E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1509-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIN DIAGRAMS

3.2.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.2.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_INI	DEX
call constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants
DW DATAO ;First constant
DW DATAI Second constant
DW DATA2
DW DATA3
my_function
; LOTS OF CODE
MOVLW DATA_INDEX
ADDLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants;MSb sets
automatically
MOVWF FSR1H
BTFSC STATUS, C ;carry from ADDLW?
INCF FSR1h, f ;yes
MOVIW 0[FSR1]
;THE PROGRAM MEMORY IS IN W

R/W-0/U	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	_	TMR2IE	TMR1IE
bit 7							bit 0
Legena:	hit	M = M/ritabla	hit	II – Unimplon	nantad hit raa	d aa 'O'	
	DIL				t DOD and DC		thar Deasta
u = Dit is unch	angeu	x = Dit is ullki			IL FOR and BC		iner Resels
I = BILIS SEL		0 = Bit is cle	ared				
bit 7	TMR1GIE: Ti	mer1 Gate Inte	errupt Enable I	oit			
	1 = Enables t	he Timer1 gate	e acquisition ir	nterrupt			
	0 = Disables	the Timer1 gat	e acquisition i	nterrupt			
bit 6	ADIE: Analog	g-to-Digital Con	verter (ADC)	Interrupt Enable	e bit		
	1 = Enables t	he ADC interru	ıpt				
	0 = Disables	the ADC interro	upt				
bit 5	RCIE: USAR	T Receive Inter	rrupt Enable b	it			
	1 = Enables t 0 = Disables	the USART rec	eive interrupt				
hit 4		Transmit Inte	rrunt Enable h	it			
bit i	1 = Enables t	he USART tra	nsmit interrupt				
	0 = Disables	the USART tra	nsmit interrup	t			
bit 3	SSP1IE: Syn	chronous Seria	al Port (MSSP) Interrupt Enat	ole bit		
	1 = Enables t	he MSSP inter	rupt				
	0 = Disables	the MSSP inte	rrupt				
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	TMR2IE: TM	R2 to PR2 Mat	ch Interrupt Ei	nable bit			
	1 = Enables t 0 = Disables	he Timer2 to P the Timer2 to F	R2 match inte R2 match inte	errupt errupt			
bit 0	TMR1IE: Tim	er1 Overflow Ir	nterrupt Enabl	e bit			
	1 = Enables t	he Timer1 ove	rflow interrupt				
	0 = Disables	the Timer1 ove	rflow interrunt	•			

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

17.8 Register Definitions: Comparator Control

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT	CxOE	CxPOL		CxSP	CxHYS	CxSYNC
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	e at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
hit 7	CYON: Com	parator Englia	hit				
DIL 7			DIL				
	1 = Compara0 = Compara	itor is disabled	and consumes	no active po	wer		
bit 6	CxOUT: Com	parator Output	bit	·			
	<u>If CxPOL = 1</u>	(inverted polar	<u>ity):</u>				
	1 = CxVP <	CxVN					
	0 = CxVP > 0	CxVN	oclority):				
	1 = CxVP > 1	<u>(non-inverteu j</u> CxVN	<u>Jolanty).</u>				
	0 = CxVP <	CxVN					
bit 5	CxOE: Comp	parator Output I	Enable bit				
	1 = CxOUT i	is present on th	e CxOUT pin. F	Requires that	the associated T	RIS bit be clea	red to actually
	drive the	pin. Not affect	ed by CxON.				
h:+ 4	0 = CXOOT	is internal only		1			
DIT 4		nparator Output	Polarity Selec	t Dit			
	1 = Compara0 = Compara	itor output is inv	t inverted				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	CxSP: Comp	arator Speed/F	ower Select bi	t			
	1 = Compara	tor mode in no	rmal power, hig	her speed			
	0 = Compara	itor mode in lov	v-power, low-sp	beed			
bit 1	CxHYS: Con	nparator Hyster	esis Enable bit				
	1 = Compara	ator hysteresis	enabled				
	0 = Compara	ator hysteresis	disabled				
bit 0	CXSYNC: Co	omparator Outp	ut Synchronou	s Mode bit		T	
	⊥ = Compara	ator output to I	falling edge of	pin is synch Timer1 clock	ironous to chang source	jes on Timer1	CIOCK SOURCE.
	0 = Compara	ator output to T	imer1 and I/O	bin is asynchi	ronous		
		P		- ,			

REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	110
ANSELC	ANSC7	ANSC6	_	—	ANSC3	ANSC2	ANSC1	ANSC0	118
CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	149
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	149
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	—		C1NCH<2:0>	>	150
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	—		C2NCH<2:0>	,	150
CMOUT	_	—	_	_	_	_	MC2OUT	MC10UT	150
DAC1CON0	DACEN	—	DACOE1	DACOE2	—	DACPSS	—	_	144
DAC1CON1	_	—	_			DACR<4:0>			144
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	R<1:0>	125
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	NCO1IE	—	—	77
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	NCO1IF	_	—	80
PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	109
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	117
LATA	—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	110
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	117
TRISA	_	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	109
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: Unimplemented, read as '1'.

20.5 Register Definitions: Timer2 Control

REGISTER 20-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0)/0 R/\	V-0/0	R/W-0/0	R/W-0/0	R/W-0/	/0 R/V	V-0/0 F	۲/W-0/0			
		T2OUTPS<3:0>				TMR2C	DN	T2CKPS<1	:0>			
bit 7									bit 0			
Legend:												
R = Readab	le bit	VV = V	Vritable bit		U = Unimple	mented bit,	read as '0'					
u = Bit is un	changed	x = B	it is unknow	n	-n/n = Value	at POR an	d BOR/Valu	e at all othe	r Resets			
'1' = Bit is se	et	'O' = E	Bit is cleared	I								
bit 7	Unimple	emented: R	ead as '0'									
bit 6-3	T2OUTF	°S<3:0>: Tir	mer2 Output	Postscale	r Select bits							
	0000 =	1:1 Postsca	ler									
	0001 =	1:2 Postsca	ler									
	0010 =	0010 = 1:3 Postscaler										
	0100 = 1.5 Postscaler											
	0101 = 1:6 Postscaler											
	0110 = 1:7 Postscaler											
	0111 =	1:8 Postscal	ler									
	1000 =	1.9 POSISCA	aler									
	1010 =	1:11 Postsca	aler									
	1011 =	1:12 Postsc	aler									
	1100 =	1:13 Postsc	aler									
	1110 =	1:14 POSISC 1:15 Postsc	aler aler									
	1111 =	1:16 Postsc	aler									
bit 2	TMR20	N: Timer2 C	n bit									
	1 = Tim	er2 is on										
	0 = Tim	er2 is off										
bit 1-0	T2CKPS	6<1:0>: Tim	er2 Clock P	rescale Sel	ect bits							
	00 = Pre	escaler is 1										
	01 = Pre	escaler is 4										
	10 = Pre	escaler is 16										
	11 - 110											
TABLE 20-	1: SUM		REGISTER	S ASSO		TH TIMER:	2	-				
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page			
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75			
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	_	TMR2IE	TMR1IE	76			
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	_	TMR2IF	TMR1IF	76			

 TMR2
 Holding Register for the 8-bit TMR2 Count

 Legend:
 — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

T2OUTPS<3:0>

* Page provides register information.

Timer2 Module Period Register

PR2

T2CON

T2CKPS<1:0>

TMR2ON

166*

168

166*

FIGURE 21-4: SPI MASTER AND MULTIPLE SLAVE CONNECTION

21.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control Register 1 (SSPxCON1)
- MSSP Control Register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPxSR) (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers in SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

In SPI master mode, SSPxADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section21.7 "Baud Rate Generator**".

SSPxSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPxSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPxSR and SSPxBUF together create a buffered receiver. When SSPxSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPxSR.

PIC16(L)F1508/9

21.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

21.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

21.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPxSTAT register is set, or the bus is idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master mode, the SDAx line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLxIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- · A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

21.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDAx pin, arbitration takes place when the master outputs a '1' on SDAx, by letting SDAx float high and another master asserts a '0'. When the SCLx pin floats high, data should be stable. If the expected data on SDAx is a '1' and the data sampled on the SDAx pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLxIF and reset the I²C port to its Idle state (Figure 21-32).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDAx and SCLx lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the l^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDAx and SCLx lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDAx and SCLx pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPxSTAT register, or the bus is idle and the S and P bits are cleared.

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous Full-Duplex is useful system. mode for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- · Two-character input buffer
- · One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- Input buffer overrun error detection
- · Received character framing error detection
- · Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- · 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 22-1 and Figure 22-2.

The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 22-1: EUSART TRANSMIT BLOCK DIAGRAM

22.4.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 22-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 22-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH, SPBRGL register pair, the ABDEN bit is automatically cleared and the RCIF interrupt flag is set. The value in the RCREG needs to be read to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRGL register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 22-6. During ABD, both the SPBRGH and SPBRGL registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRGL registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte <u>following</u> the Break character (see <u>Section22.4.3 "Auto-Wake-up</u> on Break").
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRGL register pair.

TABLE 22-6: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Base Clock	BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRGL and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 22-6: AUTOMATIC BAUD RATE CALIBRATION

BRG Value RX pin	XXXXh	<u>0000h</u>	tart bit	idge #1 Edge #2 Edge #3 Edge #4 Edge #3 it 0 bit 1 bit 2 bit 3 bit 4 bit 5 bit 6 bit 7 Stop bit	01Ch #5 t
BRG Clock		mmm	หนุ่มน		
ABDEN bit	Set by User —		 	Aut	o Cleared
RCIDL			i I		
RCIF bit (Interrupt)			1 1 1		
Read RCREG		I I	- 		
SPBRGL			X	Xh	1Ch
SPBRGH		·	X	Xh	00h

REGISTER 23-2: PWMxDCH: PWM DUTY CYCLE HIGH BITS

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PWMxI	DCH<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimpleme	ented bit, read as	'0'	
u = Bit is uncha	nged	x = Bit is unknown	I	-n/n = Value at	POR and BOR/V	alue at all other f	Resets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

PWMxDCH<7:0>: PWM Duty Cycle Most Significant bits These bits are the MSbs of the PWM duty cycle. The two LSbs are found in the PWMxDCL register.

REGISTER 23-3: PWMxDCL: PWM DUTY CYCLE LOW BITS

R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0	U-0	U-0		
PWMxDCL<7:6>		—	—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bi	R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'				

u = Bit is uncha	nged x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	
bit 7-6	PWMxDCL<7:6>: PWM Duty Cycle Least Sigr	nificant bits

These bits are the LSbs of the PWM duty cycle. The MSbs are found in the PWMxDCH register.

bit 5-0 Unimplemented: Read as '0'

TABLE 23-3: SUMMARY OF REGISTERS ASSOCIATED WITH PWM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
PR2	Timer2 module Period Register										
PWM1CON	PWM1EN	PWM10E	PWM10UT	PWM1POL	_	_	_	_	255		
PWM1DCH				PWM1D0	CH<7:0>				256		
PWM1DCL	PWM1D	CL<7:6>	_	—	_	_	_	_	256		
PWM2CON	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	_	_	_	_	255		
PWM2DCH				PWM2D0	CH<7:0>				256		
PWM2DCL	PWM2D	CL<7:6>	_	—	_	_	_	_	256		
PWM3CON	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	_	_	_	_	255		
PWM3DCH				PWM3D0	CH<7:0>				256		
PWM3DCL	PWM3D	CL<7:6>	_	—	_	_	_	_	256		
PWM4CON	PWM4EN	PWM4OE	PWM4OUT	PWM4POL	_	_	_	_	255		
PWM4DCH				PWM4D0	CH<7:0>				256		
PWM4DCL	PWM4D	CL<7:6>	_	—	_	_	_	_	256		
T2CON								168			
TMR2	Timer2 module Register								166*		
TRISA	—	—	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	109		
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117		

- = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used by the PWM. Page provides register information. Legend:

Note 1: Unimplemented, read as '1'.

REGISTER 24-9: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
—	—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT				
bit 7							bit 0				
Legend:											
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is clea	ared								
bit 7-4	Unimplemente	ed: Read as '0'									
bit 3 MLC4OUT: Mirror copy of LC4OUT bit			C4OUT bit								
bit 2 MLC3OUT: Mirror copy of LC3OUT bit											
bit 1	MLC2OUT: M	irror copy of LC	C2OUT bit								
bit 0	MLC1OUT: M	irror copy of LC	C1OUT bit								

29.0 ELECTRICAL SPECIFICATIONS

29.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40°C to +12	25°C
Storage temperature	50°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1508/90.3V to +	·6.5V
PIC16LF1508/90.3V to +	4.0V
on MCLR pin0.3V to +	9.0V
on all other pins0.3V to (VDD + 0).3V)
Maximum current	
on Vss pin ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C \qquad \qquad 250^{\circ}$	0 mA
$+85^{\circ}C \leq TA \leq +125^{\circ}C$	5 mA
on VDD pin ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C \qquad \qquad 250$	0 mA
$+85^{\circ}C \leq T_A \leq +125^{\circ}C \ldots \qquad 8!$	5 mA
Sunk by any standard I/O pin 50	0 mA
Sourced by any standard I/O pin) mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	0 mA
Total power dissipation ⁽²⁾	mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 29-6 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD -VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 29-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF	1508/9	Standard Operating Conditions (unless otherwise stated)								
PIC16F1	508/9									
Param.	Device		T 4		Unite		Conditions			
No.	Characteristics	MIN.	турт	wax.	Units	VDD	Note			
D010		-	8	20	μA	1.8	Fosc = 32 kHz,			
		—	10	25	μA	3.0	LP Oscillator, -40°C \leq TA \leq +85°C			
D010		_	15	31	μA	2.3	Fosc = 32 kHz,			
			17	33	μA	3.0	LP Oscillator, $40^{\circ}C < T_{0} < \pm 85^{\circ}C$			
		—	21	39	μA	5.0	-40 C \leq TA \leq $+85$ C			
D011		—	60	100	μA	1.8	Fosc = 1 MHz,			
		—	100	180	μA	3.0	XT Oscillator			
D011		_	100	180	μA	2.3	Fosc = 1 MHz,			
		—	130	220	μA	3.0	XT Oscillator			
		—	170	280	μA	5.0				
D012		_	140	240	μA	1.8	Fosc = 4 MHz,			
		—	250	360	μA	3.0	XT Oscillator			
D012		—	210	320	μA	2.3	Fosc = 4 MHz,			
		—	280	410	μA	3.0	XT Oscillator			
		—	340	500	μA	5.0				
D013		—	30	65	μA	1.8	Fosc = 1 MHz,			
		—	55	100	μA	3.0	External Clock (ECM), Medium Power mode			
D013		_	65	110	μA	2.3	Fosc = 1 MHz,			
		—	85	140	μA	3.0	External Clock (ECM),			
		—	115	190	μA	5.0	Medium Power mode			
D014		—	115	190	μA	1.8	Fosc = 4 MHz,			
		—	210	310	μA	3.0	External Clock (ECM), Medium Power mode			
D014		_	180	270	μA	2.3	Fosc = 4 MHz,			
		—	240	365	μA	3.0	External Clock (ECM),			
		—	295	460	μA	5.0 M	Medium Power mode			
D015		—	3.2	12	μA	1.8	Fosc = 31 kHz,			
		—	5.4	20	μA	3.0	LFINTOSC, -40°C \leq Ta \leq +85°C			
D015		_	13	28	μA	2.3	Fosc = 31 kHz,			
		_	15	30	μA	3.0	LFINTOSC,			
		_	17	36	μA	5.0	-40°C ≤ IA ≤ +85°C			
	T I				1		· · · · · · · · · · · · · · · · · · ·			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in $k\Omega$.

PIC16(L)F1508/9

FIGURE 29-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 29-11: 1	TIMER0 AND TI	IMER1 EXTERNAL	CLOCK REQUIREMENTS
----------------	---------------	----------------	---------------------------

Standar	Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.		Characteristi	c	Min.	Тур†	Max.	Units	Conditions		
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns			
				With Prescaler	10	_	_	ns			
41*	T⊤0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	_	_	ns			
				With Prescaler	10	_	_	ns			
42*	Тт0Р	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N		—	ns	N = prescale value		
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns			
		Time	Synchronous, with Prescaler		15	—	_	ns			
			Asynchronous		30	—	_	ns			
46*	T⊤1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5 Tcy + 20	_	_	ns			
		Time	Synchronous, with Prescaler		15	_	_	ns			
			Asynchronous		30	— —		ns			
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value		
			Asynchronous		60	_	_	ns			
48	Ft1	Secondary O (Oscillator er	scillator Input Frequency Range nabled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz			
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	lge to Timer	2 Tosc	_	7 Tosc	—	Timers in Sync mode		

These parameters are characterized but not tested. *

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

TABLE 29-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

VDD = 3.0V, TA = 25°C										
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
AD01	NR	Resolution	—		10	bit				
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V			
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V			
AD04	EOFF	Offset Error	_	±1	±2.5	LSb	Vref = 3.0V			
AD05	Egn	Gain Error	_	±1	±2.0	LSb	VREF = 3.0V			
AD06	VREF	Reference Voltage	1.8		Vdd	V	VREF = (VRPOS - VRNEG) (Note 4)			
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V				
AD08	Zain	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.			
*										

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1:Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: See Section 30.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

4: ADC VREF is selected by ADPREF<0> bit.

TABLE 29-20: I²C BUS START/STOP BITS REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Symbol	Charac	Min.	Тур	Max.	Units	Conditions			
SP90*	TSU:STA	Start condition	100 kHz mode	4700	—	—	ns	Only relevant for Repeated		
		Setup time	400 kHz mode	600				Start condition		
SP91*	THD:STA	Start condition	100 kHz mode	4000	_	-	ns	After this period, the first		
		Hold time	400 kHz mode	600		—		clock pulse is generated		
SP92*	Tsu:sto	Stop condition	100 kHz mode	4700	_		ns			
		Setup time	400 kHz mode	600						
SP93	THD:STO	Stop condition	100 kHz mode	4000	—	—	ns			
		Hold time	400 kHz mode	600	—	—				
*	These pa	rameters are chara	cterized but not te	sted.		•	•	•		

St. -1-. 1. -1 ~ - 1

These parameters are characterized but not tested.

I²C BUS DATA TIMING **FIGURE 29-21:**

PIC16(L)F1508/9

FIGURE 30-68: COMPARATOR RESPONSE TIME OVER TEMPERATURE, NORMAL POWER MODE (CxSP = 1)

