# E·XFL



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 20MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                     |
| Number of I/O              | 17                                                                        |
| Program Memory Size        | 7KB (4K x 14)                                                             |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 256 x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                               |
| Data Converters            | A/D 12x10b; D/A 1x5b                                                      |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                        |
| Mounting Type              | Through Hole                                                              |
| Package / Case             | 20-DIP (0.300", 7.62mm)                                                   |
| Supplier Device Package    | 20-PDIP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1508-e-p |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE 1-2: PIC16(L)F1508/9 PINOUT DESCRIPTION

| Name                                                     | Function               | Input<br>Type      | Output<br>Type         | Description                                                                                              |  |  |
|----------------------------------------------------------|------------------------|--------------------|------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| RA0/AN0/C1IN+/DAC1OUT1/                                  | RA0                    | TTL                | CMOS                   | General purpose I/O.                                                                                     |  |  |
| ICSPDAT/ICDDAT                                           | AN0                    | AN                 | _                      | ADC Channel input.                                                                                       |  |  |
|                                                          | C1IN+                  | AN                 |                        | Comparator positive input.                                                                               |  |  |
|                                                          | DAC10UT1               |                    | AN                     | Digital-to-Analog Converter output.                                                                      |  |  |
|                                                          | ICSPDAT                | ST                 | CMOS                   | ICSP™ Data I/O.                                                                                          |  |  |
|                                                          | ICDDAT                 | ST                 | CMOS                   | In-Circuit Debug data.                                                                                   |  |  |
| RA1/AN1/CLC4IN1/VREF+/                                   | RA1                    | TTL                | CMOS                   | General purpose I/O.                                                                                     |  |  |
| C1IN0-/C2IN0-/ICSPCLK/                                   | AN1                    | AN                 | _                      | ADC Channel input.                                                                                       |  |  |
| ICDCLK                                                   | CLC4IN1                | ST                 | —                      | Configurable Logic Cell source input.                                                                    |  |  |
|                                                          | VREF+                  | AN                 |                        | ADC Positive Voltage Reference input.                                                                    |  |  |
|                                                          | C1IN0-                 | AN                 | —                      | Comparator negative input.                                                                               |  |  |
|                                                          | C2IN0-                 | AN                 | _                      | Comparator negative input.                                                                               |  |  |
|                                                          | ICSPCLK                | ST                 |                        | ICSP Programming Clock.                                                                                  |  |  |
|                                                          | ICDCLK                 | ST                 |                        | In-Circuit Debug Clock.                                                                                  |  |  |
| RA2/AN2/C1OUT/DAC1OUT2/                                  | RA2                    | ST                 | CMOS                   | General purpose I/O.                                                                                     |  |  |
| TOCKI/INT/PWM3/CLC1/                                     | AN2                    | AN                 | _                      | ADC Channel input.                                                                                       |  |  |
| CWG1FLI                                                  | C1OUT                  | _                  | CMOS                   | Comparator output.                                                                                       |  |  |
|                                                          | DAC10UT2               | _                  | AN                     | Digital-to-Analog Converter output.                                                                      |  |  |
|                                                          | T0CKI                  | ST                 | _                      | Timer0 clock input.                                                                                      |  |  |
|                                                          | INT                    | ST                 |                        | External interrupt.                                                                                      |  |  |
|                                                          | PWM3                   | _                  | CMOS                   | PWM output.                                                                                              |  |  |
|                                                          | CLC1                   | _                  | CMOS                   | Configurable Logic Cell source output.                                                                   |  |  |
|                                                          | CWG1FLT                | ST                 |                        | Complementary Waveform Generator Fault input.                                                            |  |  |
| RA3/CLC1IN0/VPP/T1G <sup>(1)</sup> /SS <sup>(1)</sup> /  | RA3                    | TTL                |                        | General purpose input with IOC and WPU.                                                                  |  |  |
| MCLR                                                     | CLC1IN0                | ST                 |                        | Configurable Logic Cell source input.                                                                    |  |  |
|                                                          | VPP                    | ΗV                 |                        | Programming voltage.                                                                                     |  |  |
|                                                          | T1G                    | ST                 |                        | Timer1 Gate input.                                                                                       |  |  |
|                                                          | SS                     | ST                 |                        | Slave Select input.                                                                                      |  |  |
|                                                          | MCLR                   | ST                 | —                      | Master Clear with internal pull-up.                                                                      |  |  |
| RA4/AN3/SOSCO/                                           | RA4                    | TTL                | CMOS                   | General purpose I/O.                                                                                     |  |  |
| CLKOUT/T1G                                               | AN3                    | AN                 |                        | ADC Channel input.                                                                                       |  |  |
|                                                          | SOSCO                  | XTAL               | XTAL                   | Secondary Oscillator Connection.                                                                         |  |  |
|                                                          | CLKOUT                 | _                  | CMOS                   | Fosc/4 output.                                                                                           |  |  |
|                                                          | T1G                    | ST                 | _                      | Timer1 Gate input.                                                                                       |  |  |
| RA5/CLKIN/T1CKI/NCO1CLK/                                 | RA5                    | TTL                | CMOS                   | General purpose I/O.                                                                                     |  |  |
| SOSCI                                                    | CLKIN                  | CMOS               | —                      | External clock input (EC mode).                                                                          |  |  |
|                                                          | T1CKI                  | ST                 | —                      | Timer1 clock input.                                                                                      |  |  |
|                                                          | NCO1CLK                | ST                 | —                      | Numerically Controlled Oscillator Clock source input.                                                    |  |  |
|                                                          | SOSCI                  | XTAL               | XTAL                   | Secondary Oscillator Connection.                                                                         |  |  |
| Legend: AN = Analog input or c<br>TTL = TTL compatible i | output CMOS<br>nput ST | = CMOS<br>= Schmit | compatil<br>tt Trigger | ble input or output OD = Open-Drain<br>input with CMOS levels $I^2C$ = Schmitt Trigger input with $I^2C$ |  |  |

HV = High Voltage XTAL = Crystal

= Schmitt Trigger input with levels

**Note 1:** Alternate pin function selected with the APFCON (Register 11-1) register.

#### CDE CIAL FUNC

| TABLE              | : 3-9: 5 |            |          | N REGIS    | 1ER 301  |          |            |            |          |                      |                                 |
|--------------------|----------|------------|----------|------------|----------|----------|------------|------------|----------|----------------------|---------------------------------|
| Address            | Name     | Bit 7      | Bit 6    | Bit 5      | Bit 4    | Bit 3    | Bit 2      | Bit 1      | Bit 0    | Value on<br>POR, BOR | Value on all<br>other<br>Resets |
| Banks              | 14-29    |            | •        | •          |          | •        |            |            |          |                      | <u>.</u>                        |
| x0Ch/<br>x8Ch      | _        | Unimplemen | ited     |            |          |          |            |            |          | _                    | -                               |
| x1Fh/<br>x9Fh      |          |            |          |            |          |          |            |            |          |                      |                                 |
| Bank 3             | 30       |            |          |            |          |          |            |            |          |                      |                                 |
| F0Ch<br>to<br>F0Eh | _        | Unimplemen | ited     |            |          |          |            |            |          | _                    | -                               |
| F0Fh               | CLCDATA  | _          | _        | _          | _        | MLC4OUT  | MLC3OUT    | MLC2OUT    | MLC1OUT  | 0000                 | 0000                            |
| F10h               | CLC1CON  | LC1EN      | LC10E    | LC10UT     | LC1INTP  | LC1INTN  |            | LC1MODE<2  | :0>      | 0000 0000            | 0000 0000                       |
| F11h               | CLC1POL  | LC1POL     | _        | _          | _        | LC1G4POL | LC1G3POL   | LC1G2POL   | LC1G1POL | 0 xxxx               | 0 uuuu                          |
| F12h               | CLC1SEL0 | _          | L        | _C1D2S<2:0 | >        | _        |            | LC1D1S<2:0 | )>       | -xxx -xxx            | -uuu -uuu                       |
| F13h               | CLC1SEL1 | _          | L        | _C1D4S<2:0 | >        | _        |            | LC1D3S<2:0 | )>       | -xxx -xxx            | -uuu -uuu                       |
| F14h               | CLC1GLS0 | LC1G1D4T   | LC1G1D4N | LC1G1D3T   | LC1G1D3N | LC1G1D2T | LC1G1D2N   | LC1G1D1T   | LC1G1D1N | xxxx xxxx            | uuuu uuuu                       |
| F15h               | CLC1GLS1 | LC1G2D4T   | LC1G2D4N | LC1G2D3T   | LC1G2D3N | LC1G2D2T | LC1G2D2N   | LC1G2D1T   | LC1G2D1N | xxxx xxxx            | uuuu uuuu                       |
| F16h               | CLC1GLS2 | LC1G3D4T   | LC1G3D4N | LC1G3D3T   | LC1G3D3N | LC1G3D2T | LC1G3D2N   | LC1G3D1T   | LC1G3D1N | xxxx xxxx            | uuuu uuuu                       |
| F17h               | CLC1GLS3 | LC1G4D4T   | LC1G4D4N | LC1G4D3T   | LC1G4D3N | LC1G4D2T | LC1G4D2N   | LC1G4D1T   | LC1G4D1N | xxxx xxxx            | uuuu uuuu                       |
| F18h               | CLC2CON  | LC2EN      | LC2OE    | LC2OUT     | LC2INTP  | LC2INTN  |            | LC2MODE<2  | :0>      | 0000 0000            | 0000 0000                       |
| F19h               | CLC2POL  | LC2POL     | —        | —          | —        | LC2G4POL | LC2G3POL   | LC2G2POL   | LC2G1POL | 0 xxxx               | 0 uuuu                          |
| F1Ah               | CLC2SEL0 | —          | L        | _C2D2S<2:0 | >        | —        |            | LC2D1S<2:0 | )>       | -xxx -xxx            | -uuu -uuu                       |
| F1Bh               | CLC2SEL1 | —          | L        | _C2D4S<2:0 | >        | —        |            | LC2D3S<2:0 | )>       | -xxx -xxx            | -uuu -uuu                       |
| F1Ch               | CLC2GLS0 | LC2G1D4T   | LC2G1D4N | LC2G1D3T   | LC2G1D3N | LC2G1D2T | LC2G1D2N   | LC2G1D1T   | LC2G1D1N | xxxx xxxx            | uuuu uuuu                       |
| F1Dh               | CLC2GLS1 | LC2G2D4T   | LC2G2D4N | LC2G2D3T   | LC2G2D3N | LC2G2D2T | LC2G2D2N   | LC2G2D1T   | LC2G2D1N | xxxx xxxx            | uuuu uuuu                       |
| F1Eh               | CLC2GLS2 | LC2G3D4T   | LC2G3D4N | LC2G3D3T   | LC2G3D3N | LC2G3D2T | LC2G3D2N   | LC2G3D1T   | LC2G3D1N | XXXX XXXX            | uuuu uuuu                       |
| F1Fh               | CLC2GLS3 | LC2G4D4T   | LC2G4D4N | LC2G4D3T   | LC2G4D3N | LC2G4D2T | LC2G4D2N   | LC2G4D1T   | LC2G4D1N | XXXX XXXX            | uuuu uuuu                       |
| F20h               | CLC3CON  | LC3EN      | LC3OE    | LC3OUT     | LC3INTP  | LC3INTN  |            | LC3MODE<2  | :0>      | 0000 0000            | 0000 0000                       |
| F21h               | CLC3POL  | LC3POL     | -        | —          | —        | LC3G4POL | LC3G3POL   | LC3G2POL   | LC3G1POL | 0 xxxx               | 0 uuuu                          |
| F22h               | CLC3SEL0 | —          | L        | _C3D2S<2:0 | >        | —        |            | LC3D1S<2:0 | )>       | -xxx -xxx            | -uuu -uuu                       |
| F23h               | CLC3SEL1 | —          | L        | _C3D4S<2:0 | >        | —        |            | LC3D3S<2:0 | )>       | -xxx -xxx            | -uuu -uuu                       |
| F24h               | CLC3GLS0 | LC3G1D4T   | LC3G1D4N | LC3G1D3T   | LC3G1D3N | LC3G1D2T | LC3G1D2N   | LC3G1D1T   | LC3G1D1N | XXXX XXXX            | uuuu uuuu                       |
| F25h               | CLC3GLS1 | LC3G2D4T   | LC3G2D4N | LC3G2D3T   | LC3G2D3N | LC3G2D2T | LC3G2D2N   | LC3G2D1T   | LC3G2D1N | XXXX XXXX            | uuuu uuuu                       |
| F26h               | CLC3GLS2 | LC3G3D4T   | LC3G3D4N | LC3G3D3T   | LC3G3D3N | LC3G3D2T | LC3G3D2N   | LC3G3D1T   | LC3G3D1N | XXXX XXXX            | uuuu uuuu                       |
| F27h               | CLC3GLS3 | LC3G4D4T   | LC3G4D4N | LC3G4D3T   | LC3G4D3N | LC3G4D2T | LC3G4D2N   | LC3G4D1T   | LC3G4D1N | XXXX XXXX            | uuuu uuuu                       |
| F28h               | CLC4CON  | LC4EN      | LC40E    | LC40UT     | LC4INTP  | LC4INTN  |            | LC4MODE<2  | :0>      | 0000 0000            | 0000 0000                       |
| F29h               | CLC4POL  | LC4POL     | -        | —          | —        | LC4G4POL | LC4G3POL   | LC4G2POL   | LC4G1POL | 0 xxxx               | 0 uuuu                          |
| F2Ah               | CLC4SEL0 | _          | L        | _C4D2S<2:0 | >        | _        |            | LC4D1S<2:0 | )>       | -xxx -xxx            | -uuu -uuu                       |
| F2Bh               | CLC4SEL1 | —          |          | _C4D4S<2:0 |          | —        |            | LC4D3S<2:0 | )>       | -xxx -xxx            | -uuu -uuu                       |
| F2Ch               | CLC4GLS0 | LC4G1D4T   | LC4G1D4N | LC4G1D3T   | LC4G1D3N | LC4G1D2T | LC4G1D2N   | LC4G1D1T   | LC4G1D1N | XXXX XXXX            | uuuu uuuu                       |
| F2Dh               | CLC4GLS1 | LC4G2D4T   | LC4G2D4N | LC4G2D3T   | LC4G2D3N | LC4G2D2T | LC4G2D2N   | LC4G2D1T   | LC4G2D1N | XXXX XXXX            | uuuu uuuu                       |
| F2Eh               | CLC4GLS2 | LC4G3D4T   | LC4G3D4N | LC4G3D3T   | LC4G3D3N | LC4G3D2T | LC4G3D2N   | LC4G3D11   | LC4G3D1N | XXXX XXXX            | uuuu uuuu                       |
| F2Fh               | CLC4GLS3 | LC4G4D4T   | LC4G4D4N | LC4G4D3T   | LC4G4D3N | LC4G4D2T | LC4G4D2N   | LC4G4D1T   | LC4G4D1N | XXXX XXXX            | uuuu uuuu                       |
| F20h               | CLC3CON  | LC3EN      | LC30E    | LC3OUT     | LC3INTP  | LC3INTN  | 1.00000000 | LC3MODE<2  | :U>      | 0000 0000            | 0000 0000                       |
| F21h               | CLC3POL  | LC3POL     | —        | -          | -        | LC3G4POL | LC3G3POL   | LC3G2POL   | LC3G1POL | U xxxx               | 0 uuuu                          |
| F2Fh               | CLC4GLS3 | LC4G4D4T   | LC4G4D4N | LC4G4D3T   | LC4G4D3N | LC4G4D2T | LC4G4D2N   | LC4G4D1T   | LC4G4D1N | XXXX XXXX            | uuuu uuuu                       |
| F30h<br>to<br>F6Fh | -        | Unimplemen | ited     |            |          |          |            |            |          | -                    | -                               |

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

#### 5.0 OSCILLATOR MODULE (WITH FAIL-SAFE CLOCK MONITOR)

#### 5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from external oscillators, quartz crystal resonators, ceramic resonators and Resistor-Capacitor (RC) circuits. In addition, the system clock source can be supplied from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Two-Speed Start-up mode, which minimizes latency between external oscillator start-up and code execution.
- Fail-Safe Clock Monitor (FSCM) designed to detect a failure of the external clock source (LP, XT, HS, ECH, ECM, ECL or EXTRC modes) and switch automatically to the internal oscillator.
- Oscillator Start-up Timer (OST) ensures stability
   of crystal oscillator sources
- Fast start-up oscillator allows internal circuits to power-up and stabilize before switching to the 16 MHz HFINTOSC

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 20 MHz)
- 4. LP 32 kHz Low-Power Crystal mode.
- 5. XT Medium Gain Crystal or Ceramic Resonator Oscillator mode (up to 4 MHz)
- 6. HS High Gain Crystal or Ceramic Resonator mode (4 MHz to 20 MHz)
- 7. EXTRC External Resistor-Capacitor
- 8. INTOSC Internal oscillator (31 kHz to 16 MHz)

Clock Source modes are selected by the FOSC<2:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source. The LP, XT, and HS clock modes require an external crystal or resonator to be connected to the device. Each mode is optimized for a different frequency range. The EXTRC clock mode requires an external resistor and capacitor to set the oscillator frequency.

The INTOSC internal oscillator block produces a low and high-frequency clock source, designated LFINTOSC and HFINTOSC. (See Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these two clock sources.

### 7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.





| R/W-0/U         | R/W-0/0                       | R/W-0/0                           | R/W-0/0                        | R/W-0/0          | U-0            | R/W-0/0  | R/W-0/0     |
|-----------------|-------------------------------|-----------------------------------|--------------------------------|------------------|----------------|----------|-------------|
| TMR1GIE         | ADIE                          | RCIE                              | TXIE                           | SSP1IE           | _              | TMR2IE   | TMR1IE      |
| bit 7           |                               |                                   |                                |                  |                |          | bit 0       |
|                 |                               |                                   |                                |                  |                |          |             |
| Legena:         | hit                           | M = M/ritabla                     | hit                            | II – Unimplon    | nantad hit raa | d aa 'O' |             |
|                 | DIL                           |                                   |                                |                  | t DOD and DC   |          | thar Deceta |
| u = Dit is unch | angeu                         | x = Dit is ullki                  |                                |                  | IL FOR and BC  |          | iner Resels |
| I = BILIS SEL   |                               | 0 = Bit is cle                    | ared                           |                  |                |          |             |
| bit 7           | TMR1GIE: Ti                   | mer1 Gate Inte                    | errupt Enable I                | oit              |                |          |             |
|                 | 1 = Enables t                 | he Timer1 gate                    | e acquisition ir               | nterrupt         |                |          |             |
|                 | 0 = Disables                  | the Timer1 gat                    | e acquisition i                | nterrupt         |                |          |             |
| bit 6           | ADIE: Analog                  | g-to-Digital Con                  | verter (ADC)                   | Interrupt Enable | e bit          |          |             |
|                 | 1 = Enables t                 | he ADC interru                    | ıpt                            |                  |                |          |             |
|                 | 0 = Disables                  | the ADC interro                   | upt                            |                  |                |          |             |
| bit 5           | RCIE: USAR                    | T Receive Inter                   | rrupt Enable b                 | it               |                |          |             |
|                 | 1 = Enables t<br>0 = Disables | the USART rec                     | eive interrupt                 |                  |                |          |             |
| hit 4           |                               | Transmit Inte                     | rrunt Enable h                 | it               |                |          |             |
| bit i           | 1 = Enables t                 | he USART tra                      | nsmit interrupt                |                  |                |          |             |
|                 | 0 = Disables                  | the USART tra                     | nsmit interrup                 | t                |                |          |             |
| bit 3           | SSP1IE: Syn                   | chronous Seria                    | al Port (MSSP                  | ) Interrupt Enat | ole bit        |          |             |
|                 | 1 = Enables t                 | he MSSP inter                     | rupt                           |                  |                |          |             |
|                 | 0 = Disables                  | the MSSP inte                     | rrupt                          |                  |                |          |             |
| bit 2           | Unimplemen                    | ted: Read as '                    | 0'                             |                  |                |          |             |
| bit 1           | TMR2IE: TM                    | R2 to PR2 Mat                     | ch Interrupt Ei                | nable bit        |                |          |             |
|                 | 1 = Enables t<br>0 = Disables | he Timer2 to P<br>the Timer2 to F | R2 match inte<br>R2 match inte | errupt<br>errupt |                |          |             |
| bit 0           | TMR1IE: Tim                   | er1 Overflow Ir                   | nterrupt Enabl                 | e bit            |                |          |             |
|                 | 1 = Enables t                 | he Timer1 ove                     | rflow interrupt                |                  |                |          |             |
|                 | 0 = Disables                  | the Timer1 ove                    | rflow interrunt                | •                |                |          |             |

#### REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

#### 21.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

#### 21.1 MSSP Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I<sup>2</sup>C<sup>™</sup>)

The SPI interface supports the following modes and features:

- Master mode
- Slave mode
- · Clock Parity
- Slave Select Synchronization (Slave mode only)
- Daisy-chain connection of slave devices

Figure 21-1 is a block diagram of the SPI interface module.



#### FIGURE 21-1: MSSP BLOCK DIAGRAM (SPI MODE)

#### 21.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCKx line. The master determines when the slave (Processor 2, Figure 21-5) is to broadcast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPxBUF register is written to. If the SPI is only going to receive, the SDOx output could be disabled (programmed as an input). The SSPxSR register will continue to shift in the signal present on the SDIx pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPxBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPxCON1 register and the CKE bit of the SSPxSTAT register. This then, would give waveforms for SPI communication as shown in Figure 21-6, Figure 21-8, Figure 21-9 and Figure 21-10, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 \* Tcy)
- Fosc/64 (or 16 \* Tcy)
- Timer2 output/2
- Fosc/(4 \* (SSPxADD + 1))

Figure 21-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDOx data is valid before there is a clock edge on SCKx. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPxBUF is loaded with the received data is shown.



FIGURE 21-6: SPI MODE WAVEFORM (MASTER MODE)

#### 21.4.9 ACKNOWLEDGE SEQUENCE

The ninth SCLx pulse for any transferred byte in  $I^2C$  is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDAx line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDAx line low indicated to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an  $\overline{ACK}$  is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an  $\overline{ACK}$  will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCLx on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

#### 21.5 I<sup>2</sup>C Slave Mode Operation

The MSSP Slave mode operates in one of four modes selected in the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

#### 21.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 21-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 21-5) affects the address matching process. See **Section21.5.9** "**SSPx Mask Register**" for more information.

#### 21.5.1.1 I<sup>2</sup>C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

#### 21.5.1.2 I<sup>2</sup>C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSbs of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCLx is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCLx is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

#### 21.5.2 SLAVE RECEPTION

When the  $R/\overline{W}$  bit of a matching received address byte is clear, the  $R/\overline{W}$  bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 21-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCLx will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section21.2.3 "SPI Master Mode"** for more detail.

21.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an  $I^2C$  slave in 7-bit Addressing mode. Figure 21-14 and Figure 21-15 are used as visual references for this description.

#### 21.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 21-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the  $\overline{ACK}$  value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: SSPxBUF cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit, releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCLx pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

**Note:** Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

| R/W-0/0          | R/W-0/0                                                                                                   | R/W-0/0                                                                                        | R/W-0/0                       | R/W-0/0        |       | R-0/0          | R-0/0             | R-0/0        |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------|----------------|-------|----------------|-------------------|--------------|--|--|--|
| SPEN             | RX9                                                                                                       | SREN                                                                                           | CREN                          | ADDEN          |       | FERR           | OERR              | RX9D         |  |  |  |
| bit 7            |                                                                                                           |                                                                                                |                               |                |       |                |                   | bit C        |  |  |  |
|                  |                                                                                                           |                                                                                                |                               |                |       |                |                   |              |  |  |  |
| Legend:          |                                                                                                           |                                                                                                |                               |                |       |                |                   |              |  |  |  |
| R = Readable     | e bit                                                                                                     | W = Writable                                                                                   | bit                           | U = Unimple    | eme   | ented bit, rea | d as '0'          |              |  |  |  |
| u = Bit is unc   | hanged                                                                                                    | x = Bit is unk                                                                                 | nown                          | -n/n = Value   | e at  | POR and BC     | OR/Value at all o | other Resets |  |  |  |
| '1' = Bit is set | t                                                                                                         | '0' = Bit is cle                                                                               | ared                          |                |       |                |                   |              |  |  |  |
|                  |                                                                                                           |                                                                                                |                               |                |       |                |                   |              |  |  |  |
| bit 7            | SPEN: Seria                                                                                               | I Port Enable b                                                                                | it                            |                |       |                |                   |              |  |  |  |
|                  | 1 = Serial po<br>0 = Serial po                                                                            | ort enabled (con<br>ort disabled (he                                                           | nfigures RX/D<br>ld in Reset) | T and TX/CK    | pins  | s as serial po | ort pins)         |              |  |  |  |
| bit 6            | <b>RX9:</b> 9-bit Re                                                                                      | eceive Enable I                                                                                | oit                           |                |       |                |                   |              |  |  |  |
|                  | 1 = Selects<br>0 = Selects                                                                                | 9-bit reception<br>8-bit reception                                                             |                               |                |       |                |                   |              |  |  |  |
| bit 5            | SREN: Singl                                                                                               | e Receive Enal                                                                                 | ole bit                       |                |       |                |                   |              |  |  |  |
|                  | <u>Asynchronou</u>                                                                                        | <u>is mode</u> :                                                                               |                               |                |       |                |                   |              |  |  |  |
|                  | Don't care                                                                                                |                                                                                                |                               |                |       |                |                   |              |  |  |  |
|                  | Synchronous                                                                                               | <u>s mode – Maste</u>                                                                          | <u>er</u> :                   |                |       |                |                   |              |  |  |  |
|                  | $\perp$ = Enables<br>0 = Disables                                                                         | single receive                                                                                 |                               |                |       |                |                   |              |  |  |  |
|                  | This bit is cle                                                                                           | ared after rece                                                                                | ption is compl                | ete.           |       |                |                   |              |  |  |  |
|                  | Synchronous                                                                                               | s mode – Slave                                                                                 |                               |                |       |                |                   |              |  |  |  |
|                  | Don't care                                                                                                |                                                                                                |                               |                |       |                |                   |              |  |  |  |
| bit 4            | CREN: Conti                                                                                               | inuous Receive                                                                                 | Enable bit                    |                |       |                |                   |              |  |  |  |
|                  | Asynchronou                                                                                               | <u>is mode</u> :                                                                               |                               |                |       |                |                   |              |  |  |  |
|                  | 1 = Enables<br>0 = Disables                                                                               | 1 = Enables receiver                                                                           |                               |                |       |                |                   |              |  |  |  |
|                  | Synchronous mode:                                                                                         |                                                                                                |                               |                |       |                |                   |              |  |  |  |
|                  | <ul> <li>1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)</li> </ul> |                                                                                                |                               |                |       |                |                   |              |  |  |  |
|                  | 0 = Disables                                                                                              | s continuous re                                                                                | ceive                         |                |       | · ·            |                   |              |  |  |  |
| bit 3            | ADDEN: Add                                                                                                | dress Detect Er                                                                                | able bit                      |                |       |                |                   |              |  |  |  |
|                  | <u>Asynchronou</u>                                                                                        | Asynchronous mode 9-bit (RX9 = 1):                                                             |                               |                |       |                |                   |              |  |  |  |
|                  | 1 = Enables                                                                                               | 1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set |                               |                |       |                |                   |              |  |  |  |
|                  | 0 = Disables                                                                                              | s address delec                                                                                | 2X9 = 0) <sup>.</sup>         | are received   | and   | ninth dit car  | i be used as pa   | inty bit     |  |  |  |
|                  | Don't care                                                                                                |                                                                                                | <u>0.00_01</u> .              |                |       |                |                   |              |  |  |  |
| bit 2            | FERR: Fram                                                                                                | ing Error bit                                                                                  |                               |                |       |                |                   |              |  |  |  |
|                  | 1 = Framing                                                                                               | error (can be u                                                                                | pdated by rea                 | ading RCREG    | G reg | gister and red | ceive next valid  | byte)        |  |  |  |
|                  | 0 = No fram                                                                                               | ing error                                                                                      |                               | -              |       |                |                   |              |  |  |  |
| bit 1            | OERR: Over                                                                                                | run Error bit                                                                                  |                               |                |       |                |                   |              |  |  |  |
|                  | 1 = Overrun                                                                                               | error (can be c                                                                                | leared by clea                | aring bit CREI | N)    |                |                   |              |  |  |  |
| h:+ 0            |                                                                                                           | run error                                                                                      | Detr                          |                |       |                |                   |              |  |  |  |
| dit U            | RX9D: Ninth                                                                                               | bit of Received                                                                                | i Data                        | 6 and at 10    |       |                | C                 |              |  |  |  |
|                  | This can be a                                                                                             | address/data bi                                                                                | t or a parity bi              | t and must be  | e cal | culated by u   | ser firmware.     |              |  |  |  |

#### REGISTER 22-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER



#### 26.10 Operation During Sleep

The CWG module operates independently from the system clock and will continue to run during Sleep, provided that the clock and input sources selected remain active.

The HFINTOSC remains active during Sleep, provided that the CWG module is enabled, the input source is active, and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the CWG clock source, when the CWG is enabled and the input source is active, the CPU will go idle during Sleep, but the CWG will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

#### 26.11 Configuring the CWG

The following steps illustrate how to properly configure the CWG to ensure a synchronous start:

- 1. Ensure that the TRIS control bits corresponding to CWGxA and CWGxB are set so that both are configured as inputs.
- 2. Clear the GxEN bit, if not already cleared.
- 3. Set desired dead-band times with the CWGxDBR and CWGxDBF registers.
- 4. Setup the following controls in CWGxCON2 auto-shutdown register:
  - · Select desired shutdown source.
  - Select both output overrides to the desired levels (this is necessary even if not using auto-shutdown because start-up will be from a shutdown state).
  - Set the GxASE bit and clear the GxARSEN bit.
- 5. Select the desired input source using the CWGxCON1 register.
- 6. Configure the following controls in CWGxCON0 register:
  - · Select desired clock source.
  - Select the desired output polarities.
  - Set the output enables for the outputs to be used.
- 7. Set the GxEN bit.
- Clear TRIS control bits corresponding to CWGxA and CWGxB to be used to configure those pins as outputs.
- If auto-restart is to be used, set the GxARSEN bit and the GxASE bit will be cleared automatically. Otherwise, clear the GxASE bit to start the CWG.

#### 26.11.1 PIN OVERRIDE LEVELS

The levels driven to the output pins, while the shutdown input is true, are controlled by the GxASDLA and GxASDLB bits of the CWGxCON1 register (Register 26-3). GxASDLA controls the CWG1A override level and GxASDLB controls the CWG1B override level. The control bit logic level corresponds to the output logic drive level while in the shutdown state. The polarity control does not apply to the override level.

#### 26.11.2 AUTO-SHUTDOWN RESTART

After an auto-shutdown event has occurred, there are two ways to have resume operation:

- Software controlled
- Auto-restart

The restart method is selected with the GxARSEN bit of the CWGxCON2 register. Waveforms of software controlled and automatic restarts are shown in Figure 26-5 and Figure 26-6.

#### 26.11.2.1 Software Controlled Restart

When the GxARSEN bit of the CWGxCON2 register is cleared, the CWG must be restarted after an auto-shut-down event by software.

Clearing the shutdown state requires all selected shutdown inputs to be low, otherwise the GxASE bit will remain set. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation.

#### 26.11.2.2 Auto-Restart

When the GxARSEN bit of the CWGxCON2 register is set, the CWG will restart from the auto-shutdown state automatically.

The GxASE bit will clear automatically when all shutdown sources go low. The overrides will remain in effect until the first rising edge event after the GxASE bit is cleared. The CWG will then resume operation.

#### FIGURE 27-2: PICkit<sup>™</sup> PROGRAMMER STYLE CONNECTOR INTERFACE



For additional interface recommendations, refer to your specific device programmer manual prior to PCB design.

It is recommended that isolation devices be used to separate the programming pins from other circuitry. The type of isolation is highly dependent on the specific application and may include devices such as resistors, diodes, or even jumpers. See Figure 27-3 for more information.

#### FIGURE 27-3: TYPICAL CONNECTION FOR ICSP™ PROGRAMMING



| DECFSZ           | Decrement f, Skip if 0                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Syntax:          | [label] DECFSZ f,d                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Operands:        | $\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$                                                                                                                                                                                                                                                                          |  |  |  |  |
| Operation:       | (f) - 1 $\rightarrow$ (destination);<br>skip if result = 0                                                                                                                                                                                                                                                                           |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Description:     | The contents of register 'f' are decre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'.<br>If the result is '1', the next instruction is<br>executed. If the result is '0', then a<br>NOP is executed instead, making it a<br>2-cycle instruction. |  |  |  |  |

| GOTO             | Unconditional Branch                                                                                                                                                                    |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] GOTO k                                                                                                                                                                 |
| Operands:        | $0 \leq k \leq 2047$                                                                                                                                                                    |
| Operation:       | $k \rightarrow PC<10:0>$<br>PCLATH<6:3> $\rightarrow$ PC<14:11>                                                                                                                         |
| Status Affected: | None                                                                                                                                                                                    |
| Description:     | GOTO is an unconditional branch. The<br>11-bit immediate value is loaded into<br>PC bits <10:0>. The upper bits of PC<br>are loaded from PCLATH<4:3>. GOTO<br>is a 2-cycle instruction. |

| INCFSZ           | Increment f, Skip if 0                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [label] INCFSZ f,d                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Operation:       | (f) + 1 $\rightarrow$ (destination),<br>skip if result = 0                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Description:     | The contents of register 'f' are incre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'.<br>If the result is '1', the next instruction is<br>executed. If the result is '0', a NOP is<br>executed instead, making it a 2-cycle<br>instruction. |  |  |  |  |  |

| IORLW Inclusive OR literal with W |                                                                                                                    |  |  |  |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:                           | [ <i>label</i> ] IORLW k                                                                                           |  |  |  |  |  |
| Operands:                         | $0 \leq k \leq 255$                                                                                                |  |  |  |  |  |
| Operation:                        | (W) .OR. $k \rightarrow$ (W)                                                                                       |  |  |  |  |  |
| Status Affected:                  | Z                                                                                                                  |  |  |  |  |  |
| Description:                      | The contents of the W register are<br>OR'ed with the 8-bit literal 'k'. The<br>result is placed in the W register. |  |  |  |  |  |

| INCF             | Increment f                                                                                                                                                               |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [label] INCF f,d                                                                                                                                                          |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                         |  |  |  |  |  |
| Operation:       | (f) + 1 $\rightarrow$ (destination)                                                                                                                                       |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                                         |  |  |  |  |  |
| Description:     | The contents of register 'f' are incre-<br>mented. If 'd' is '0', the result is placed<br>in the W register. If 'd' is '1', the result<br>is placed back in register 'f'. |  |  |  |  |  |

| IORWF            | Inclusive OR W with f                                                                                                                                                      |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] IORWF f,d                                                                                                                                                 |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                                          |  |  |  |  |  |
| Operation:       | (W) .OR. (f) $\rightarrow$ (destination)                                                                                                                                   |  |  |  |  |  |
| Status Affected: | Ζ                                                                                                                                                                          |  |  |  |  |  |
| Description:     | Inclusive OR the W register with regis-<br>ter 'f'. If 'd' is '0', the result is placed in<br>the W register. If 'd' is '1', the result is<br>placed back in register 'f'. |  |  |  |  |  |

#### TABLE 29-4: I/O PORTS

| Standard Operating Conditions (unless otherwise stated) |         |                                      |                   |          |          |       |                                                          |
|---------------------------------------------------------|---------|--------------------------------------|-------------------|----------|----------|-------|----------------------------------------------------------|
| Param.<br>No.                                           | Sym.    | Characteristic                       | Min.              | Тур†     | Max.     | Units | Conditions                                               |
|                                                         | VIL     | Input Low Voltage                    |                   |          |          |       |                                                          |
|                                                         |         | I/O PORT:                            |                   |          |          |       |                                                          |
| D030                                                    |         | with TTL buffer                      | —                 | _        | 0.8      | V     | $4.5V \leq V\text{DD} \leq 5.5V$                         |
| D030A                                                   |         |                                      | —                 | _        | 0.15 Vdd | V     | $1.8V \leq V\text{DD} \leq 4.5V$                         |
| D031                                                    |         | with Schmitt Trigger buffer          | —                 | —        | 0.2 VDD  | V     | $2.0V \leq V\text{DD} \leq 5.5V$                         |
|                                                         |         | with I <sup>2</sup> C levels         | —                 | —        | 0.3 VDD  | V     |                                                          |
|                                                         |         | with SMbus levels                    | —                 | —        | 0.8      | V     | $2.7V \le V\text{DD} \le 5.5V$                           |
| D032                                                    |         | MCLR, OSC1 (EXTRC mode)              | —                 | —        | 0.2 VDD  | V     | (Note 1)                                                 |
| D033                                                    |         | OSC1 (HS mode)                       | —                 |          | 0.3 VDD  | V     |                                                          |
|                                                         | VIH     | Input High Voltage                   |                   |          |          |       |                                                          |
|                                                         |         | I/O PORT:                            |                   |          | 1        |       |                                                          |
| D040                                                    |         | with TTL buffer                      | 2.0               | —        | —        | V     | $4.5V \le VDD \le 5.5V$                                  |
| D040A                                                   |         |                                      | 0.25 VDD +<br>0.8 | _        | _        | V     | $1.8V \le VDD \le 4.5V$                                  |
| D041                                                    |         | with Schmitt Trigger buffer          | 0.8 Vdd           | _        | _        | V     | $2.0V \leq V\text{DD} \leq 5.5V$                         |
|                                                         |         | with I <sup>2</sup> C levels         | 0.7 Vdd           | _        | _        | V     |                                                          |
|                                                         |         | with SMbus levels                    | 2.1               | —        | —        | V     | $2.7V \leq V\text{DD} \leq 5.5V$                         |
| D042                                                    |         | MCLR                                 | 0.8 Vdd           | —        | —        | V     |                                                          |
| D043A                                                   |         | OSC1 (HS mode)                       | 0.7 Vdd           | _        | _        | V     |                                                          |
| D043B                                                   |         | OSC1 (EXTRC mode)                    | 0.9 Vdd           | _        | _        | V     | VDD > 2.0V (Note 1)                                      |
|                                                         | lı∟     | Input Leakage Current <sup>(2)</sup> |                   |          |          |       |                                                          |
| D060                                                    |         | I/O Ports                            | —                 | ± 5      | ± 125    | nA    | $Vss \le VPIN \le VDD$ ,<br>Pin at high-impedance, 85°C  |
|                                                         |         |                                      | —                 | ± 5      | ± 1000   | nA    | $Vss \le VPIN \le VDD$ ,<br>Pin at high-impedance, 125°C |
| D061                                                    |         | MCLR <sup>(3)</sup>                  | —                 | ± 50     | ± 200    | nA    | $Vss \le VPIN \le VDD$ ,<br>Pin at high-impedance, 85°C  |
|                                                         | IPUR    | Weak Pull-up Current                 |                   |          |          |       |                                                          |
| D070*                                                   |         |                                      | 25                | 100      | 200      | μA    | VDD = 3.3V, VPIN = VSS                                   |
|                                                         |         |                                      | 25                | 140      | 300      | μA    | VDD = 5.0V, VPIN = VSS                                   |
|                                                         | Vol     | Output Low Voltage                   |                   |          |          |       |                                                          |
| D080                                                    |         | I/O Ports                            |                   |          |          |       | IOL = 8 mA, VDD = 5V                                     |
|                                                         |         |                                      | —                 | —        | 0.6      | V     | IOL = 6  mA, VDD = 3.3 V                                 |
|                                                         | Mari    | Outrast II'm Maltana                 |                   |          |          |       | IOL = 1.8  mA,  VDD = 1.8  V                             |
| D000                                                    | VOH     | Output High Voltage                  |                   |          | 1        |       | $100 = 2.5 \pm 0.100 = 51($                              |
| D090                                                    |         | I/O Ports                            | V - 0 7           | _        | _        | V     | IOH = 3.5  mA,  VDD = 5  V<br>IOH = 3  mA,  VDD = 3.3  V |
|                                                         |         |                                      | 100 0.7           |          |          | v     | IOH = 1  mA, VDD = 1.8 V                                 |
| D101*                                                   | COSC2   | Capacitive Loading Specificat        | tions on Out      | out Pins | 1        |       | ·                                                        |
|                                                         |         | OSC2 pin                             |                   |          |          |       | In XT, HS, LP modes when                                 |
|                                                         |         |                                      | —                 | _        | 15       | pF    | external clock is used to drive OSC1                     |
| D101A*                                                  | CIO     | All I/O pins                         | —                 | _        | 50       | pF    |                                                          |
| *                                                       | Those n | aramators are characterized but      | not tostod        |          | •        | •     |                                                          |

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

**2:** Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

#### TABLE 29-19: SPI MODE REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated) |                       |                                                                       |              |      |      |       |                                  |
|---------------------------------------------------------|-----------------------|-----------------------------------------------------------------------|--------------|------|------|-------|----------------------------------|
| Param.<br>No.                                           | Symbol                | Characteristic                                                        | Min.         | Тур† | Max. | Units | Conditions                       |
| SP70*                                                   | TssL2scH,<br>TssL2scL | $\overline{SS}\downarrow$ to SCK $\downarrow$ or SCK $\uparrow$ input | 2.25 TCY     |      | —    | ns    |                                  |
| SP71*                                                   | TscH                  | SCK input high time (Slave mode)                                      | 1 Tcy + 20   |      | _    | ns    |                                  |
| SP72*                                                   | TscL                  | SCK input low time (Slave mode)                                       | 1 Tcy + 20   | _    | _    | ns    |                                  |
| SP73*                                                   | TDIV2scH,<br>TDIV2scL | Setup time of SDI data input to SCK edge                              | 100          |      | —    | ns    |                                  |
| SP74*                                                   | TscH2diL,<br>TscL2diL | Hold time of SDI data input to SCK edge                               | 100          |      | _    | ns    |                                  |
| SP75*                                                   | TDOR                  | SDO data output rise time                                             |              | 10   | 25   | ns    | $3.0V \leq V\text{DD} \leq 5.5V$ |
|                                                         |                       |                                                                       |              | 25   | 50   | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |
| SP76*                                                   | TDOF                  | SDO data output fall time                                             |              | 10   | 25   | ns    |                                  |
| SP77*                                                   | TssH2doZ              | $\overline{SS}^{\uparrow}$ to SDO output high-impedance               | 10           | —    | 50   | ns    |                                  |
| SP78*                                                   | TscR                  | SCK output rise time<br>(Master mode)                                 |              | 10   | 25   | ns    | $3.0V \leq V\text{DD} \leq 5.5V$ |
|                                                         |                       |                                                                       |              | 25   | 50   | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |
| SP79*                                                   | TscF                  | SCK output fall time (Master mode)                                    |              | 10   | 25   | ns    |                                  |
| SP80*                                                   | TscH2doV,<br>TscL2doV | SDO data output valid after SCK edge                                  |              |      | 50   | ns    | $3.0V \leq V\text{DD} \leq 5.5V$ |
|                                                         |                       |                                                                       | _            | _    | 145  | ns    | $1.8V \leq V\text{DD} \leq 5.5V$ |
| SP81*                                                   | TDOV2scH,<br>TDOV2scL | SDO data output setup to SCK edge                                     | 1 Tcy        |      | —    | ns    |                                  |
| SP82*                                                   | TssL2doV              | SDO data output valid after $\overline{\text{SS}}\downarrow$ edge     | _            | —    | 50   | ns    |                                  |
| SP83*                                                   | TscH2ssH,<br>TscL2ssH | SS ↑ after SCK edge                                                   | 1.5 Tcy + 40 | —    | —    | ns    |                                  |

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

\*





FIGURE 30-14: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC16F1508/9 ONLY

















