alf Alf Alf Al 1965 - Thurs	g na na na ng L			ng kutatut kuta. T	ng NA NA NA T		به اینه اینه وینه. در سیستر اینه	ur kuji kur kur kur ku Austro Obersteid
VACEE 253.		. 34. 				······································	······································			
824578 1356		······				· · ··································	• 			······ · ·
8038	· ·		· ·	<u>л</u>	· · · · · · · · · · · · · · · · · · ·	сулааны Т	liji Xaarad doe	n Dev Roed		······ ⁴
111	111111111111111111111111111111111111	[]]][[]]][]]]][[]][[]][[]]][[]]]	1.1.11111111111111111111111111111111		77777777777777777777	UMMUMMUMM	(11)1111111111111	1111111111111111111111	111111111111111111111111111111111111	////////////////////////////////////

FIGURE 22-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

		\$0909030×	0895090	K.	Q3	3.X	400303003	900903		03020	640.8	0 300303(0)	<u>ços</u> (c2)c3)	<u>.</u>
0803		171.01.01.01. 9885	anala. !	2 			aan ,	A.A.		NANUA		NAVAVA. 1. j Asia	AUNUAU Koissiasi	
863 (39,268) Alex to the Letter		· · · · · · · · · · · · · · · · · · ·	2	* * *			, , ,		· · · · · · · · · · · · · · · · · · ·	~~~~~			;	
8091 MUNUN 8099	· · ·	* * *	• • •	* * *		8., J	·····					3262 (S	• • *	5 5 5
	: •	Seep Oossaas	d Executed	2	Sizer Side	% ::	Olear	red doe	-302 E	Xeen Alee A	git di.	RCRE6?	<i>(</i>	
Record (* 1	H Dis Weiser add active. V	ni escel isqu Bis sociantis	nse long oslå storig næ de	asta sessa Sant on S	Han State, the v	101000006 102 05006	s decesión d s.	el tre V	988	bit osa	0030	r white the s	tipcee Xiyi	usi is
11:	The BUSAS	Y normality in E	die while the	943 <u>8</u> 86 86	684									

22.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 22-9 for the timing of the Break character sequence.

22.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

Write to TXREG Dummy Write **BRG** Output (Shift Clock) TX (pin) Start bit bit 0 bit 1 bit 11 Stop bit Break TXIF bit (Transmit Interrupt Flag) TRMT bit (Transmit Shift Empty Flag) SENDB Sampled Here Auto Cleared SENDB (send Break control bit)

FIGURE 22-9: SEND BREAK CHARACTER SEQUENCE

22.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section22.4.3 "Auto-Wake-up on Break"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

TABLE 24-3:	SUMMARY OF REGISTERS ASSOCIATED WITH CLCx
-------------	---

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	_		—	ANSA4	—	ANSA2	ANSA1	ANSA0	110
ANSELB	_	_	ANSB5	ANSB4	—	—	—	—	114
ANSELC	ANSC7	ANSC6	—	—	ANSC3	ANSC2	ANSC1	ANSC0	118
CLC1CON	LC1EN	LC10E	LC10UT	LC1INTP	LC1INTN	L	C1MODE<2:0	>	263
CLCDATA	_	_	_	_	_	MLC3OUT	MLC2OUT	MLC1OUT	271
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	267
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	268
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	269
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	270
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	264
CLC1SEL0	_		LC1D2S<2:0>		—		LC1D1S<2:0>		265
CLC1SEL1	_		LC1D4S<2:0>		—		LC1D3S<2:0>		266
CLC2CON	LC2EN	LC2OE	LC2OUT	LC2INTP	LC2INTN	L	C2MODE<2:0	>	263
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	267
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	268
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	269
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	270
CLC2POL	LC2POL	_	—	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	264
CLC2SEL0	_		LC2D2S<2:0>		—		LC2D1S<2:0>		265
CLC2SEL1	_	LC2D4S<2:0>			—		LC2D3S<2:0>		266
CLC3CON	LC3EN	LC3OE	LC3OUT	LC3INTP	LC3INTN	L	C3MODE<2:0	>	263
CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	267
CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	268
CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	269
CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	270
CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	264
CLC3SEL0	_		LC3D2S<2:0>		—		LC3D1S<2:0>	•	265
CLC3SEL1	_		LC3D4S<2:0>		—		LC3D3S<2:0>		266
CLC4CON	LC4EN	LC4OE	LC4OUT	LC4INTP	LC4INTN	L	C4MODE<2:0	>	263
CLC4GLS0	LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	267
CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	268
CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	269
CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	270
CLC4POL	LC4POL	_	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	264
CLC4SEL0	_		LC4D2S<2:0>		—		LC4D1S<2:0>	•	265
CLC4SEL1	_		LC4D4S<2:0>		_		LC4D3S<2:0>		266
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE3	_		—	—	CLC4IE	CLC3IE	CLC2IE	CLC1IE	78
PIR3	-	_	—	—	CLC4IF	CLC3IF	CLC2IF	CLC1IF	81
TRISA	-	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	109
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	113
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117

 Legend:
 — = unimplemented read as '0',. Shaded cells are not used for CLC module.

 Note
 1:
 Unimplemented, read as '1'.

REGISTER 25-3: NCOxACCL: NCOx ACCUMULATOR REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
NCOxACC<7:0>									
bit 7							bit 0		
Legend:									

R = Readable bit	VV = VVritable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	NCOxACC<7:0>: NCOx Accumulator, Low Byte
---------	--

REGISTER 25-4: NCOxACCH: NCOx ACCUMULATOR REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCOxAC	C<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is unch	= Bit is unchanged x = Bit is unknown			-n/n = Value a	t POR and BO	R/Value at all o	other Resets

bit 7-0 NCOxACC<15:8>: NCOx Accumulator, High Byte

'0' = Bit is cleared

REGISTER 25-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
—	—	—	—	NCOxACC<19:16>					
bit 7							bit 0		

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCOxACC<19:16>: NCOx Accumulator, Upper Byte

'1' = Bit is set

PIC16(L)F1508/9

DS40001609E-page 286

Status

29.0 ELECTRICAL SPECIFICATIONS

29.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40°C to +125°C	С
Storage temperature	С
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1508/90.3V to +6.5	V
-0.3V to +4.0	V
on MCLR pin	V
on all other pins	/)
Maximum current	
on Vss pin ⁽¹⁾	
$-40^\circ C \leq T_A \leq +85^\circ C$	А
+85°C \leq TA \leq +125°C	А
on Vdd pin ⁽¹⁾	
-40°C \leq Ta \leq +85°C 250 m,	А
+85°C \leq TA \leq +125°C	А
Sunk by any standard I/O pin	А
Sourced by any standard I/O pin 50 m	А
Clamp current, Ik (VPIN < 0 or VPIN > VDD)	А
Total power dissipation ⁽²⁾	Ν

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 29-6 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD -VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

PIC16(L)F1508/9

31.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

31.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - T	× T	<u>/xx</u>	<u>xxx</u>	E	Exam	nple	IS:	
Device	Tape and Reel Option	Temperature Range	e Package	Pattern	a	a) <u> </u>	PIC16LF1508T - I/SO Tape and Reel, Industrial temperature, SOIC package PIC16E1500		
Device:	PIC16LF1508, PIC16LF1509,	PIC16F1508, PIC16F1509				 c) FIC 16F 1509 - I/P Industrial temperature PDIP package c) FIC16F1508 - E/ML 298 Extended temperature 			
Tape and Reel Option:	Blank = Stan T = Tape	dard packaging (and Reel ⁽¹⁾	tube or tray)			(QFN package QTP pattern #298		
Temperature Range:	I = -40 E = -40	°C to	(Industrial) (Extended)						
Package: ⁽²⁾	GZ = UQ ML = QFI P = Pla: SO = SO SS = SS(FN N stic DIP IC OP			٦	Note '	1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.	
Pattern:	QTP, SQTP, C (blank otherwis	ode or Special R se)	equirements			:	2:	For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.	