

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1509-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The block diagram of these devices are shown in Figure 1-1, the available peripherals are shown in Table 1-1, and the pinout descriptions are shown in Table 1-2.

TABLE 1-1:	DEVICE PERIPHERAL	SUMMARY
------------	-------------------	---------

Peripheral	PIC12(L)F1501	PIC16(L)F1503	PIC16(L)F1507	PIC16(L)F1508	PIC16(L)F1509	
Analog-to-Digital Converter (A	ADC)	•	•	•	•	٠
Complementary Wave Generation	ator (CWG)	•	•	•	٠	٠
Digital-to-Analog Converter (I	DAC)	•	•		•	•
Enhanced Universal Synchronous/Asynchronous Transmitter (EUSART)				•	•	
Fixed Voltage Reference (FV	R)	•	•	•	٠	٠
Numerically Controlled Oscilla	ator (NCO)	•	•	•	•	•
Temperature Indicator		•	•	•	•	•
Comparators						
	C1	•	•		٠	•
	C2		•		•	•
Configurable Logic Cell (CLC	:)		-	-		-
	CLC1	•	•	•	•	•
	CLC2	٠	•	•	٠	•
	CLC3				٠	•
	CLC4				•	•
Master Synchronous Serial P	orts					
	MSSP1		•		٠	•
PWM Modules						
	PWM1	•	•	•	٠	•
	PWM2	•	•	•	•	•
	PWM3	٠	•	•	٠	•
	PWM4	٠	•	•	٠	•
Timers						
	Timer0	•	•	•	٠	•
	Timer1	•	•	•	•	•
	Timer2	•	•	•	٠	•

TABLE 3-9:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED))
------------	-------------------------------------	-------------	---

IADLL	J-J. U							020)			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2	2										
10Ch	LATA	_	_	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	LATB	LATB7	LATB6	LATB5	LATB4	_	_	_	_	xxxx	uuuu
10Eh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	uuuu uuuu
10Fh	_	Unimplemen	nted				1	1		_	_
110h	_	Unimplemen	nted							_	
111h	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h to 114h	_	Unimplemen	nted							_	_
115h	CMOUT	_	_	_	_	_	_	MC2OUT	MC1OUT	00	00
116h	BORCON	SBOREN	BORFS	—	_	—	_	_	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	′R<1:0>	0q00 0000	0q00 0000
118h	DAC1CON0	DACEN	_	DACOE1	DACOE2	_	DACPSS	_	—	0-00 -0	0-00 -0
119h	DAC1CON1	_	_	_			DACR<4:)>		0 0000	0 0000
11Ah to 11Ch	_	Unimplemented						_	_		
11Dh	APFCON	—	—	—	SSSEL	T1GSEL	—	CLC1SEL	NCO1SEL	0 0-00	0 0-00
11Eh	—	Unimplemen	nted							—	—
11Fh	—	Unimplemen	nted							—	_
Bank 3		-	-		-		-			_	
18Ch	ANSELA	_		—	ANSA4	_	ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	ANSELB			ANSB5	ANSB4	_	_	_		11	11
18Eh	ANSELC	ANSC7	ANSC6	—	_	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
18Fh	—	Unimplemen	nted							—	_
190h	—	Unimplemen	nted							—	_
191h	PMADRL	Flash Progra	am Memory A	ddress Regis	ter Low Byte					0000 0000	0000 0000
192h	PMADRH	(2)	Flash Progra	m Memory A	ddress Regis	ster High Byte	e			1000 0000	1000 0000
193h	PMDATL	Flash Progra	am Memory R	ead Data Reg	gister Low By	te				xxxx xxxx	uuuu uuuu
194h	PMDATH	—	—	Flash Progra	am Memory F	Read Data R	egister High	Byte		xx xxxx	uu uuuu
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Flash Progra	am Memory C	ontrol Registe	er 2					0000 0000	0000 0000
197h	VREGCON ⁽¹⁾	—	—	—	—	-	—	VREGPM	Reserved	01	01
198h	—	Unimplemen	nted							—	—
199h	RCREG	USART Rec	eive Data Reg	jister						0000 0000	0000 0000
19Ah	TXREG	USART Tran	nsmit Data Re	gister						0000 0000	0000 0000
19Bh	SPBRGL	Baud Rate C	Generator Data	a Register Lo	w					0000 0000	0000 0000
19Ch	SPBRGH	Baud Rate C	Generator Data	a Register Hig	gh					0000 0000	0000 0000
19Dh	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19Eh	TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	0000 0010
19Fh	BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-0 0-00	01-0 0-00

x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. PIC16F1508/9 only. Unimplemented, read as '1'. Legend: Note 1:

2:

3.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC.

3.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

3.4.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

3.4.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

FIGURE 5-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 5-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

5.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended, unless either FSCM or Two-Speed Start-Up are enabled. In this case, code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 5.4 "Two-Speed Clock Start-up Mode"**).

5.6 Register Definitions: Oscillator Control

U-0	R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0		
	IRCF<3:0> SCS<1				<1:0>				
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'			
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BO	DR/Value at all o	other Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	Unimplemen	ted: Read as '	כי						
bit 6-3	IRCF<3:0>: I	nternal Oscillate	or Frequency	Select bits					
	1111 = 16 MHz								
	1110 = 8 MH	lz							
	1101 = 4 MH	lz							
	1100 = 2 MF	lz							
	1011 = 1 MF	1Z ∠⊔–(1)							
	1010 = 3001	<п∠`′ ∠⊔ ₇ (1)							
	1001 = 2301	(12 ⁽¹⁾							
	0111 = 500	≺Hz (default up	on Reset)						
	0110 = 250	κHz							
	0101 = 125	кНz							
	0100 = 62.5	kHz							
	001x = 31.2	5 kHz							
	000x = 31 kl	Hz LF							
bit 2	Unimplemen	ted: Read as '	כ'						
bit 1-0	SCS<1:0>: S	ystem Clock Se	elect bits						
	1x = Internal								
	01 = Seconda	ary oscillator							
	00 = Clock de	etermined by F	OSC<2:0> in	Configuration V	Vords.				
Note 1: Dup	licate frequend	cy derived from	HFINTOSC.						

REGISTER 5-1: OSCCON: OSCILLATOR CONTROL REGISTER

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	R/W-0/u	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	BORFS	—	—	—	—	—	BORRDY
bit 7 bit 0							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-Out Reset Enable bit <u>If BOREN <1:0> in Configuration Words = 01</u> : 1 = BOR Enabled 0 = BOR Disabled <u>If BOREN <1:0> in Configuration Words ≠ 01</u> : SBOREN is read/write, but has no effect on the BOR
bit 6	BORFS: Brown-Out Reset Fast Start bit ⁽¹⁾ <u>If BOREN <1:0> = 10 (Disabled in Sleep) or BOREN<1:0> = 01 (Under software control):</u> 1 = Band gap is forced on always (covers sleep/wake-up/operating cases) 0 = Band gap operates normally, and may turn off <u>If BOREN<1:0> = 11 (Always on) or BOREN<1:0> = 00 (Always off)</u> BORFS is Read/Write, but has no effect.
bit 5-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-Out Reset Circuit Ready Status bit 1 = The Brown-out Reset circuit is active 0 = The Brown-out Reset circuit is inactive
Note 1:	BOREN<1:0> bits are located in Configuration Words.

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program							
	memory read are required to be NOPS.							
	This prevents the user from executing a							
	2-cycle instruction on the next instruction							
	after the RD bit is set.							

FLASH PROGRAM MEMORY READ FLOWCHART

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	
—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is clea			ared					
bit 7-6	Unimplemen	ted: Read as '	0'					
hit 5 1	LATA -E-A- BA-E-A- Output Latab Valua bita(1)							

REGISTER 11-4: LATA: PORTA DATA LATCH REGISTER

- bit 5-4 LATA<5:4>: RA<5:4> Output Latch Value bits⁽¹⁾
- bit 3 Unimplemented: Read as '0'
- bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾
- **Note 1:** Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-5: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1.	When setting a pin to an analog input the corresponding TRIS bit must be set to Input mode in order to

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

11.8 Register Definitions: PORTC

REGISTER 11-12: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value			R/Value at all c	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0 **RC<7:0>**: PORTC General Purpose I/O Pin bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 11-13: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 11-14: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

14.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, "Use and Calibration of the Internal Temperature Indicator" (DS01333) for more details regarding the calibration process.

14.1 Circuit Operation

Figure 14-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 14-1 describes the output characteristics of the temperature indicator.

EQUATION 14-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 13.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 14-1: TEMPERATURE CIRCUIT DIAGRAM

14.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 14-1 shows the recommended minimum VDD vs. range setting.

TABLE 14-1: RECOMMENDED VDD VS. RANGE

Min. Vdd, TSRNG = 1	Min. VDD, TSRNG = 0				
3.6V	1.8V				

14.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for detailed information.

14.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	134
ADCON1	ADFM		ADCS<2:0>			_	ADPRE	F<1:0>	135
ADCON2		TRIGSE	EL<3:0>			_	_		136
ADRESH	ADC Result	Register Hig	h						137, 138
ADRESL	ADC Result Register Low								137, 138
ANSELA	—			ANSA4		ANSA2	ANSA1	ANSA0	110
ANSELB	—		ANSB5	ANSB4	-	—	_	-	114
ANSELC	ANSC7	ANSC6	_	_	ANSC3	ANSC2	ANSC1	ANSC0	118
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	76
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	—	TMR2IF	TMR1IF	79
TRISA	_	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	109
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	-	—	_	-	113
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVF	R<1:0>	125

 TABLE 15-3:
 SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: Unimplemented, read as '1'.

17.8 Register Definitions: Comparator Control

R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	U-0	R/W-1/1	R/W-0/0	R/W-0/0
CxON	CxOUT	CxOE	CxPOL	_	CxSP	CxHYS	CxSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	emented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unki	nown	-n/n = Value	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
	0 0 1		1.11				
Dit 7	CXON: Comp	barator Enable	DIT				
	⊥ = Compara 0 = Compara	tor is enabled	and consumes	no active pov	ver		
bit 6	CxOUT: Com	parator Output	bit	· · · · · · · · ·			
	If CxPOL = 1	(inverted polar	ity):				
	1 = CxVP < 0	CxVN					
	0 = CxVP > 0	CxVN					
	$\frac{\text{If CXPOL} = 0}{1 = C \times VP > 1}$	<u>(non-invertea </u> CyVN	<u>polarity):</u>				
	0 = CxVP <	CxVN					
bit 5	CxOE: Comp	parator Output	Enable bit				
	1 = CxOUT i	s present on th	e CxOUT pin. F	Requires that	the associated T	RIS bit be clea	red to actually
	drive the	pin. Not affect	ed by CxON.				
bit 4	C = C O O T	is internal only	Polority Soloo	t hit			
DIL 4		iparator Outpu		I DII			
	1 = Compara0 = Compara	tor output is in	t inverted				
bit 3	Unimplemer	nted: Read as '	0'				
bit 2	CxSP: Comp	arator Speed/F	ower Select bi	t			
	1 = Compara	tor mode in no	rmal power, hig	her speed			
	0 = Compara	tor mode in lov	v-power, low-sp	beed			
bit 1	CxHYS: Com	nparator Hyster	esis Enable bit				
	1 = Compara	ator hysteresis	enabled				
hit 0		alor nysleresis		a Mada hit			
DILU			ut Synchronou	s Mode bit	rangua ta abang	non on Timor1	alaak aauraa
	⊥ – Compara Output u	pdated on the	falling edge of	Timer1 clock	source.	jes un timert	CIOCK SOULCE.
	0 = Compara	ator output to T	imer1 and I/O	oin is asynchr	onous		
	-			-			

REGISTER 17-1: CMxCON0: COMPARATOR Cx CONTROL REGISTER 0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	_	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	110
ANSELC	ANSC7	ANSC6	_	—	ANSC3	ANSC2	ANSC1	ANSC0	118
CM1CON0	C10N	C10UT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	149
CM2CON0	C2ON	C2OUT	C2OE	C2POL	—	C2SP	C2HYS	C2SYNC	149
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	_		C1NCH<2:0>	>	150
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	_	— C2NCH<2:0>			150
CMOUT		_	_	_	_	_	MC2OUT	MC10UT	150
DAC1CON0	DACEN	_	DACOE1	DACOE2	_	DACPSS	—	—	144
DAC1CON1		_	—			DACR<4:0>			144
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFV	R<1:0>	125
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	NCO1IE	—	_	77
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	NCO1IF	_	—	80
PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	109
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	117
LATA		_	LATA5	LATA4	_	LATA2	LATA1	LATA0	110
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	117
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	109
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: Unimplemented, read as '1'.

18.2 Register Definitions: Option Register

REGISTER 18-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/\	N-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
WPUEN	INTEDG	TM	R0CS	TMR0SE	PSA		PS<2:0>			
bit 7								bit 0		
Legend:										
R = Readable I	bit	W = ۱	Nritable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = B	it is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = I	Bit is clea	ared						
bit 7	WPUEN: W	eak Pull	-Up Ena	ble bit						
	1 = All weak	pull-up	s are dis	abled (except	MCLR, if it is e	enabled)				
	0 = Weak pi	ull-ups a	re enabl	ed by individu	al WPUx latch	values				
bit 6	INTEDG: Int	terrupt E	Edge Sel	ect bit						
	1 = Interrupt	on risin on fallir	ig eage (na edae	of INT pin						
hit 5		imer0 C	lock Sou	urca Salact hit						
bit 0	1 = Transitio	on on TO	CKI pin							
	0 = Internal	instructi	on cycle	clock (Fosc/4	1)					
bit 4	TMR0SE: T	imer0 So	ource Ec	lge Select bit						
	1 = Increme	nt on hig	on high-to-low transition on TOCKI pin							
	0 = Increment on low-to-high transition on TOCKI pin									
bit 3 PSA: Prescaler Assignment bit 1 = Prescaler is not assigned to the Timer0 module 0 = Prescaler is assigned to the Timer0 module										
hit 2-0	hit 2-0 $PS_2:0$ Prescaler Rate Select hits									
	Bi	t Value	Timer0	Rate						
		000	1 . 2							
		001	1:4							
		010	1:8							
		011	1:10	6						
		100	1:3	2						
		101	1:64	4						
		110	1:12	28						
		111	1:2	00						

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON2		TRIGS	EL<3:0>						136
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>			154
TMR0	Holding Register for the 8-bit Timer0 Count						152*		
TRISA		_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	109

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE **FIGURE 19-6:** TMR1GE T1GPOL T1GSPM T1GTM Cleared by hardware on T1GGO/ Set by software falling edge of T1GVAL DONE Counting enabled on rising edge of T1G t1g_in T1CKI T1GVAL Timer1 N + 1 N + 2) N + 3 N + 4 Ν Cleared by software Set by hardware on Cleared by software falling edge of T1GVAL TMR1GIF

I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 1, DHEN = 0) **FIGURE 21-21:** Received data is read from SSPxBUF Receive Data 10 IN 11 2 3 4 5 6 7 8 6 7 8 1 2 1 2 clears UA and releases SCLx Update of SSPxADD, Receive Data Set CKP with software releases SCLx Cleared by software ACK A7 \ A6 \ A5 \ A4 \ A3 \ A2 \ A1 \ A0 9 UA 1 2 3 4 5 6 7 8 SSPxBUF can be read anytime before the next received byte Receive Second Address Byte Update to SSPxADD is not allowed until 9th falling edge of SCLx Cleared by software ACK R/W = 0If when AHEN = 1; on the 8th falling edge of SCLx of an address⁻⁻⁻ byte, CKP is cleared ACKTIM is set by hardware on 8th falling edge of SCLx 0 / A9 X A8 Set by hardware _____ on 9th falling edge Slave software clears ACKDT to <u>ACK</u> the received byte Receive First Address Byte -----Ч SSPxIF **ACKTIM** ACKDT SCLX SDAx В ٩ CKP

PIC16(L)F1508/9

22.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 22-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

22.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

22.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section22.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no additional characters will be received until the overrun							
	condition is	cleared	I. See					
	Section22.1.2.5 "	'Receive	Overrun					
	Error" for more	information	on overrun					
	errors.							

22.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- · RCIE, Interrupt Enable bit of the PIE1 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u			
	LCxD2S<2:0> ⁽¹⁾			—	L	.CxD1S<2:0> ⁽¹)			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged		x = Bit is unknown		-n/n = Value	at POR and BO	R/Value at all o	ther Resets			
'1' = Bit is set		'0' = Bit is cle	ared							
L										
bit 7	Unimpleme	nted: Read as '	0'							
bit 6-4	LCxD2S<2:	0>: Input Data 2	Selection Co	ntrol bits ⁽¹⁾						
	111 = LCx	in[11] is selecte	d for lcxd2							
	110 = LCx	in[10] is selecte	d for lcxd2							
	101 = LCx_	in[9] is selected	for lcxd2							
	100 = LCx_	in[8] is selected	for lcxd2							
	011 = LCx_	in[7] is selected	for lcxd2							
	010 = LCx_	in[6] is selected	for lcxd2							
	001 = LCx_	in[5] is selected	for lcxd2							
	000 = LCx_	in[4] is selected	for lcxd2							
bit 3	Unimpleme	nted: Read as '	0'							
bit 2-0 LCxD1S<2:0>: Input Data 1 Selection Control bits ⁽¹⁾										
	111 = LCx	in[7] is selected	for lcxd1							
	110 = LCx	in[6] is selected	for lcxd1							
	101 = LCx	in[5] is selected	for lcxd1							
	100 = LCx	in[4] is selected	for lcxd1							
	011 = LCx	in[3] is selected	for lcxd1							
	010 = LCx_	in[2] is selected	for lcxd1							
	001 = LCx_	in[1] is selected	for lcxd1							
	000 = LCx_	in[0] is selected	for lcxd1							

REGISTER 24-3: CLCxSEL0: MULTIPLEXER DATA 1 AND 2 SELECT REGISTER

Note 1: See Table 24-1 for signal names associated with inputs.

3:

TvLOW 2.7 µs typical.