Microchip Technology - PIC16F1509-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1509-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1508/9

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF		TMR2IF	TMR1IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set	t	'0' = Bit is cle	ared				
bit 7	TMR1GIF: Tir	mer1 Gate Inte	rrupt Flag bit				
	1 = Interrupt i	s pending					
bit 6	ADIF: ADC In	nterrupt Flag bi	ł				
Site	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 5	RCIF: USAR	F Receive Inter	rupt Flag bit				
	1 = Interrupt i	s pending					
1.11.4		s not pending					
DIT 4	1 AIF: USARI	I ransmit inter	rupt Flag bit				
	0 = Interrupt i	s not pending					
bit 3	SSP1IF: Sync	chronous Seria	I Port (MSSP)	Interrupt Flag	bit		
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 2	Unimplemen	ted: Read as '	0'				
bit 1	TMR2IF: Time	er2 to PR2 Inte	errupt Flag bit				
	1 = Interrupt i	s pending					
hit 0	TMP1IE: Tim	s not penuing ar1 Overflow Ir	terrunt Elaa h	.i t			
DIL U	1 = Interrupt i	s pendina	iterrupt i lag b				
	0 = Interrupt i	s not pending					
Note: In	terrupt flag bits a	re set when an	interrupt				
CC	ondition occurs, re	egardless of the	e state of				
its	corresponding e	enable bit or th	e Global				
ln' re	terrupt Enable b gister User soft	nt, GIE 01 the ware should er	INTCON Isure the				
ap	propriate interru	ot flag bits are c	lear prior				
to	enabling an inter	rrupt.					

REGISTER 7-5: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

21.2.6 SPI OPERATION IN SLEEP MODE

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_			ANSA4	—	ANSA2	ANSA1	ANSA0	110
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	76
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	—	TMR2IF	TMR1IF	79
SSP1BUF	Synchronous	s Serial Port F	Receive Buffe	r/Transmit Re	egister				173*
SSP1CON1	WCOL	SSPOV	SSPEN	CKP		SSPM	<3:0>		219
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	221
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	218
TRISA	—		TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	109
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117

TABLE 21-1: SUMMARY OF REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the MSSP in SPI mode.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

21.4.9 ACKNOWLEDGE SEQUENCE

The ninth SCLx pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDAx line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDAx line low indicated to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCLx on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

21.5 I²C Slave Mode Operation

The MSSP Slave mode operates in one of four modes selected in the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

21.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 21-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 21-5) affects the address matching process. See **Section21.5.9** "**SSPx Mask Register**" for more information.

21.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

21.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSbs of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCLx is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCLx is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

21.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 21-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCLx will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section21.2.3 "SPI Master Mode"** for more detail.

21.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 21-14 and Figure 21-15 are used as visual references for this description.

REGISTER 21-2: SSPxCON1: SSP CONTROL REGISTER 1

R/C/HS-0/0) R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0 R/W-0/0	R/W-0/0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPM<3:0>	
bit 7	•	•	•	•		bit 0
Legend:						
R = Readable I	bit	W = Writable bit		U = Unimplemen	ted bit, read as '0'	
u = Bit is uncha	anged	x = Bit is unknown	า	-n/n = Value at P	OR and BOR/Value at all other Resets	5
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	v hardware C = User cleared	ł
bit 7	WCOL: Write Co <u>Master mode:</u> 1 = A write to t 0 = No collision <u>Slave mode:</u> 1 = The SSPxE 0 = No collision	งllision Detect bit he SSPxBUF registe า BUF register is written า	er was attempted while it is still trans	while the I ² C cond	itions were not valid for a transmission word (must be cleared in software)	to be started
bit 6	SSPOV: Receive In SPI mode: 1 = A new byte Overflow ca setting over SSPxBUF i 0 = No overflow In I ² C mode: 1 = A byte is re (must be cl 0 = No overflow	e Overflow Indicator is received while the an only occur in Slav flow. In Master mode register (must be clea w ecceived while the St leared in software). w	bit ⁽¹⁾ SSPxBUF registe e mode. In Slave r , the overflow bit is ared in software). SPxBUF register	r is still holding the p node, the user musi s not set since each is still holding the p	revious data. In case of overflow, the data t read the SSPxBUF, even if only transm new reception (and transmission) is initia previous byte. SSPOV is a "don't care	a in SSPxSR is lost. itting data, to avoid ted by writing to the " in Transmit mode
bit 5	SSPEN: Synchro In both modes, w In SPI mode: 1 = Enables se 0 = Disables se $In I^2C mode:$ 1 = Enables the $0 = Disables se$	onous Serial Port Er when enabled, these rial port and configur erial port and config e serial port and config erial port and config	able bit pins must be pro- es SCKx, SDOx, s ures these pins a gures the SDAx a ures these pins a	operly configured as SDIx and SSx as the s I/O port pins nd SCLx pins as the s I/O port pins	s input or output e source of the serial port pins ⁽²⁾ source of the serial port pins ⁽³⁾	
bit 4	CKP: Clock Pola In SPI mode: 1 = Idle state for 0 = Idle state for In I2C Slave moo SCLx release co 1 = Enable clock I 0 = Holds clock I In I2C Master mo Unused in this m	rity Select bit clock is a high level clock is a low level <u>e:</u> ntrol w (clock stretch). (<u>de:</u> oode	Used to ensure d	ata setup time.)		
bit 3-0	$\begin{array}{c} \text{SSPM-3:0-: Syn}\\ 0000 = \text{SPI Mas}\\ 0001 = \text{SPI Mas}\\ 0010 = \text{SPI Mas}\\ 0011 = \text{SPI Mas}\\ 0100 = \text{SPI Mas}\\ 0100 = \text{SPI Slav}\\ 0101 = \text{SPI Slav}\\ 0110 = \text{I}^2\text{C Slave}\\ 0111 = \text{I}^2\text{C Slave}\\ 1001 = \text{Reserve}\\ 1001 = \text{Reserve}\\ 1010 = \text{SPI Mas}\\ 1011 = \text{I}^2\text{C firmw}\\ 1100 = \text{Reserve}\\ 1101 = \text{Reserve}\\ 1110 = \text{I}^2\text{C Slave}\\ 1111 = \text{I}^2$	nchronous Serial Pc ter mode, clock = Fc ter mode, clock = Fc ter mode, clock = C ter mode, clock = C e mode, clock = SC e mode, clock = SC e mode, 10-bit addres e mode, 10-bit addres ter mode, clock = Fc d ter mode, clock = Fc d e mode, clock = Fc d ter mode, clock = C d ter mode, clock = C d	nt Mode Select b DSC/4 DSC/16 DSC/64 2_match/2 Kx pin, <u>SS</u> pin co Kx pin, <u>SS</u> pin co SS DSC/(4 * (SSPxAE DSC/(4 * (SSPxAE er mode (Slave id SS with Start and i SSS with Start and i	its Introl enabled Introl disabled, SSX IDF1)) ⁽⁴⁾ IDF1)) ⁽⁵⁾ dle) Stop bit interrupts e I Stop bit interrupts	can be used as I/O pin enabled enabled	
Note 1: II 2: V 3: V	n Master mode, the ov When enabled, these p When enabled, the SD	erflow bit is not set ins must be properly Ax and SCLx pins m 1 or 2 are not support	since each new re y configured as in nust be configured orted for I ² C mod	eception (and trans iput or output. d as inputs.	mission) is initiated by writing to the S	SPxBUF register.

- 5: SSPxADD value of '0' is not supported. Use SSPM = 0000 instead.

REGISTER 21-5: SSPxMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
			MSK	<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable			bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR a				at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-1	MSK<7:1>:	Mask bits					
	1 = The rec	eived address b	it n is compar	ed to SSPxADI	<pre>D<n> to detect</n></pre>	I ² C address m	atch
	0 = The rec	eived address b	it n is not use	d to detect I ² C	address match		
bit 0	MSK<0>: M	ask bit for I ² C S	lave mode, 10	0-bit Address			
	I ² C Slave m	ode, 10-bit addr	ess (SSPM<3	:0> = 0111 or	1111) :		
	1 = The rec	eived address b	it 0 is compar	ed to SSPxADI	<pre>><0> to detect</pre>	I ² C address ma	atch
	0 = The rec	eived address b	it 0 is not use	d to detect I ² C	address match		

I²C Slave mode, 7-bit address, the bit is ignored

REGISTER 21-6: SSPxADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCLx pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode – Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

22.0 ENHANCED UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (EUSART)

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART) module is a serial I/O communications peripheral. It contains all the clock generators, shift registers and data buffers necessary to perform an input or output serial data transfer independent of device program execution. The EUSART, also known as a Serial Communications Interface (SCI), can be configured as a full-duplex asynchronous system or half-duplex synchronous Full-Duplex is useful system. mode for communications with peripheral systems, such as CRT terminals and personal computers. Half-Duplex Synchronous mode is intended for communications with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs or other microcontrollers. These devices typically do not have internal clocks for baud rate generation and require the external clock signal provided by a master synchronous device.

The EUSART module includes the following capabilities:

- · Full-duplex asynchronous transmit and receive
- · Two-character input buffer
- · One-character output buffer
- · Programmable 8-bit or 9-bit character length
- · Address detection in 9-bit mode
- Input buffer overrun error detection
- · Received character framing error detection
- · Half-duplex synchronous master
- Half-duplex synchronous slave
- Programmable clock polarity in synchronous modes
- · Sleep operation

The EUSART module implements the following additional features, making it ideally suited for use in Local Interconnect Network (LIN) bus systems:

- · Automatic detection and calibration of the baud rate
- · Wake-up on Break reception
- · 13-bit Break character transmit

Block diagrams of the EUSART transmitter and receiver are shown in Figure 22-1 and Figure 22-2.

The EUSART transmit output (TX_out) is available to the TX/CK pin and internally to the following peripherals:

Configurable Logic Cell (CLC)

FIGURE 22-1: EUSART TRANSMIT BLOCK DIAGRAM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	235
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	76
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	—	TMR2IF	TMR1IF	79
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	234*
SPBRGL				BRG	<7:0>				236*
SPBRGH				BRG<	:15:8>				236*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	113
TXREG	EUSART Transmit Data Register								225
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	233

TABLE 22-1:	SUMMARY OF REGISTERS	ASSOCIATED WITH ASYNCHRONOUS	TRANSMISSION
-------------	----------------------	------------------------------	--------------

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous transmission.

* Page provides register information.

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u		
	L	_CxD4S<2:0> ⁽¹)	_	L	.CxD3S<2:0>(1)		
bit 7	·				·		bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is se	et	'0' = Bit is cle	ared						
L									
bit 7	Unimplemen	ted: Read as '	0'						
bit 6-4	LCxD4S<2:0>: Input Data 4 Selection Control bits ⁽¹⁾								
	111 = LCx_ii 110 = LCx_ii 101 = LCx_ii	111 = LCx_in[3] is selected for lcxd4 110 = LCx_in[2] is selected for lcxd4 101 = LCx_in[1] is selected for lcxd4							
	100 = LCx_ii	n[0] is selected	for lcxd4						
	011 = LCx_ii	n[15] is selecte	d for loxd4						
	$010 = LCx_{ii}$	n[14] is selecte	d for lcxd4						
	000 = LCx_ii	n[12] is selecte	d for lcxd4						
bit 3	Unimplemen	ted: Read as '	0'						
bit 2-0	LCxD3S<2:0	>: Input Data 3	Selection Co	ntrol bits ⁽¹⁾					
	111 = LCx_ii	n[15] is selecte	d for lcxd3						
	110 = LCx_ii	n[14] is selecte	d for lcxd3						
	$101 = LCX_{II}$	n[13] is selecte n[12] is selecte	d for Icxd3						
	011 = LCx ii	n[11] is selecte	d for lcxd3						
	010 = LCx_ii	n[10] is selecte	d for lcxd3						
	001 = LCx_ii	n[9] is selected	for lcxd3						
	$000 = LCX_{II}$	n[8] is selected	tor Icxd3						
Note 1. C	an Table 24 4 for	aignal namaa	accordented with	th innuto					

REGISTER 24-4: CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER

Note 1: See Table 24-1 for signal names associated with inputs.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG3D4T:	Sate 3 Data 4 1	rue (non-inve	rted) bit			
	\perp = ICX041 IS 0 = ICX04T is	gated into icxe	J3 Icxa3				
bit 6	LCxG3D4N:	Gate 3 Data 4 I	Negated (inve	rted) bit			
	1 = lcxd4N is	gated into lcx	q3				
	0 = Icxd4N is	not gated into	lcxg3				
bit 5	LCxG3D3T: 0	Gate 3 Data 3 1	rue (non-inve	rted) bit			
	1 = lcxd3T is	gated into lcxg	j3				
h:+ 4	0 = 10000000000000000000000000000000000	not gated into	ICXg3	-41) - :4			
DIL 4	$1 = \log d3N$ is	Gale 3 Dala 3 I	negated (invel 13	rted) bit			
	0 = lcxd3N is	not gated into	lcxg3				
bit 3	LCxG3D2T: O	Gate 3 Data 2 1	rue (non-inve	rted) bit			
	1 = Icxd2T is	gated into lcxg	j 3				
	0 = lcxd2T is	not gated into	lcxg3				
bit 2	LCxG3D2N: (Gate 3 Data 2 I	Negated (inve	rted) bit			
	1 = Icxd2N is 0 = Icxd2N is	gated into lcx	J3 Jexa3				
bit 1		Fate 3 Data 1 1	rue (non-inve	rted) hit			
	1 = lcxd1T is	gated into Icxo	13				
	0 = Icxd1T is	not gated into	lcxg3				
bit 0	LCxG3D1N:	Gate 3 Data 1 I	Negated (inver	rted) bit			
	1 = lcxd1N is	gated into Icx	g3				
	0 = Icxd1N is	not gated into	Icxg3				

REGISTER 24-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

REGISTER 25-3: NCOxACCL: NCOx ACCUMULATOR REGISTER – LOW BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | NCOxA | CC<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |
| | | | | | | | |

R = Readable bit	VV = VVritable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	NCOxACC<7:0>: NCOx Accumulator, Low Byte
---------	--

REGISTER 25-4: NCOxACCH: NCOx ACCUMULATOR REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCOxAC	C<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all o	other Resets

bit 7-0 NCOxACC<15:8>: NCOx Accumulator, High Byte

'0' = Bit is cleared

REGISTER 25-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		NCOxAC	C<19:16>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCOxACC<19:16>: NCOx Accumulator, Upper Byte

'1' = Bit is set

26.8 Dead-Band Uncertainty

When the rising and falling edges of the input source triggers the dead-band counters, the input may be asynchronous. This will create some uncertainty in the dead-band time delay. The maximum uncertainty is equal to one CWG clock period. Refer to Equation 26-1 for more detail.

EQUATION 26-1: DEAD-BAND UNCERTAINTY

$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$

Example:
$$Fcwg_clock = 16 MHz$$

Therefore:
$$TDEADBAND_UNCERTAINTY = \frac{1}{Fcwg_clock}$$
$$= \frac{1}{16 MHz}$$
$$= 62.5 ns$$

26.9 Auto-Shutdown Control

Auto-shutdown is a method to immediately override the CWG output levels with specific overrides that allow for safe shutdown of the circuit. The shutdown state can be either cleared automatically or held until cleared by software.

26.9.1 SHUTDOWN

The shutdown state can be entered by either of the following two methods:

- Software generated
- External Input

26.9.1.1 Software Generated Shutdown

Setting the GxASE bit of the CWGxCON2 register will force the CWG into the shutdown state.

When auto-restart is disabled, the shutdown state will persist as long as the GxASE bit is set.

When auto-restart is enabled, the GxASE bit will clear automatically and resume operation on the next rising edge event. See Figure 26-6.

26.9.1.2 External Input Source

External shutdown inputs provide the fastest way to safely suspend CWG operation in the event of a Fault condition. When any of the selected shutdown inputs goes active, the CWG outputs will immediately go to the selected override levels without software delay. Any combination of two input sources can be selected to cause a shutdown condition. The sources are:

- Comparator C1 C1OUT_async
- Comparator C2 C2OUT_async
- CLC2 LC2_out
- CWG1FLT

Shutdown inputs are selected in the CWGxCON2 register. (Register 26-3).

Note:	Shutdown inputs are level sensitive, not edge sensitive. The shutdown state can- not be cleared, except by disabling auto- shutdown, as long as the shutdown input
	level persists.

FIGURE 28-1: GENERAL FORMAT FOR INSTRUCTIONS

OPCODE	, , d	0	f (FILE #)	0
d = 0 for destine			. (== ")	
d = 0 for destina d = 1 for destina f = 7-bit file regis	tion f ster add	dres	S	
Bit-oriented file regis	ster op 0 9	erat 7	t ions 6	0
OPCODE	b (Bl	T #)	f (FILE #)
b = 3-bit bit addr f = 7-bit file regis	ess ster ado	dres	S	
Literal and control o	peratio	ons		
General				
13	8	7	L. (1:t 1)	0
OPCODE			K (literal)	
k = 8-bit immedia	ate vali	ue		
CALL and GOTO instru	ctions	only		
<u>13 11 10</u>)			0
OPCODE		k ((literal)	
k = 11-bit immed	iate va	lue		
MOUT D instruction only				
13		7 (3	0
OPCODE			k (literal)	
k = 7-bit immedia	ate valu	Je		
k = 7-bit immedia	ate valı	le		
k = 7-bit immedia	ate valu /	he		
k = 7-bit immedia	ate valu	Je	5 4	0
k = 7-bit immedia	ate valu	Je	5 4 k (literal	0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia	ate valu / ate valu	Je	5 4 k (literal	0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only	ate valu / ate valu	le le	5 4 k (literal	0
k = 7-bit immedia	ate valu / ate valu 9 8	Je	5 4 k (literal	0
k = 7-bit immedia	ate valı , ate valı , ate valı , 9 8	le	5 4 k (literal	0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia	ate valu / ate valu 9 8 ate val	ue	5 4 k (literal	0)) 0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction	ate valu ate valu 9 8 ate valu	ue	5 4 k (literal	0)) 0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedi FSR Offset instruction 13	ate valu / ate valu 9 8 ate valu ate valu 15 7	ue ue 6	5 4 k (literal k (literal)	0)) 0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE	ate valu ate valu 9 8 4 ate valu ate valu 15 7	ue n n	5 4 k (literal k (literal) 5 k (literal	0)) 0 0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedi FSR Offset instruction 13 OPCODE n = appropriate k = 6-bit immedi	ate valu ate valu 9 8 ate valu ate val s FSR ate val	ue 6 n ue	5 4 k (literal k (literal) 5 k (literal	0)) 0 ())
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE n = appropriate k = 6-bit immedia FSR Increment instruct 13	ate valu ate valu 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	ue 6 n ue	5 4 k (literal k (literal) 5 k (literal 3 2 1	0)) 0)) 0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedi FSR Offset instruction 13 OPCODE n = appropriate k = 6-bit immedi FSR Increment instruct 13 OPCODE	ate valu ate valu 9 8 ate valu ate valu s FSR ate val tions	ue 6 n ue	5 4 k (literal) k (literal) 5 k (literal) 3 2 1 n m (n	0)) 0)) 0))
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE n = appropriate k = 6-bit immedia FSR Increment instruct 13 OPCODE n = appropriate m = 2-bit mode	ate valu ate valu 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	ue 6 n ue	5 4 k (literal) k (literal) 5 k (literal) 3 2 1 n m (n	0)) 0)) 0))
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE n = appropriate k = 6-bit immedia FSR Increment instruct 13 OPCODE n = appropriate m = 2-bit mode OPCODE only 13	ate valu ate valu 9 8 ate valu 9 8 ate valu FSR ate value	ue 6 n ue	5 4 k (literal) k (literal) 5 k (literal) 3 2 1 n m (n	0)) 0 ()) 0 node

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$				
Status Affected:	None				
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction				
Words:	1				
Cycles:	2				
Example:	RETFIE				
	After Interrupt PC = TOS GIE = 1				

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.

RETLW	Return with literal in W						
Syntax:	[<i>label</i>] RETLW k	RLF	Rotate Left f through Carry				
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d				
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$	Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Status Affected	None	Operation:	See description below				
Description:	The W register is leaded with the 9 bit	Status Affected:	С				
Description.	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is				
Words:	1		stored back in register T.				
Cycles:	2						
Example:	CALL TABLE;W contains table	Words:	1				
	;offset value • ;W now has table value	Cycles:	1				
TABLE	•	Example:	RLF REG1,0				
	<pre>ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; Before Instruction W = 0x07 After Instruction</pre>		Before Instruction REG1 = 1110 0110 C = 0 - - After Instruction REG1 = 1110 0110 W = 1100 1100 - C = 1 - -				
	W = value of k8						

PIC16(L)F1508/9

TABLE 29-12:	CONFIGURATION LOGIC CELL	(CLC) CHARACTERISTICS
		•	

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
CLC01*	TCLCIN	CLC input time	_	7		ns		
CLC02*	TCLC	CLC module input to output propagation time	—	24	_	ns	VDD = 1.8V	
				12	_	ns	VDD > 3.6V	
CLC03*	TCLCOUT	CLC output time Rise Time	_	OS18		—	(Note 1)	
		Fall Time		OS19	_	—	(Note 1)	
CLC04*	FCLCMAX	CLC maximum switching frequency		45	_	MHz		
*	Those nar	ameters are characterized but not tested						

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1:See Table 29-9 for OS18 and OS19 rise and fall times.

FIGURE 30-35: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16LF1508/9 ONLY

PIC16(L)F1508/9

20-Lead Plastic Quad Flat, No Lead Package (ML) - 4x4 mm Body [QFN] With 0.40 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Optional Center Pad Width	W2			2.50
Optional Center Pad Length	T2			2.50
Contact Pad Spacing	C1		3.93	
Contact Pad Spacing	C2		3.93	
Contact Pad Width	X1			0.30
Contact Pad Length	Y1			0.73
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2126A

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-255A Sheet 1 of 2