

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1508-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	1										
F8Ch — FE3h	_	Unimplemen	ted							_	-
FE4h	STATUS_ SHAD	_		_	—	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	:uuu
FE5h	WREG_ SHAD	Working Reg	ister Shadow							XXXX XXX	uuuu uuuu
FE6h	BSR_ SHAD	_	-	_	Bank Select	Register Sh	adow			x xxxx	:u uuuu
FE7h	PCLATH_ SHAD	_	Program Co	unter Latch H	ligh Register	Shadow				-xxx xxx	uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data	Memory Add	ress 0 Low F	Pointer Shado	W				XXXX XXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data	Memory Add	ress 0 High I	Pointer Shade	w				XXXX XXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data	ndirect Data Memory Address 1 Low Pointer Shadow xxxx xxxx							uuuu uuuu	
FEBh	FSR1H_ SHAD	Indirect Data	Indirect Data Memory Address 1 High Pointer Shadow							XXXX XXX	uuuu uuuu
FECh		Unimplemen	ted								_
FEDh	STKPTR	-	—	—	Current Star	ck Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Low byte							XXXX XXXX	uuuu uuuu
FEFh	TOSH	—	Top-of-Stack	High byte						-xxx xxxx	-uuu uuuu

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	<u> </u>	—		CLC4IF	CLC3IF	CLC2IF	CLC1IF
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is und	changed	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is se	t	'0' = Bit is clea	ared				
bit 7-4	Unimplement	ted: Read as '	0'				
bit 3	CLC4IF: Cont	figurable Logic	Block 4 Inter	rupt Flag bit			
	1 = Interrupt is	s pending					
	0 = Interrupt is	s not pending					
bit 2	CLC3IF: Cont	figurable Logic	Block 3 Inter	rupt Flag bit			
	1 = Interrupt is	s pending					
bit 1		s not penuing	Plook 2 Inter	rupt Elog bit			
	1 = Interrunt in			i upi riag bil			
	0 = Interrupt is	s not pendina					
bit 0	CLC1IF: Conf	figurable Logic	Block 1 Inter	rupt Flag bit			
	1 = Interrupt is	s pending	-	,			
	0 = Interrupt is	s not pending					
Note: In	terrupt flag bits a	re set when an	interrupt				
CC	ondition occurs, re	egardless of the	e state of				
its	s corresponding e	enable bit or th	e Global				
E	nable bit, GIE of	t the INTCON	register.				
0 a	sei soitware	of flag bits are c	lear prior				

REGISTER 7-7: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

to enabling an interrupt.

8.2 Low-Power Sleep Mode

This device contains an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode.

Low-Power Sleep mode allows the user to optimize the operating current in Sleep. Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register, putting the LDO and reference circuitry in a low-power state whenever the device is in Sleep.

8.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the Default Operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The Normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

8.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The LDO will remain in the Normal Power mode when those peripherals are enabled. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source)

The Complementary Waveform Generator (CWG), the Numerically Controlled Oscillator (NCO) and the Configurable Logic Cell (CLC) modules can utilize the HFINTOSC oscillator as either a clock source or as an input source. Under certain conditions, when the HFINTOSC is selected for use with the CWG, NCO or CLC modules, the HFINTOSC will remain active during Sleep. This will have a direct effect on the Sleep mode current.

Please refer to sections Section 24.5 "Operation During Sleep", 25.7 "Operation In Sleep" and 26.10 "Operation During Sleep" for more information.

The PIC16LF1508/9 does not have a con-Note: figurable Low-Power Sleep mode. PIC16LF1508/9 is an unregulated device and is always in the lowest power state when in Sleep, with no wake-up time penalty. This device has a lower maximum Vdd and I/O voltage than the PIC16F1508/9. See Section 29.0 "Electrical Specifications" for more information.

14.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, "Use and Calibration of the Internal Temperature Indicator" (DS01333) for more details regarding the calibration process.

14.1 Circuit Operation

Figure 14-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 14-1 describes the output characteristics of the temperature indicator.

EQUATION 14-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 13.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 14-1: TEMPERATURE CIRCUIT DIAGRAM

14.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 14-1 shows the recommended minimum VDD vs. range setting.

TABLE 14-1: RECOMMENDED VDD VS. RANGE

Min. Vdd, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

14.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for detailed information.

14.4 ADC Acquisition Time

To ensure accurate temperature measurements, the user must wait at least 200 μ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 μ s between sequential conversions of the temperature indicator output.

16.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- Comparator positive input
- · ADC input channel
- DACxOUT1 pin
- DACxOUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register.

FIGURE 16-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

16.6 Register Definitions: DAC Control

REGISTER 16-1: DACxCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	U-0	U-0
DACEN		DACOE1	DACOE2	_	DACPSS		_
bit 7							bit 0
Legend:							
R = Readable bi	it	W = Writable bi	t	U = Unimplem	ented bit, read as	'0'	
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all other F	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	DACEN: DAC	Enable bit					
	1 = DACx is e	nabled					
hit C							
bit 5	DACOE1: DAC	Voltage Output	Enable bit	OLIT1 nin			
	0 = DACx volt	age level is disco	onnected from t	he DACxOUT1 p	bin		
bit 4	DACOE2: DAC	Voltage Output	Enable bit				
	1 = DACx volt	age level is outp	ut on the DACx	OUT2 pin			
	0 = DACx volt	age level is disco	onnected from t	he DACxOUT2 p	bin		
bit 3	Unimplemente	ed: Read as '0'					
bit 2	DACPSS: DAC	Positive Source	Select bit				
	1 = VREF+ pi	in					
	0 = VDD						
bit 1-0	Unimplemente	ed: Read as '0'					

REGISTER 16-2: DACxCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
	—	—			DACR<4:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 Unimplemented: Read as '0'

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	DACEN	_	DACOE1	DACOE2	—	DACPSS	_	—	144
DAC1CON1	_		_	DACR<4:0>					144

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

17.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- · Programmable input selection
- · Comparator output is available internally/externally
- · Programmable output polarity
- Interrupt-on-change
- Wake-up from Sleep
- Programmable Speed/Power optimization
- PWM shutdown
- Programmable and fixed voltage reference

17.1 Comparator Overview

A single comparator is shown in Figure 17-2 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

The comparators available for this device are listed in Table 17-1.

TABLE 17-1: AVAILABLE COMPARATORS

Device	C1	C2
PIC16(L)F1508	•	•
PIC16(L)F1509	•	•

FIGURE 17-1: COMPARATOR MODULE SIMPLIFIED BLOCK DIAGRAM

© 2011-2015 Microchip Technology Inc.

21.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCKx)
- Serial Data Out (SDOx)
- Serial Data In (SDIx)
- Slave Select (SSx)

Figure 21-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 21-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 21-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDOx output pin which is connected to, and received by, the slave's SDIx input pin. The slave device transmits information out on its SDOx output pin, which is connected to, and received by, the master's SDIx input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDOx pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDOx pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

21.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 21-20 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts idle.
- Master sends Start condition; S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/\overline{W} bit clear; UA bit of the SSPxSTAT register is set.
- 4. Slave sends ACK and SSPxIF is set.
- 5. Software clears the SSPxIF bit.
- 6. Software reads received address from SSPxBUF clearing the BF flag.
- 7. Slave loads low address into SSPxADD, releasing SCLx.
- 8. Master sends matching low address byte to the slave; UA bit is set.

Note: Updates to the SSPxADD register are not allowed until after the ACK sequence.

9. Slave sends ACK and SSPxIF is set.

Note: If the low address does not match, SSPxIF and UA are still set so that the slave software can set SSPxADD back to the high address. BF is not set because there is no match. CKP is unaffected.

- 10. Slave clears SSPxIF.
- 11. Slave reads the received matching address from SSPxBUF clearing BF.
- 12. Slave loads high address into SSPxADD.
- 13. Master clocks a data byte to the slave and clocks out the slaves ACK on the ninth SCLx pulse; SSPxIF is set.
- 14. If SEN bit of SSPxCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSPxIF.
- 16. Slave reads the received byte from SSPxBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCLx.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

21.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPxADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCLx line is held low are the same. Figure 21-21 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 21-22 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

21.6.13.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDAx pin has been deasserted and allowed to float high, SDAx is sampled low after the BRG has timed out (Case 1).
- b) After the SCLx pin is deasserted, SCLx is sampled low before SDAx goes high (Case 2).

The Stop condition begins with SDAx asserted low. When SDAx is sampled low, the SCLx pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPxADD and counts down to 0. After the BRG times out, SDAx is sampled. If SDAx is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 21-38). If the SCLx pin is sampled low before SDAx is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 21-39).

FIGURE 21-38: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 21-39: BUS COLLISION DURING A STOP CONDITION (CASE 2)

REGISTER 21-5: SSPxMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
			MSK	<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is unchanged		x = Bit is unki	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	'0' = Bit is cleared						
bit 7-1	MSK<7:1>:	Mask bits							
	1 = The rec	eived address b	oit n is compar	ed to SSPxAD	D <n> to detect</n>	I ² C address ma	atch		
	0 = The rec	eived address b	oit n is not use	d to detect I ² C	address match				
bit 0 MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address									
I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111):									
	1 = The rec	eived address b	it 0 is compar	ed to SSPxADI	D<0> to detect	I ² C address ma	atch		
	0 = The received address bit 0 is not used to detect l^2C address match								

I²C Slave mode, 7-bit address, the bit is ignored

REGISTER 21-6: SSPxADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

Master mode:

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCLx pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode – Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 7-1	ADD<7:1>: 7-bit address
bit 7-1	ADD<7:1>: /-bit address

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

CALL	Call Subroutine	
Syntax:	[<i>label</i>] CALL k	
Operands:	$0 \leq k \leq 2047$	
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>	
Status Affected:	None	
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.	

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}} \\ \text{1} \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W			
Syntax:	[<i>label</i>] CALLW			
Operands:	None			
Operation:	$\begin{array}{l} (PC) +1 \rightarrow TOS, \\ (W) \rightarrow PC <7:0>, \\ (PCLATH <6:0>) \rightarrow PC <14:8> \end{array}$			
Status Affected:	None			
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.			

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (destination)$				
Status Affected:	Z				
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				

CLRF	Clear f		
Syntax:	[<i>label</i>] CLRF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$		
Status Affected:	Z		
Description:	The contents of register 'f' are cleared and the Z bit is set.		

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

29.3 DC Characteristics

TABLE 29-1: SUPPLY VOLTAGE

PIC16LF1508/9		Standard Operating Conditions (unless otherwise stated)						
PIC16F1508/9								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
			VDDMIN 1.8 2.5	_	VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz	
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾						
			1.5		—	V	Device in Sleep mode	
D002*			1.7	_	_	V	Device in Sleep mode	
D002A*	VPOR	Power-on Reset Release Voltage	<u>,</u> (2)					
			—	1.6	—	V		
D002A*				1.6	—	V		
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾						
			—	0.8	—	V		
D002B*				1.5	—	V		
D003	VFVR	Fixed Voltage Reference Voltage	3					
		1x gain (1.024V nominal) 2x gain (2.048V nominal) 4x gain (4.096V nominal)	-4 -3	_	+4 +7	%	$\label{eq:VDD} \begin{array}{l} VDD \geq 2.5V, \ -40^{\circ}C \leq TA \leq +85^{\circ}C \\ VDD \geq 2.5V, \ -40^{\circ}C \leq TA \leq +85^{\circ}C \\ VDD \geq 4.75V, \ -40^{\circ}C \leq TA \leq +85^{\circ}C \\ \end{array}$	
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	—	V/ms	Ensures that the Power-on Reset signal is released properly.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 29-3, POR and POR REARM with Slow Rising VDD.

TABLE 29-5: MEMORY PROGRAMMING SPECIFICATIONS

	-	• •					
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	8.0	_	9.0	V	(Note 2)
D112	VPBE	VDD for Bulk Erase	2.7	_	VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN	_	VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
D121	Ep	Program Flash Memory Cell Endurance	10K		_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	VPRW	VDD for Read/Write	VDDMIN		VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	_	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	_	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K		_	E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

TABLE 29-6: THERMAL CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)						
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions	
TH01	θJA	Thermal Resistance Junction to Ambient	62.2	°C/W	20-pin DIP package	
			77.7	°C/W	20-pin SOIC package	
			87.3	°C/W	20-pin SSOP package	
			46.2	°C/W	20-pin QFN 4X4mm package	
			32.8	°C/W	20-pin UQFN 4X4mm package	
TH02	θJC	Thermal Resistance Junction to Case	27.5	°C/W	20-pin DIP package	
			23.1	°C/W	20-pin SOIC package	
			31.1	°C/W	20-pin SSOP package	
			13.2	°C/W	20-pin QFN 4X4mm package	
			27.4	°C/W	20-pin UQFN 4X4mm package	
TH03	TJMAX	Maximum Junction Temperature	150	°C		
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O	
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾	
TH06	Pi/o	I/O Power Dissipation		W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$	
TH07	PDER	Derated Power		W	Pder = PDmax (Τj - Τa)/θja ⁽²⁾	

Standard Operating Conditions (unless otherwise stated)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature; TJ = Junction Temperature

