

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1509t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Automatic Interrupt Context Saving

During interrupts, certain registers are automatically saved in shadow registers and restored when returning from the interrupt. This saves stack space and user code. See **Section 7.5 "Automatic Context Saving"**, for more information.

2.2 16-Level Stack with Overflow and Underflow

These devices have a hardware stack memory 15 bits wide and 16 words deep. A Stack Overflow or Underflow will set the appropriate bit (STKOVF or STKUNF) in the PCON register, and if enabled, will cause a software Reset. See **Section 3.5 "Stack"** for more details.

2.3 File Select Registers

There are two 16-bit File Select Registers (FSR). FSRs can access all file registers and program memory, which allows one Data Pointer for all memory. When an FSR points to program memory, there is one additional instruction cycle in instructions using INDF to allow the data to be fetched. General purpose memory can now also be addressed linearly, providing the ability to access contiguous data larger than 80 bytes. There are also new instructions to support the FSRs. See **Section 3.6 "Indirect Addressing"** for more details.

2.4 Instruction Set

There are 49 instructions for the enhanced mid-range CPU to support the features of the CPU. See **Section 28.0 "Instruction Set Summary"** for more details.

EXAMPLE 10-3: WRITING TO FLASH PROGRAM MEMORY (32 WRITE LATCHES)

;;;;;;	This 1. 64 2. Ea store 3. A 4. AI	write rout: 4 bytes of c ach word of ed in little valid star DDRH and AD	ine assumes the f data are loaded, data to be writt e endian format ting address (the DRL are located i	ollowing: starting at the address in DATA_ADDR en is made up of two adjacent bytes in DATA_ADDR, Least Significant bits = 00000) is loaded in ADDRH:ADDRL n shared data memory 0x70 - 0x7F (common RAM)
;	OP	BCF BANKSEL MOVF MOVF MOVF MOVWF MOVLW MOVWF BCF BSF BSF BSF MOVIW MOVWF MOVVWF MOVVWF MOVF XORLW ANDLW BTFSC	INTCON, GIE PMADRH ADDRH, W PMADRH ADDRL, W PMADRL LOW DATA_ADDR FSROL HIGH DATA_ADDR FSROH PMCON1, CFGS PMCON1, CFGS PMCON1, WREN PMCON1, LWLO FSRO++ PMDATL FSRO++	<pre>; Disable ints so required sequences will execute properly ; Bank 3 ; Load initial address ; ; ; Load initial data address ; ; Load initial data address ; ; Load initial data address ; ; Not configuration space ; Enable writes ; Only Load Write Latches ; Load first data byte into lower ; ; Load second data byte into lower ; ; Check if lower bits of address are '00000' ; Check if we're on the last of 32 addresses ; ; Exit if last of 32 words,</pre>
	Required Sequence	GOTO MOVLW MOVWF MOVLW MOVWF BSF NOP NOP INCF GOTO	55h PMCON2 OAAh PMCON2 PMCON1,WR PMADRL,F LOOP	<pre>; Start of required write sequence: ; Write 55h ; ; Write AAh ; Set WR bit to begin write ; NOP instructions are forced as processor ; loads program memory write latches ; ; Still loading latches Increment address ; Write next latches</pre>
ST	ART_V	VRITE BCF	PMCON1,LWLO	; No more loading latches - Actually start Flash program ; memory write
	Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP BCF BSF	55h PMCON2 OAAh PMCON2 PMCON1,WR PMCON1,WREN INTCON,GIE	<pre>; Start of required write sequence: ; Write 55h ; ; Write AAh ; Set WR bit to begin write ; NOP instructions are forced as processor writes ; all the program memory write latches simultaneously ; to program memory. ; After NOPs, the processor ; stalls until the self-write process in complete ; after write processor continues with 3rd instruction ; Disable writes ; Enable interrupts</pre>

11.3 PORTA Registers

11.3.1 DATA REGISTER

PORTA is a 6-bit wide, bidirectional port. The corresponding data direction register is TRISA (Register 11-3). Setting a TRISA bit (= 1) will make the corresponding PORTA pin an input (i.e., disable the output driver). Clearing a TRISA bit (= 0) will make the corresponding PORTA pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). The exception is RA3, which is input-only and its TRIS bit will always read as '1'. Example 11-1 shows how to initialize an I/O port.

Reading the PORTA register (Register 11-2) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATA).

11.3.2 DIRECTION CONTROL

The TRISA register (Register 11-3) controls the PORTA pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISA register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.3.3 ANALOG CONTROL

The ANSELA register (Register 11-5) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

EXAMPLE 11-1: INITIALIZING PORTA

BANKSEL	PORTA	;
CLRF	PORTA	;Init PORTA
BANKSEL	LATA	;Data Latch
CLRF	LATA	;
BANKSEL	ANSELA	;
CLRF	ANSELA	;digital I/O
BANKSEL	TRISA	;
MOVLW	B'00111000'	;Set RA<5:3> as inputs
MOVWF	TRISA	;and set RA<2:0> as
		;outputs

11.3.4 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-2.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC and comparator inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below in Table 11-2.

Pin Name	Function Priority ⁽¹⁾
RA0	ICSPDAT DAC1OUT1 RA0
RA1	RA1
RA2	DAC1OUT2 CLC1 ⁽²⁾ C1OUT PWM3 RA2
RA3	None
RA4	CLKOUT SOSCO RA4
RA5	SOSCI RA5

TABLE 11-2:PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

2: Default pin (see APFCON register).

3: Alternate pin (see APFCON register).

13.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

13.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section 17.0 "Comparator Module"** for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

13.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See the FVR Stabilization Period characterization graph, Figure 30-64.

FIGURE 13-1: VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.
LDO	All PIC16F1508/9 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

PIC16(L)F1508/9

FIGURE 17-2: SINGLE COMPARATOR

17.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 17-1) contain Control and Status bits for the following:

- Enable
- Output selection
- Output polarity
- Speed/Power selection
- Hysteresis enable
- Output synchronization

The CMxCON1 registers (see Register 17-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

17.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

17.2.2 COMPARATOR POSITIVE INPUT SELECTION

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN+ analog pin
- DAC1_output
- FVR buffer2
- Vss

See Section 13.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 16.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

17.2.3 COMPARATOR NEGATIVE INPUT SELECTION

The CxNCH<2:0> bits of the CMxCON0 register direct one of the input sources to the comparator inverting input.

Note: To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

17.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

The synchronous comparator output signal (CxOUT_sync) is available to the following peripheral(s):

- Configurable Logic Cell (CLC)
- Analog-to-Digital Converter (ADC)
- Timer1

The asynchronous comparator output signal (CxOUT_async) is available to the following peripheral(s):

- Complementary Waveform Generator (CWG)
 - Note 1: The CxOE bit of the CMxCON0 register overrides the PORT data latch. Setting the CxON bit of the CMxCON0 register has no impact on the port override.
 - 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

21.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

21.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C[™])

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- · Clock Parity
- Slave Select Synchronization (Slave mode only)
- Daisy-chain connection of slave devices

Figure 21-1 is a block diagram of the SPI interface module.

FIGURE 21-1: MSSP BLOCK DIAGRAM (SPI MODE)

21.6.7 I²C MASTER MODE RECEPTION

Master mode reception (Figure 21-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSPx module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

21.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

21.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

21.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

21.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCLx, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxBUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Masters ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

TABLE 21-3: SI	UMMARY OF REGISTERS	ASSOCIATED V	WITH I ² C [™]	OPERATION
----------------	---------------------	--------------	------------------------------------	-----------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page:
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	76
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	NCO1IE	_	—	77
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	—	TMR2IF	TMR1IF	79
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	NCO1IF	_	_	80
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	109
SSP1ADD	ADD<7:0>							222	
SSP1BUF	MSSP Rece	ive Buffer/Tra	nsmit Registe	r					173*
SSP1CON1	WCOL SSPOV SSPEN CKP SSPM<3:0>					219			
SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	220
SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	221
SSP1MSK	MSK<7:0>							222	
SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	218

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the MSSP module in I²C[™] mode.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0		
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set			
bit 7	GCEN: Gene	eral Call Enable	e bit (in I ² C Sla	ve mode only)					
	1 = Enable in	iterrupt when a	errupt when a general call address (0x00 or 00h) is received in the SSPxSR						
1.11 O		call address dis							
DIT 6	ACKSTAT: A	cknowledge St	atus dit (in I-C	mode only)					
	0 = Acknowle	edge was not recei	ved						
bit 5	ACKDT: Ack	nowledge Data	bit (in I ² C mo	de only)					
	In Receive m	ve mode:							
	Value transm	nitted when the user initiates an Acknowledge sequence at the end of a receive							
	1 = Not Acknowle	owledge							
hit 4		suye mowledge Seg	uence Enable	hit (in I ² C Mas	ter mode only)				
	In Master Re	Vaster Receive mode:							
	1 = Initiate	Acknowledge sequence on SDAx and SCLx pins, and transmit ACKDT data bit.							
	Automat	atically cleared by hardware.							
	0 = Acknowl	edge sequence idle							
bit 3	RCEN: Rece	ive Enable bit (in I ² C Master	mode only)					
	\perp = Enables I 0 = Receive i	. = Enables Receive mode for I ² C							
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	V)				
2	SCKx Releas	se Control:			<i>,</i>				
	1 = Initiate St	top condition or	n SDAx and S	CLx pins. Auto	matically cleare	d by hardware			
	0 = Stop cond	dition idle							
bit 1	RSEN: Repe	ated Start Con	dition Enable b	oit (in I ² C Mast	er mode only)				
	1 = Initiate R 0 = Repeate	Repeated Start d Start condition	condition on S n idle	DAx and SCL>	c pins. Automati	cally cleared b	y hardware.		
bit 0	SEN: Start C	ondition Enable	e/Stretch Enab	le bit					
	In Master mo	de:		o					
	1 = Initiate St0 = Start cond	art condition of	n SDAx and S	CLx pins. Auto	matically cleare	d by hardware			
	In Slave mod	e:							
	1 = Clock stre	<u>et</u> ching is enab	led for both sla	ave transmit ar	nd slave receive	e (stretch enabl	ed)		
	0 = Clock stre	etching is disat	oled						
				-					

REGISTER 21-3: SSPxCON2: SSP CONTROL REGISTER 2⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

22.1 EUSART Asynchronous Mode

The EUSART transmits and receives data using the standard non-return-to-zero (NRZ) format. NRZ is implemented with two levels: a VOH mark state which represents a '1' data bit, and a VOL space state which represents a '0' data bit. NRZ refers to the fact that consecutively transmitted data bits of the same value stay at the output level of that bit without returning to a neutral level between each bit transmission. An NRZ transmission port idles in the mark state. Each character transmission consists of one Start bit followed by eight or nine data bits and is always terminated by one or more Stop bits. The Start bit is always a space and the Stop bits are always marks. The most common data format is eight bits. Each transmitted bit persists for a period of 1/(Baud Rate). An on-chip dedicated 8-bit/16-bit Baud Rate Generator is used to derive standard baud rate frequencies from the system oscillator. See Table 22-5 for examples of baud rate configurations.

The EUSART transmits and receives the LSb first. The EUSART's transmitter and receiver are functionally independent, but share the same data format and baud rate. Parity is not supported by the hardware, but can be implemented in software and stored as the ninth data bit.

22.1.1 EUSART ASYNCHRONOUS TRANSMITTER

The EUSART transmitter block diagram is shown in Figure 22-1. The heart of the transmitter is the serial Transmit Shift Register (TSR), which is not directly accessible by software. The TSR obtains its data from the transmit buffer, which is the TXREG register.

22.1.1.1 Enabling the Transmitter

The EUSART transmitter is enabled for asynchronous operations by configuring the following three control bits:

- TXEN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the TXEN bit of the TXSTA register enables the transmitter circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART and automatically configures the TX/CK I/O pin as an output. If the TX/CK pin is shared with an analog peripheral, the analog I/O function must be disabled by clearing the corresponding ANSEL bit.

Note: The TXIF Transmitter Interrupt flag is set when the TXEN enable bit is set.

22.1.1.2 Transmitting Data

A transmission is initiated by writing a character to the TXREG register. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXREG is immediately transferred to the TSR register. If the TSR still contains all or part of a previous character, the new character data is held in the TXREG until the Stop bit of the previous character has been transmitted. The pending character in the TXREG is then transferred to the TSR in one TCY immediately following the Stop bit sequence commences immediately following the transfer of the data to the TSR from the TXREG.

22.1.1.3 Transmit Data Polarity

The polarity of the transmit data can be controlled with the SCKP bit of the BAUDCON register. The default state of this bit is '0' which selects high true transmit idle and data bits. Setting the SCKP bit to '1' will invert the transmit data resulting in low true idle and data bits. The SCKP bit controls transmit data polarity in Asynchronous mode only. In Synchronous mode, the SCKP bit has a different function. See **Section22.5.1.2 "Clock Polarity"**.

22.1.1.4 Transmit Interrupt Flag

The TXIF interrupt flag bit of the PIR1 register is set whenever the EUSART transmitter is enabled and no character is being held for transmission in the TXREG. In other words, the TXIF bit is only clear when the TSR is busy with a character and a new character has been queued for transmission in the TXREG. The TXIF flag bit is not cleared immediately upon writing TXREG. TXIF becomes valid in the second instruction cycle following the write execution. Polling TXIF immediately following the TXREG write will return invalid results. The TXIF bit is read-only, it cannot be set or cleared by software.

The TXIF interrupt can be enabled by setting the TXIE interrupt enable bit of the PIE1 register. However, the TXIF flag bit will be set whenever the TXREG is empty, regardless of the state of TXIE enable bit.

To use interrupts when transmitting data, set the TXIE bit only when there is more data to send. Clear the TXIE interrupt enable bit upon writing the last character of the transmission to the TXREG.

22.4 **EUSART Baud Rate Generator** (BRG)

The Baud Rate Generator (BRG) is an 8-bit or 16-bit timer that is dedicated to the support of both the asynchronous and synchronous EUSART operation. By default, the BRG operates in 8-bit mode. Setting the BRG16 bit of the BAUDCON register selects 16-bit mode.

The SPBRGH, SPBRGL register pair determines the period of the free running baud rate timer. In Asynchronous mode the multiplier of the baud rate period is determined by both the BRGH bit of the TXSTA register and the BRG16 bit of the BAUDCON register. In Synchronous mode, the BRGH bit is ignored.

Table 22-3 contains the formulas for determining the baud rate. Example 22-1 provides a sample calculation for determining the baud rate and baud rate error.

Typical baud rates and error values for various asynchronous modes have been computed for your convenience and are shown in Table 22-3. It may be advantageous to use the high baud rate (BRGH = 1), or the 16-bit BRG (BRG16 = 1) to reduce the baud rate error. The 16-bit BRG mode is used to achieve slow baud rates for fast oscillator frequencies.

Writing a new value to the SPBRGH, SPBRGL register pair causes the BRG timer to be reset (or cleared). This ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

If the system clock is changed during an active receive operation, a receive error or data loss may result. To avoid this problem, check the status of the RCIDL bit to make sure that the receive operation is idle before changing the system clock.

EXAMPLE 22-1: CALCULATING BAUD **RATE ERROR**

For a device with Fosc of 16 MHz, desired baud rate 0

of 9600, Asynchronous mode, 8-bit BRG:

$$Desired Baud Rate = \frac{Fosc}{64([SPBRGH:SPBRGL] + 1)}$$
Solving for SPBRGH:SPBRGL:

$$X = \frac{Fosc}{0} = \frac{Fosc}{64} - 1$$

$$= \frac{16000000}{9600} - 1$$

$$= [25.042] = 25$$
Calculated Baud Rate = $\frac{16000000}{64(25 + 1)}$

$$= 9615$$

$$Error = \frac{Calc. Baud Rate - Desired Baud Rate}{Desired Baud Rate}$$

$$= \frac{(9615 - 9600)}{9600} = 0.16\%$$

C

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG1D4T	LCxG1D4N	LCxG1D3T	LCxG1D3N	LCxG1D2T	LCxG1D2N	LCxG1D1T	LCxG1D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, reac	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG1D4T: G	Gate 1 Data 4 T	rue (non-inve	rted) bit			
	1 = Icxd4T is	gated into lcxg	g1	,			
	0 = Icxd4T is	not gated into	lcxg1				
bit 6	LCxG1D4N: (Gate 1 Data 4 I	Negated (inve	rted) bit			
	1 = lcxd4N is	gated into Icxo	g1 Jeva1				
bit 5		Gate 1 Data 3 T	rue (non-inve	rted) bit			
Sit O	1 = lcxd3T is	aated into lcxc	140 (11011 11170)				
	0 = Icxd3T is	not gated into	, lcxg1				
bit 4	LCxG1D3N:	Gate 1 Data 3 I	Negated (inve	rted) bit			
	1 = Icxd3N is	gated into lcxg	g1				
h # 0	0 = 1 Cxd 3 N is	not gated into	Icxg1				
Dit 3	LCXG1D21: C	ate 1 Data 2 1	rue (non-inve	rted) bit			
	1 = 10xd2T is 0 = 10xd2T is	not gated into icxg	lcxq1				
bit 2	LCxG1D2N:	Gate 1 Data 2 I	Negated (inve	rted) bit			
	1 = Icxd2N is	gated into lcxg	g1				
	0 = Icxd2N is	not gated into	lcxg1				
bit 1	LCxG1D1T: C	Gate 1 Data 1 T	rue (non-inve	rted) bit			
	1 = lcxd1T is	gated into lcxg	j1 Jova1				
bit 0		Tiol yaleu Inio Cata 1 Data 1 I	Negated (inve	rtad) hit			
bit 0	1 = lcxd1N is	dated into love	negaleu (inve n1	neu) bit			
	0 = lcxd1N is	not gated into	lcxg1				

REGISTER 24-5: CLCxGLS0: GATE 1 LOGIC SELECT REGISTER

TABLE 24-3:	SUMMARY OF REGISTERS ASSOCIATED WITH CLCx
-------------	---

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	_		—	ANSA4	—	ANSA2	ANSA1	ANSA0	110
ANSELB	_	_	ANSB5	ANSB4	—	—	—	—	114
ANSELC	ANSC7	ANSC6	—	—	ANSC3	ANSC2	ANSC1	ANSC0	118
CLC1CON	LC1EN	LC10E	LC10UT	LC1INTP	LC1INTN	LC1MODE<2:0>		>	263
CLCDATA	_	_	_	_	_	MLC3OUT	MLC2OUT	MLC1OUT	271
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	267
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	268
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	269
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	270
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	264
CLC1SEL0	_		LC1D2S<2:0>		—		LC1D1S<2:0>		265
CLC1SEL1	_		LC1D4S<2:0>		—		LC1D3S<2:0>		266
CLC2CON	LC2EN	LC2OE	LC2OUT	LC2INTP	LC2INTN	L	C2MODE<2:0	>	263
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	267
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	268
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	269
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	270
CLC2POL	LC2POL	_	—	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	264
CLC2SEL0	_	LC2D2S<2:0>			—		265		
CLC2SEL1	_	LC2D4S<2:0>			—		266		
CLC3CON	LC3EN	LC3OE	LC3OUT	LC3INTP	LC3INTN	L	263		
CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	267
CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	268
CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	269
CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	270
CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	264
CLC3SEL0	_		LC3D2S<2:0>		—	LC3D1S<2:0>			265
CLC3SEL1	_		LC3D4S<2:0>		—	LC3D3S<2:0>			266
CLC4CON	LC4EN	LC4OE	LC4OUT	LC4INTP	LC4INTN	LC4MODE<2:0>			263
CLC4GLS0	LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	267
CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	268
CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	269
CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	270
CLC4POL	LC4POL	_	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	264
CLC4SEL0	_	LC4D2S<2:0>		—	LC4D1S<2:0>			265	
CLC4SEL1	_	LC4D4S<2:0>			_	LC4D3S<2:0>			266
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE3	_	-	—	—	CLC4IE	CLC3IE	CLC2IE	CLC1IE	78
PIR3	_	_	—	—	CLC4IF	CLC3IF	CLC2IF	CLC1IF	81
TRISA	-	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	109
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	113
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117

 Legend:
 — = unimplemented read as '0',. Shaded cells are not used for CLC module.

 Note
 1:
 Unimplemented, read as '1'.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
GxASDLB<1:0>		GxASDLA<1:0>				GxIS<2:0>				
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is se	t	'0' = Bit is cle	ared	q = Value depends on condition						
bit 7-6 GxASDLB<1:0>: CWGx Shutdown State for CWGxB										
	When an auto	When an auto shutdown event is present (GxASE = 1):								
	11 = CWGxE	11 = CWGxB pin is driven to '1', regardless of the setting of the GxPOLB bit.								
	10 = CWGxE	10 = CWGxB pin is driven to '0', regardless of the setting of the GxPOLB bit.								
	01 = CWGXE	01 = CWGXB pin is tri-stated								
	control 1	the polarity of the	ne output.	alle aller the s		and interval. Gx				
bit 5-4	GxASDLA<1	GxASDLA<1:0>: CWGx Shutdown State for CWGxA								
	When an auto shutdown event is present (GxASE = 1):									
	11 = CWGxA pin is driven to '1', regardless of the setting of the GxPOLA bit.									
	10 = CWGxA	10 = CWGxA pin is driven to '0', regardless of the setting of the GxPOLA bit.								
	01 = CWGxA	01 = CWGxA pin is tri-stated								
	00 = CWGxA control t	A pin is driven to the polarity of t	o its inactive s ne output.	tate after the s	elected dead-b	and interval. Gx	POLA still will			
bit 3	Unimplemen	ted: Read as '	0'							
bit 2-0	GxIS<2:0>: (CWGx Input So	urce Select b	its						
	111 = CLC1	111 = CLC1 – LC1_out								
	110 = NCO1	110 = NCO1 – NCO1_out								
	101 = PWM4	101 = PWM4 – PWM4_out								
	100 = PWM3	$100 = PWM3 - PWM3_out$								
	011 = PWM2	011 = PWM2 - PWM2_out								
	010 = PWM'	010 = PWM1 – PWM1_out								

REGISTER 26-2: CWGxCON1: CWG CONTROL REGISTER 1

- 001 = Comparator C2– C2OUT_async 000 = Comparator C1 C1OUT_async

TABLE 29-19: SPI MODE REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25 TCY		—	ns	
SP71*	TscH	SCK input high time (Slave mode)	1 Tcy + 20		_	ns	
SP72*	TscL	SCK input low time (Slave mode)	1 Tcy + 20	_	_	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100		—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100		_	ns	
SP75*	TDOR	SDO data output rise time		10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP76*	TDOF	SDO data output fall time		10	25	ns	
SP77*	TssH2doZ	\overline{SS}^{\uparrow} to SDO output high-impedance	10	—	50	ns	
SP78* TscR	TscR	SCK output rise time (Master mode)		10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP79*	TscF	SCK output fall time (Master mode)		10	25	ns	
SP80*	TscH2doV,	SDO data output valid after SCK			50	ns	$3.0V \leq V\text{DD} \leq 5.5V$
TscL2DoV		edge	_	_	145	ns	$1.8V \leq V\text{DD} \leq 5.5V$
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy		—	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{\text{SS}}\downarrow$ edge	_	—	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	—	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

*

FIGURE 30-15: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1508/9 ONLY

FIGURE 30-16: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1508/9 ONLY

PIC16(L)F1508/9

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

l l	MILLIMETERS						
Dimension Lim	its	MIN	NOM	MAX			
Number of Pins	Ν	20					
Pitch	е	1.27 BSC					
Overall Height	А	-	-	2.65			
Molded Package Thickness	A2	2.05	I	-			
Standoff §	A1	0.10	-	0.30			
Overall Width	E	10.30 BSC					
Molded Package Width	E1	7.50 BSC					
Overall Length	D	12.80 BSC					
Chamfer (Optional)	h	0.25	I	0.75			
Foot Length	L	0.40	-	1.27			
Footprint	L1	1.40 REF					
Lead Angle	Θ	0°	I	-			
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.20	-	0.33			
Lead Width	b	0.31	-	0.51			
Mold Draft Angle Top	α	5°	-	15°			
Mold Draft Angle Bottom	β	5°	-	15°			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820