

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1509-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

3.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - User ID
 - Flash Program Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM

The following features are associated with access and control of program memory and data memory:

- PCL and PCLATH
- Stack
- Indirect Addressing

3.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing a $32K \times 14$ program memory space. Table 3-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (See Figure 3-1).

3.2 High-Endurance Flash

This device has a 128 byte section of high-endurance program Flash memory (PFM) in lieu of data EEPROM. This area is especially well suited for nonvolatile data storage that is expected to be updated frequently over the life of the end product. See Section 10.2 "Flash **Program Memory Overview**" for more information on writing data to PFM. See Section 3.2.1.2 "Indirect **Read with FSR**" for more information about using the FSR registers to read byte data stored in PFM.

TABLE 3-1:DEVICE SIZES AND ADDRESSES

Device	Program Memory Space (Words)	Last Program Memory Address	High-Endurance Flash Memory Address Range ⁽¹⁾			
PIC16LF1508 PIC16F1508	4,096	0FFFh	0F80h-0FFFh			
PIC16LF1509 PIC16F1509	8,192	1FFFh	1F80h-1FFFh			

Note 1: High-endurance Flash applies to low byte of each address in the range.

5.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL or EXTRC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability
 of crystal oscillator sources
- Fast start-up oscillator allows internal circuits to power-up and stabilize before switching to the 16 MHz HFINTOSC

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 20 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. EXTRC External Resistor-Capacitor
- 8. INTOSC Internal oscillator (31 kHz to 16 MHz)

Clock Source modes are selected by the FOSC<2:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The EXTRC clock mode requires an external resistor and capacitor to set the oscillator frequency.

The INTOSC internal oscillator block produces a low and high-frequency clock source, designated LFINTOSC and HFINTOSC. (See Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these two clock sources.

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator or external clock fail. If an oscillator mode is selected, the FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. When an external clock mode is selected, the FSCM can detect failure as soon as the device is released from Reset.

FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to external oscillator modes (LP, XT, HS) and external clock modes (ECH, ECM, ECL, EXTRC) and the Secondary Oscillator (SOSC).

5.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by monitoring falling clock edges and using LFINTOSC as a time base. See Figure 5-9. Detection of a failed oscillator will take 32 to 96 cycles of the LFINTOSC. Figure 5-10 shows a timing diagram of the FSCM module.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the CPU clock to an internal clock source and sets the OSFIF bit of the PIR2 register. The internal clock source is determined by the IRCF<3:0> bits in the OSCCON register.

When the OSFIF bit is set, an interrupt will be generated, if the OSFIE bit in the PIE2 register is enabled. The user's firmware in the Interrupt Service Routine (ISR) can then take steps to mitigate the problems that may arise from the failed clock.

The system clock will continue to be sourced from the internal clock source until the fail-safe condition has been cleared, see Section 5.5.3 "Fail-Safe Condition Clearing".

5.5.3 FAIL-SAFE CONDITION CLEARING

When a Fail-Safe condition exists, the user must take the following actions to clear the condition before returning to normal operation with the external source.

The next sections describe how to clear the Fail-Safe condition for specific clock selections (FOSC bits) and clock switching modes (SCS bit settings).

When a Fail-Safe condition occurs with the FOSC bits selecting external oscillator (FOSC<2:0> = HS, XT, LP) and the clock switch has been selected to run from the FOSC selection (SCS<1:0> = 00), the condition is cleared by performing the following procedure.

When SCS<1:0> = 00 (Running from FOSC selection)

SCS<1:0> = 1x:

Change the SCS bits in the OSCCON register to select the internal oscillator block. This resets the OST timer and allows it to operate again.

OSFIF = 0:

Clear the OSFIF bit in the PIR2 register.

SCS<1:0> = 00:

Change the SCS bits in the OSCCON register to select the FOSC Configuration Word clock selection. This will start the OST. The CPU will continue to operate from the internal oscillator until the OST count is reached. When OST expires, the clock module will switch to the external oscillator and the Fail-Safe condition will be cleared.

If the Fail-Safe condition still exists, the OSFIF bit will again be set by hardware.

5.5.3.2 External Clock with SCS<1:0> = 00

When a Fail-Safe condition occurs with the FOSC bits selecting external clock (FOSC<2:0> = ECH, ECM, ECL, EXTRC) and the clock switch has selected to run from the FOSC selection (SCS<1:0> = 00), the condition is cleared by performing the following procedure.

When SCS<1:0> = 00 (Running from FOSC selection)

SCS<1:0> = 1x:

Change the SCS bits in the OSCCON register to select the internal oscillator block. This resets the OST timer and allows it to operate again.

OSFIF = 0:

Clear the OSFIF bit in the PIR2 register.

9.0 WATCHDOG TIMER (WDT)

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (nominal)
- Multiple Reset conditions
- · Operation during Sleep

14.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, "Use and Calibration of the Internal Temperature Indicator" (DS01333) for more details regarding the calibration process.

14.1 Circuit Operation

Figure 14-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 14-1 describes the output characteristics of the temperature indicator.

EQUATION 14-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 13.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 14-1: TEMPERATURE CIRCUIT DIAGRAM

14.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 14-1 shows the recommended minimum VDD vs. range setting.

TABLE 14-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

14.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for detailed information.

14.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

19.9 Register Definitions: Timer1 Control

REGISTER 19-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u	
TMR1CS<1:0>		T1CKPS<1:0>		T1OSCEN	T1SYNC	—	TMR10N	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-6 bit 5-4	TMR1CS<1:0 11 = Timer1 c 10 = Timer1 c <u>If T1OSC</u> External <u>If T1OSC</u> Crystal c 01 = Timer1 c 00 = Timer1 c 11 = 1:8 Pres 10 = 1:4 Pres	 >: Timer1 Clock lock source is I lock source is p <u>CEN = 0</u>: clock from T1C <u>CEN = 1</u>: scillator on SO lock source is s lock source is i >: Timer1 Input cale value cale value 	k Source Sele FINTOSC bin or oscillato KI pin (on the SCI/SOSCO p system clock (nstruction clock Clock Presca	ect bits or: e rising edge) bins Fosc) ck (Fosc/4) ale Select bits				
	01 = 1:2 Pres 00 = 1:1 Pres	cale value cale value						
bit 3	T1OSCEN: LP Oscillator Enable Control bit 1 = Secondary oscillator circuit enabled for Timer1 0 = Secondary oscillator circuit disabled for Timer1							
bit 2	T1SYNC: Timer1 Synchronization Control bit 1 = Do not synchronize asynchronous clock input 0 = Synchronize asynchronous clock input with system clock (EQSC)							
bit 1	Unimplemen	ted: Read as 'd)'					
bit 0	TMR1ON: Tin	ner1 On bit						
	1 = Enables ⁻ 0 = Stops Tin	Timer1 ner1 and clears	Timer1 gate	flip-flop				

21.4.5 START CONDITION

The I^2C specification defines a Start condition as a transition of SDAx from a high to a low state while SCLx line is high. A Start condition is always generated by the master and signifies the transition of the bus from an Idle to an Active state. Figure 21-12 shows wave forms for Start and Stop conditions.

A bus collision can occur on a Start condition if the module samples the SDAx line low before asserting it low. This does not conform to the I^2C Specification that states no bus collision can occur on a Start.

21.4.6 STOP CONDITION

A Stop condition is a transition of the SDAx line from low-to-high state while the SCLx line is high.

Note: At least one SCLx low time must appear before a Stop is valid, therefore, if the SDAx line goes low then high again while the SCLx line stays high, only the Start condition is detected.

21.4.7 RESTART CONDITION

A Restart is valid any time that a Stop would be valid. A master can issue a Restart if it wishes to hold the bus after terminating the current transfer. A Restart has the same effect on the slave that a Start would, resetting all slave logic and preparing it to clock in an address. The master may want to address the same or another slave. Figure 21-13 shows the wave form for a Restart condition.

In 10-bit Addressing Slave mode a Restart is required for the master to clock data out of the addressed slave. Once a slave has been fully addressed, matching both high and low address bytes, the master can issue a Restart and the high address byte with the R/\overline{W} bit set. The slave logic will then hold the clock and prepare to clock out data.

After a full match with R/\overline{W} clear in 10-bit mode, a prior match flag is set and maintained. Until a Stop condition, a high address with R/\overline{W} clear, or high address match fails.

21.4.8 START/STOP CONDITION INTERRUPT MASKING

The SCIE and PCIE bits of the SSPxCON3 register can enable the generation of an interrupt in Slave modes that do not typically support this function. Slave modes where interrupt on Start and Stop detect are already enabled, these bits will have no effect.

FIGURE 21-12: I²C START AND STOP CONDITIONS

FIGURE 21-13: I²C RESTART CONDITION

21.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 21-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: SSPxBUF cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit, releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCLx pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

21.6.4 I²C MASTER MODE START CONDITION TIMING

To initiate a Start condition (Figure 21-26), the user sets the Start Enable bit, SEN bit of the SSPxCON2 register. If the SDAx and SCLx pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and starts its count. If SCLx and SDAx are both sampled high when the Baud Rate Generator times out (TBRG), the SDAx pin is driven low. The action of the SDAx being driven low while SCLx is high is the Start condition and causes the S bit of the SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SDAx bit of the SSPxSTAT1 register to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPxADD<7:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit of the SSPxCON2 register will be automatically cleared

by hardware; the Baud Rate Generator is suspended, leaving the SDAx line held low and the Start condition is complete.

- Note 1: If at the beginning of the Start condition, the SDAx and SCLx pins are already sampled low, or if during the Start condition, the SCLx line is sampled low before the SDAx line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLxIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.
 - 2: The Philips I²C Specification states that a bus collision cannot occur on a Start.

REGISTER 21-5: SSPxMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1			
			MSK	<7:0>						
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'				
u = Bit is uncl	nanged	x = Bit is unki	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is cle	ared							
bit 7-1	MSK<7:1>:	Mask bits								
	1 = The rec	1 = The received address bit n is compared to SSPxADD <n> to detect I²C address match</n>								
0 = The received address bit n is not used to detect I ² C address match										
bit 0 MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address										
	I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):									
	1 = The rec	eived address b	it 0 is compar	ed to SSPxAD	D<0> to detect	I ² C address ma	atch			
	0 = The received address bit 0 is not used to detect I^2C address match									

I²C Slave mode, 7-bit address, the bit is ignored

REGISTER 21-6: SSPxADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
ADD<7:0>											
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'							
u = Bit is unchanged x = Bit is unknown				-n/n = Value a	at POR and BC	R/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared								

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCLx pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode – Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address
bit 7-1	ADD<7:1>: /-bit address

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

22.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 22-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

22.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

22.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section22.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no additional characters will be received until the overrun								
	condition is	cleared	I. See						
	Section22.1.2.5 "	'Receive	Overrun						
	Error" for more	information	on overrun						
	errors.								

22.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- · RCIE, Interrupt Enable bit of the PIE1 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 =												
BAUD RATE	Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 16.000 MHz			Fosc	Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	13332	300.0	0.00	9215	
1200	1200	-0.01	4166	1200	0.00	3839	1200.1	0.01	3332	1200	0.00	2303	
2400	2400	0.02	2082	2400	0.00	1919	2399.5	-0.02	1666	2400	0.00	1151	
9600	9597	-0.03	520	9600	0.00	479	9592	-0.08	416	9600	0.00	287	
10417	10417	0.00	479	10425	0.08	441	10417	0.00	383	10433	0.16	264	
19.2k	19.23k	0.16	259	19.20k	0.00	239	19.23k	0.16	207	19.20k	0.00	143	
57.6k	57.47k	-0.22	86	57.60k	0.00	79	57.97k	0.64	68	57.60k	0.00	47	
115.2k	116.3k	0.94	42	115.2k	0.00	39	114.29k	-0.79	34	115.2k	0.00	23	

TABLE 22-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1												
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	300.0	0.00	6666	300.0	0.01	3332	300.0	0.00	3071	300.1	0.04	832	
1200	1200	-0.02	1666	1200	0.04	832	1200	0.00	767	1202	0.16	207	
2400	2401	0.04	832	2398	0.08	416	2400	0.00	383	2404	0.16	103	
9600	9615	0.16	207	9615	0.16	103	9600	0.00	95	9615	0.16	25	
10417	10417	0	191	10417	0.00	95	10473	0.53	87	10417	0.00	23	
19.2k	19.23k	0.16	103	19.23k	0.16	51	19.20k	0.00	47	19.23k	0.16	12	
57.6k	57.14k	-0.79	34	58.82k	2.12	16	57.60k	0.00	15	—	—	—	
115.2k	117.6k	2.12	16	111.1k	-3.55	8	115.2k	0.00	7	_	_	_	

DS40001609E-page 276

Status

© 2011-2015 Microchip Technology Inc.

FIGURE 29-17: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

FIGURE 30-47: VOH vs. IOH OVER TEMPERATURE, VDD = 5.5V, PIC16F1508/9 ONLY

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-255A Sheet 1 of 2