

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1509t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-9:**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Bank 1	0									_		
50Ch to 51Fh	_	Unimplemen	nimplemented — —									
Bank 1	1											
58Ch to 59Fh	_	Unimplemen	Inimplemented —									
Bank 1	2											
60Ch to 610h	_	Unimplemen	ted							_	_	
611h	PWM1DCL	PWM1D	CL<7:6>	—	—	_	—	—	_	00	00	
612h	PWM1DCH				PWM1	DCH<7:0>				xxxx xxxx	uuuu uuuu	
613h	PWM1CON0	PWM1EN	PWM10E	PWM10UT	PWM1POL	_	_	—		0000	0000	
614h	PWM2DCL	PWM2D	CL<7:6>	—	—	_	_	—		00	00	
615h	PWM2DCH				PWM2	DCH<7:0>				xxxx xxxx	uuuu uuuu	
616h	PWM2CON0	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	—	—	—	—	0000	0000	
617h	PWM3DCL	PWM3D	CL<7:6>	—	—	—	—	—	—	00	00	
618h	PWM3DCH				PWM3	DCH<7:0>				xxxx xxxx	uuuu uuuu	
619h	PWM3CON0	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	—	—	—	—	0000	0000	
61Ah	PWM4DCL	PWM4D	CL<7:6>	—	—	_	_	—		00	00	
61Bh	PWM4DCH				PWM4	DCH<7:0>				xxxx xxxx	uuuu uuuu	
61Ch	PWM4CON0	PWM4EN	PWM40E	PWM4OUT	PWM4POL	—	—	—	—	0000	0000	
61Dh to 61Fh	_	Unimplemen	ted							_	—	
Bank 1	3											
68Ch to 690h	_	Unimplemen	ted							_	_	
691h	CWG1DBR	—	—			CWG1	DBR<5:0>			00 0000	00 0000	
692h	CWG1DBF	—	—			CWG1	IDBF<5:0>			xx xxxx	xx xxxx	
693h	CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	—	—	G1CS0	0000 00	0000 00	
694h	CWG1CON1	G1ASD	LB<1:0>	G1ASD	LA<1:0>	_		G1IS<2:0>		0000 -000	0000 -000	
695h	CWG1CON2	G1ASE	G1ARSEN	_	—	G1ASDSC2	G1ASDSC1	G1ASDSFLT	G1ASDSCLC2	00 0000	00 0000	
696h to 69Fh	_	Unimplemen	nimplemented									

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	ank 31										
F8Ch — FE3h	_	Unimplemen	Unimplemented								-
FE4h	STATUS_ SHAD	_		_	_	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	:uuu
FE5h	WREG_ SHAD	Working Reg	ister Shadow							XXXX XXX	uuuu uuuu
FE6h	BSR_ SHAD	_	-	— — Bank Select Register Shadow						x xxxx	:u uuuu
FE7h	PCLATH_ SHAD	_	Program Co	unter Latch H	ligh Register	Shadow				-xxx xxx	uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data	Memory Add	ress 0 Low F	Pointer Shado	W				XXXX XXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data	Memory Add	ress 0 High I	Pointer Shade	w				XXXX XXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data	Memory Add	ress 1 Low F	Pointer Shado	W				XXXX XXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data	Indirect Data Memory Address 1 High Pointer Shadow							uuuu uuuu	
FECh		Unimplemented —								_	
FEDh	STKPTR	-	—	—	Current Star	ck Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Top-of-Stack Low byte xxxx xxxx uuuu uuu								uuuu uuuu
FEFh	TOSH	—	Top-of-Stack	High byte						-xxx xxxx	-uuu uuuu

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

6.12 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, \overline{PD} is set on \overline{POR}
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u muumuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 muumuu	uu uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu uuuu
Brown-out Reset	0000h	1 luuu	00 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu uuuu
RESET Instruction Executed	0000h	u uuuu	uu u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and the Global Interrupt Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	—	CLC4IE	CLC3IE	CLC2IE	CLC1IE	
bit 7 b								
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
u = Bit is uncl	hanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7-4	Unimplemen	ted: Read as '	כי					
bit 3	CLC4IE: Con	ifigurable Logic	Block 4 Inter	rrupt Enable bit				
	1 = Enables	the CLC 4 inter	rupt					
	0 = Disables	the CLC 4 inte	rrupt					
bit 2	CLC3IE: Con	figurable Logic	Block 3 Inte	rrupt Enable bit				
	1 = Enables	the CLC 3 inter	rupt					
L:1		the CLC 3 Inte	rrupt Dis els 2 lintes	www.mt Enchla hit				
DIT		Ingurable Logic		rrupt Enable bit				
	\perp = Enables 0 = Disables	the CLC 2 Inter	rupt					
bit 0	CI C1IF: Con	figurable Logic	Block 1 Inte	rrupt Enable bit				
1 = Fnables the CI C 1 interrupt								
	0 = Disables the CLC 1 interrupt							
			must bo					
NOLE. DI		I CON TEGISLEI	must be					

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

set to enable any peripheral interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF	<3:0>		_	SCS<1:0>		59
PCON	STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR	68
STATUS	—	—	—	TO	PD	Z	DC	С	19
WDTCON	—	_		WDTPS<4:0> SWDT					88

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	—	FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	—	4.1
CONFIGT	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>		41

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

11.0 I/O PORTS

Each port has three standard registers for its operation. These registers are:

- TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

Some ports may have one or more of the following additional registers. These registers are:

- ANSELx (analog select)
- WPUx (weak pull-up)

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

TABLE 11-1: PORT AVAILABILITY PER DEVICE

Device	PORTA	PORTB	PORTC
PIC16(L)F1508/9	٠	٠	٠
PIC16(L)F1508/9	٠	•	•

The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1: GENERIC I/O PORT OPERATION

11.7 PORTC Registers

11.7.1 DATA REGISTER

PORTC is a 8-bit wide, bidirectional port. The corresponding data direction register is TRISC (Register 11-13). Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., disable the output driver). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTC register (Register 11-12) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATC).

11.7.2 DIRECTION CONTROL

The TRISC register (Register 11-13) controls the PORTC pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISC register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.7.3 ANALOG CONTROL

The ANSELC register (Register 11-15) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELC bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELC bits has no effect on digital output functions. A pin with TRIS clear and ANSELC set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELC bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

11.7.4 PORTC FUNCTIONS AND OUTPUT PRIORITIES

Each PORTC pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-8.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the output priority list. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the output priority list.

Pin Name	Function Priority ⁽¹⁾
RC0	CLC2 RC0
RC1	NCO1 ⁽²⁾ PWM4 RC1
RC2	RC2
RC3	PWM2 RC3
RC4	CWG1B CLC4 C2OUT RC4
RC5	CWG1A CLC1 ⁽³⁾ PWM1 RC5
RC6	NCO1 ⁽³⁾ RC6
RC7	SDO RC7

TABLE 11-8: PORTC OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

2: Default pin (see APFCON register).

3: Alternate pin (see APFCON register).

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

Note 1:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

2: The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

FIGURE 15-3: 10-BIT ADC CONVERSION RESULT FORMAT

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	
CxINTP	CXINTP CXINTN CXPCH<1:0>					CxNCH<2:0>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BC	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	CxINTP: Con	nparator Interru	pt on Positive	Going Edge E	Enable bits			
	1 = The CxIF	interrupt flag	will be set upo	n a positive go	oing edge of the	CxOUT bit		
	0 = No interr	upt flag will be	set on a positi	ve going edge	of the CxOUT	bit		
bit 6	CxINTN: Con	nparator Interru	pt on Negative	e Going Edge	Enable bits			
	1 = The CxIF	interrupt flag v upt flag will be	will be set upo	n a negative g	oing edge of the	e CxOUT bit		
bit 5-4		· Comparator I	Set Un a negal Positivo Input (Channel Selec	t bite	Dit		
bit 3-4	11 = C x V/P c	onnects to Vss						
	10 = CxVP c	onnects to FVF	R Voltage Refe	rence				
	01 = CxVP c	onnects to DAC	C Voltage Refe	erence				
	00 = CxVP co	onnects to CxII	N+ pin					
bit 3	Unimplemen	ted: Read as '	0'					
bit 2-0	CxNCH<2:0>	: Comparator I	Negative Input	Channel Sele	ect bits			
	111 = Reser	ved						
	110 = Reser	ved						
	100 = CxVN	connects to F\	R Voltage refe	erence				
	011 = CxVN	connects to Ca	kIN3- pin					
010 = CxVN connects to CxIN2- pin								
	001 = CXVN	connects to C	(IN1- pin (IN0- pin					
			nino- pin					

REGISTER 17-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 17-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
	—	—	—	—	—	MC2OUT	MC10UT
bit 7		•		•			bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-2 Unimplemented: Read as '0'
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

18.2 Register Definitions: Option Register

REGISTER 18-1: OPTION_REG: OPTION REGISTER

R/W-1/1	R/W-1/1	R/W-	-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUEN	INTEDG	TMR	CS	TMR0SE	PSA		PS<2:0>	
bit 7								bit 0
Legend:								
R = Readable I	bit	W = W	ritable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit	is unkr	nown	-n/n = Value a	at POR and BC	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bi	t is clea	ared				
bit 7	WPUEN: We	ak Pull-U	Jp Enal	ble bit				
	1 = All weak	pull-ups :	are dis	abled (except	MCLR, if it is e	enabled)		
	0 = Weak pu	II-ups are	enable	ed by individu	al WPUx latch	values		
bit 6	INTEDG: Inte	errupt Ed	ge Sel	ect bit				
	1 = Interrupt 0 = Interrupt	on falling	euge (of INT pin				
bit 5		mer0 Clo	ck Sou	irce Select hit				
bit o	1 = Transition	n on TOC	KI pin					
	0 = Internal i	nstructior	ı cycle	clock (Fosc/4	4)			
bit 4	TMR0SE: Tir	mer0 Sou	irce Ed	lge Select bit				
	1 = Incremer	nt on high	-to-low	rransition on	T0CKI pin			
	0 = Incremer	nt on low-	to-high	transition on	TOCKI pin			
bit 3	PSA: Presca	ller Assig	nment	Dit d to the Timer	0 modulo			
	0 = Prescale	r is not a r is assid	ned to	the Timer0 m	odule			
bit 2-0	PS<2:0>: Pr	escaler F	ate Se	elect bits				
	Bit	Value	Fimer0 I	Rate				
		000	1:2					
		001	1:4					
		010	1:8	-				
		100	1.10	2				
		101	1:64	4				
		110	1:12	28				
		111	1:28	56				

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON2		TRIGS	EL<3:0>		—	—	—		136
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		154		
TMR0	Holding Register for the 8-bit Timer0 Count								
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	109

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

FIGURE 22-12	SYNCHRONOUS RECEPTION	(MASTER MODE SREN)
FIGURE ZZ-IZ.	STNUTKUNUUS RECEPTIUN	(WASTER WODE, SREN)

RX/DT bit 0 bit 2 bit 3 bit 4 bit 5 bit 6 bit	7
TX/CK pin (SCKP = 0)	1
TX/CK pin (SCKP = 1) Write to bit SREN	
SREN bit	٦ '۵'
RCIF bit (Interrupt)	
Read RCREG Note: Timing diagram demonstrates Svnc Master mode with bit SREN = 1 and bit BRGH = 0.	ŕ

TABLE 22-8:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER
RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	235
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	_	TMR2IE	TMR1IE	76
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	_	TMR2IF	TMR1IF	79
RCREG			EUS	ART Receiv	ve Data Reg	gister			228*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	234
SPBRGL	BRG<7:0>								
SPBRGH	BRG<15:8>								
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	113
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	233

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous master reception.

* Page provides register information.

TABLE 29-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
	VIL	Input Low Voltage							
		I/O PORT:							
D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$		
D030A			—	_	0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$		
D031		with Schmitt Trigger buffer	—	—	0.2 VDD	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C levels	—	—	0.3 VDD	V			
		with SMbus levels	—	—	0.8	V	$2.7V \le V\text{DD} \le 5.5V$		
D032		MCLR, OSC1 (EXTRC mode)	—	—	0.2 VDD	V	(Note 1)		
D033		OSC1 (HS mode)	—		0.3 VDD	V			
	VIH	Input High Voltage							
		I/O PORT:			1				
D040		with TTL buffer	2.0	—	—	V	$4.5V \le VDD \le 5.5V$		
D040A			0.25 VDD + 0.8	_	_	V	$1.8V \le VDD \le 4.5V$		
D041		with Schmitt Trigger buffer	0.8 Vdd	_	_	V	$2.0V \leq V\text{DD} \leq 5.5V$		
		with I ² C levels	0.7 Vdd	_	_	V			
		with SMbus levels	2.1	—	—	V	$2.7V \leq V \text{DD} \leq 5.5V$		
D042		MCLR	0.8 Vdd	—	—	V			
D043A		OSC1 (HS mode)	0.7 Vdd	_	_	V			
D043B		OSC1 (EXTRC mode)	0.9 Vdd	_	_	V	VDD > 2.0V (Note 1)		
	lı∟	Input Leakage Current ⁽²⁾							
D060		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C		
			—	± 5	± 1000	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 125°C		
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C		
	IPUR	Weak Pull-up Current							
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS		
			25	140	300	μA	VDD = 5.0V, VPIN = VSS		
	Vol	Output Low Voltage							
D080		I/O Ports					IOL = 8 mA, VDD = 5V		
			—	—	0.6	V	IOL = 6 mA, VDD = 3.3 V		
	Mari	Outrast II'm Maltana					IOL = 1.8 mA, VDD = 1.8 V		
D000	VOH	Output High Voltage			1		$100 = 2.5 \pm 0.100 = 51($		
D090		I/O Ports	V - 0 7	_	_	V	IOH = 3.5 mA, VDD = 5 V IOH = 3 mA, VDD = 3.3 V		
			100 0.7			v	IOH = 1 mA, VDD = 1.8 V		
D101*	COSC2	Capacitive Loading Specificat	tions on Out	out Pins	1		·		
		OSC2 pin					In XT, HS, LP modes when		
			—	—	15	pF	external clock is used to drive OSC1		
D101A*	CIO	All I/O pins	—	_	50	pF			
*	Those n	aramators are characterized but	not tostod		•	•			

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

Note 1:If the ADC clock source is selected as FRC, a time of TCY is added before the ADC clock starts. This allows the SLEEP instruction to be executed.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

VIEW A-A

Microchip Technology Drawing C04-094C Sheet 1 of 2

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

l l	MILLIMETERS					
Dimension Lim	its	MIN	NOM	MAX		
Number of Pins	Ν		20			
Pitch	е		1.27 BSC			
Overall Height	А	-	-	2.65		
Molded Package Thickness	A2	2.05	-	-		
Standoff §	A1	0.10	-	0.30		
Overall Width	E		10.30 BSC			
Molded Package Width	E1	7.50 BSC				
Overall Length	D		12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.40 REF				
Lead Angle	Θ	0°	-	-		
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.20	-	0.33		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Terminals	N	20			
Pitch	е	0.50 BSC			
Overall Height	Α	0.45	0.50	0.55	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.127 REF			
Overall Width	E	4.00 BSC			
Exposed Pad Width	E2	2.60	2.70	2.80	
Overall Length	D	4.00 BSC			
Exposed Pad Length	D2	2.60	2.70	2.80	
Terminal Width	b	0.20	0.25	0.30	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2