

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1508-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.2 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.3.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2** "Linear Data Memory" for more information.

3.3.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-2: BANKED MEMORY PARTITIONING

7-bit Bank Offset	Memory Region
00h	Core Registers
0Bh	(12 bytes)
0Ch	Special Function Registers
1Fh	(20 bytes maximum)
6Fh	General Purpose RAM (80 bytes maximum)
70h	Common RAM
7Fh	(16 bytes)

FIGURE 5-3: QUARTZ CRYSTAL OPERATION (LP, XT OR HS MODE)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)

FIGURE 5-4:

CERAMIC RESONATOR OPERATION (XT OR HS MODE)

5.2.1.3 Oscillator Start-up Timer (OST)

If the oscillator module is configured for LP, XT or HS modes, the Oscillator Start-up Timer (OST) counts 1024 oscillations from OSC1. This occurs following a Power-on Reset (POR) and when the Power-up Timer (PWRT) has expired (if configured), or a wake-up from Sleep. During this time, the program counter does not increment and program execution is suspended, unless either FSCM or Two-Speed Start-Up are enabled. In this case, code will continue to execute at the selected INTOSC frequency while the OST is counting. The OST ensures that the oscillator circuit, using a quartz crystal resonator or ceramic resonator, has started and is providing a stable system clock to the oscillator module.

In order to minimize latency between external oscillator start-up and code execution, the Two-Speed Clock Start-up mode can be selected (see **Section 5.4 "Two-Speed Clock Start-up Mode"**).

9.6 Register Definitions: Watchdog Timer Control

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	_			WDTPS<4:0>	>		SWDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is unchanged		x = Bit is unkr	x = Bit is unknown -n/n = Value at POR and BOR/Value				other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5-1	WDTPS<4:0>	: Watchdog Tir	mer Period S	elect bits ⁽¹⁾			
	Bit Value = P	Prescale Rate					
	11111 = Re	served. Results	s in minimum	interval (1:32)			
	•						
	•						
	10011 = Re:	served. Results	s in minimum	interval (1:32)			
	10010 = 1.8	388608 (2 ²³) (Interval 256s	nominal)			
	10001 = 1:4	194304 (2 ²²) (1	Interval 128s	nominal)			
	10000 = 1:2	097152 (2 ²¹) (1	Interval 64s n	ominal)			
	01111 = 1:1	048576 (220) (1	Interval 32s n	ominal)			
	01110 = 1:5	24288 (2 ¹⁹) (In	iterval 16s no	minal)			
	01101 = 1:2	62144 (2 ¹⁰) (In	iterval 8s non	ninal)			
	01100 = 1:1	31072 (217) (In 5526 (Intoniol	iterval 4s non	inal) (Booot voluo)			
	01011 - 1.0 01010 = 1.3	2768 (Interval	25 nominal) (1s nominal)	Reset value)			
	01000 = 1:0 01001 = 1:1	6384 (Interval	512 ms nomii	nal)			
	01000 = 1:8	192 (Interval 2	56 ms nomina	al)			
	00111 = 1:4	096 (Interval 1	28 ms nomina	al)			
	00110 = 1:2	048 (Interval 6	4 ms nominal)			
	00101 = 1:1	024 (Interval 3	2 ms nominal)			
	00100 = 1:5	12 (Interval 16	ms nominal)				
	00011 = 12	28 (Interval & r	ns nominal)				
	00010 = 1.1	4 (Interval 2 m	s nominal)				
	00000 = 1:3	2 (Interval 1 m	s nominal)				
bit 0	SWDTEN: So	oftware Enable/	Disable for W	/atchdog Timer	bit		
	<u>If WDTE<1:0></u>	> = <u>1x</u> :					
	This bit is igno	ored.					
	If WDTE<1:0>	<u>> = 01</u> :					
		urned on					
	This bit is ign	ored					

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Note 1: Times are approximate. WDT time is based on 31 kHz LFINTOSC.

10.6 Register Definitions: Flash Program Memory Control

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
PMDAT<7:0>										
bit 7							bit 0			
Legend:										
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,				
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at f	POR and BOR/Valu	ue at all other Res	sets			
'1' = Bit is set		'0' = Bit is cleared								

bit 7-0

PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		PMDAT<13:8>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
PMADR<7:0>									
bit 7									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PMADR<7:0>**: Specifies the Least Significant bits for program memory address

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				PMADR<14:8>	>		
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Unimplemented, read as '1'.

12.0 INTERRUPT-ON-CHANGE

The PORTA and PORTB pins can be configured to operate as Interrupt-on-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual port pin, or combination of port pins, can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change enable (Master Switch)
- Individual pin configuration
- · Rising and falling edge detection
- · Individual pin interrupt flags

Figure 12-1 is a block diagram of the IOC module.

12.1 Enabling the Module

To allow individual port pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

12.2 Individual Pin Configuration

For each port pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCxP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCxN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting both associated bits of the IOCxP and IOCxN registers, respectively.

12.3 Interrupt Flags

The IOCAFx and IOCBFx bits located in the IOCAF and IOCBF registers, respectively, are status flags that correspond to the interrupt-on-change pins of the associated port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCAFx and IOCBFx bits.

12.4 Clearing Interrupt Flags

The individual status flags, (IOCAFx and IOCBFx bits), can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 12-1: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW 0xff XORWF IOCAF, W ANDWF IOCAF, F

12.5 Operation in Sleep

The interrupt-on-change interrupt sequence will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the IOCxF register will be updated prior to the first instruction executed out of Sleep.

13.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

13.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section 17.0 "Comparator Module"** for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

13.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See the FVR Stabilization Period characterization graph, Figure 30-64.

FIGURE 13-1: VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.
LDO	All PIC16F1508/9 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0	110
ANSELC	ANSC7	ANSC6	_	—	ANSC3	ANSC2	ANSC1	ANSC0	118
CM1CON0	C10N	C1OUT	C10E	C1POL	—	C1SP	C1HYS	C1SYNC	149
CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	149
CM1CON1	C1NTP	C1INTN	C1PCI	H<1:0>	—		C1NCH<2:0>	>	150
CM2CON1	C2NTP	C2INTN	C2PCI	H<1:0>	—		C2NCH<2:0>	`	150
CMOUT	_	—	_	_	_	_	MC2OUT	MC10UT	150
DAC1CON0	DACEN	—	DACOE1	DACOE2	—	DACPSS	—	_	144
DAC1CON1	_	—	_		DACR<4:0>				144
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	R<1:0>	125
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE2	OSFIE	C2IE	C1IE	—	BCL1IE	NCO1IE	—	—	77
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	NCO1IF	_	—	80
PORTA	_	—	RA5	RA4	RA3	RA2	RA1	RA0	109
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	117
LATA	_	—	LATA5	LATA4	_	LATA2	LATA1	LATA0	110
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	117
TRISA	_	—	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	109
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: Unimplemented, read as '1'.

19.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR10N bit of the T1CON register
- TMR1IE bit of the PIE1 register
- · PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

19.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- · TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the $\overline{T1SYNC}$ bit setting.

FIGURE 19-2: TIMER1 INCREMENTING EDGE

19.8.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 11.1 "Alternate Pin Function"** for more information.

20.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see **Section 20.2 "Timer2 Interrupt"**).

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- · a write to the T2CON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note: TMR2 is not cleared when T2CON is written.

20.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

20.3 Timer2 Output

The output of TMR2 is T2_match. T2_match is available to the following peripherals:

- Configurable Logic Cell (CLC)
- Master Synchronous Serial Port (MSSP)
- Numerically Controlled Oscillator (NCO)
- Pulse Width Modulator (PWM)

The T2_match signal is synchronous with the system clock. Figure 20-3 shows two examples of the timing of the T2_match signal relative to Fosc and prescale value, T2CKPS<1:0>. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing.

FIGURE 20-3: T2

T2_MATCH TIMING DIAGRAM

20.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0				
ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN				
bit 7				1			bit 0				
Legend:											
R = Readable	bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'								
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets				
'1' = Bit is set		'0' = Bit is cle	ared								
bit 7	ABDOVF: Au	ito-Baud Detec	t Overflow bit								
	Asynchronou	<u>s mode</u> :									
	1 = Auto-bau	d timer overflov d timer did not	ved								
	0 = Auto-bau	mode:	overnow								
	Don't care	<u></u> .									
bit 6	RCIDL: Rece	ive Idle Flag bi	t								
	Asynchronou	<u>s mode</u> :									
	1 = Receiver 0 = Start bit b	IS IDE	ed and the re	caivar is racaiv	<i>v</i> ing						
	Synchronous	mode:			, ing						
	Don't care										
bit 5	Unimplemen	Unimplemented: Read as '0'									
bit 4	SCKP: Synchronous Clock Polarity Select bit										
	Asynchronou	<u>s mode</u> :									
	1 = Transmit 0 = Transmit	inverted data to non-inverted da	o the TX/CK p ata to the TX/0	în CK pin							
	Synchronous	mode:		11							
	1 = Data is cl 0 = Data is cl	ocked on rising ocked on falling	g edge of the o	clock clock							
bit 3	BRG16: 16-b	it Baud Rate G	enerator bit								
	1 = 16-bit Ba	ud Rate Gener	ator is used								
hit 0		tod. Dood oo '									
bit 1		un Enable bit	0								
DICT	Asynchronou	s mode:									
	1 = Receiver	is waiting for a	falling edge. I	No character w	/ill be received. F	RCIF bit will be	set. WUE will				
	automatic	ally clear after	RCIF is set.								
	0 = Receiver	is operating no	ormally								
	Synchronous Don't care	mode:									
bit 0		-Baud Detect	Enable bit								
bit 0	Asynchronou	s mode:									
	1 = Auto-Bau	ud Detect mode	e is enabled (o	clears when au	ito-baud is comp	lete)					
	0 = Auto-Bau	ud Detect mode	e is disabled								
	Synchronous	mode:									
	Dunitale										

REGISTER 22-3: BAUDCON: BAUD RATE CONTROL REGISTER

TABLE 22-3: BAUD RATE FORMULAS

(Configuration Bits			Poud Poto Formula	
SYNC	BRG16	BRGH	BRG/EUSART Mode	Dauu Kale Formula	
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]	
0	0	1	8-bit/Asynchronous		
0	1	0	16-bit/Asynchronous	FOSC/[16 (n+1)]	
0	1	1	16-bit/Asynchronous		
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]	
1	1	x	16-bit/Synchronous		

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair.

TABLE 22-4: SUMMARY OF REGISTERS ASSOCIATED WITH THE BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN	235
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	234
SPBRGL	BRG<7:0>								
SPBRGH	BRG<15:8>								236*
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	233

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for the Baud Rate Generator.

* Page provides register information.

22.5.2.3 EUSART Synchronous Slave Reception

The operation of the Synchronous Master and Slave modes is identical (Section22.5.1.5 "Synchronous Master Reception"), with the following exceptions:

- Sleep
- CREN bit is always set, therefore the receiver is never idle
- · SREN bit, which is a "don't care" in Slave mode

A character may be received while in Sleep mode by setting the CREN bit prior to entering Sleep. Once the word is received, the RSR register will transfer the data to the RCREG register. If the RCIE enable bit is set, the interrupt generated will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will branch to the interrupt vector.

- 22.5.2.4 Synchronous Slave Reception Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for both the CK and DT pins (if applicable).
- 3. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 4. If 9-bit reception is desired, set the RX9 bit.
- 5. Set the CREN bit to enable reception.
- The RCIF bit will be set when reception is complete. An interrupt will be generated if the RCIE bit was set.
- 7. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCSTA register.
- 8. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCREG register.
- 9. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

TABLE 22-10: SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION RECEPTION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BAUDCON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	235
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	76
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	—	TMR2IF	TMR1IF	79
RCREG			EUS	ART Receiv	ve Data Reg	gister			228*
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	234
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	113
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	233

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave reception.

* Page provides register information.

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u		
_	L	_CxD4S<2:0> ⁽¹)	_	L	.CxD3S<2:0>(1)		
bit 7	·				·		bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
u = Bit is und	changed	x = Bit is unki	nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is se	1' = Bit is set '0' = Bit is cleared								
L									
bit 7	Unimplemen	ted: Read as '	0'						
bit 6-4	LCxD4S<2:0	LCxD4S<2:0>: Input Data 4 Selection Control bits ⁽¹⁾							
	111 = LCx_in[3] is selected for lcxd4 110 = LCx_in[2] is selected for lcxd4 101 = LCx_in[1] is selected for lcxd4								
	100 = LCx_ii	n[0] is selected	for lcxd4						
	011 = LCx_ii	n[15] is selecte	d for loxd4						
	$010 = LCx_{ii}$	n[14] is selecte	d for lcxd4						
	000 = LCx_ii	n[12] is selecte	d for lcxd4						
bit 3	Unimplemen	ted: Read as '	0'						
bit 2-0	LCxD3S<2:0	>: Input Data 3	Selection Co	ntrol bits ⁽¹⁾					
	111 = LCx_ii	n[15] is selecte	d for lcxd3						
	110 = LCx_ii	n[14] is selecte	d for lcxd3						
	$101 = LCX_{II}$	n[13] is selecte n[12] is selecte	d for Icxd3						
	011 = LCx ii	n[11] is selecte	d for lcxd3						
	010 = LCx_ii	n[10] is selecte	d for lcxd3						
	001 = LCx_ii	n[9] is selected	for lcxd3						
	$000 = LCX_{II}$	n[8] is selected	tor Icxd3						
Note 1. C	an Table 24 4 for	aignal namaa	accordented with	th innuto					

REGISTER 24-4: CLCxSEL1: MULTIPLEXER DATA 3 AND 4 SELECT REGISTER

Note 1: See Table 24-1 for signal names associated with inputs.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Re					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7	LCxG3D4T:	Sate 3 Data 4 1	rue (non-inve	rted) bit					
	\perp = ICX041 IS 0 = ICX04T is	gated into icxe	J3 Icxa3						
bit 6	LCxG3D4N:	Gate 3 Data 4 I	Negated (inve	rted) bit					
	1 = lcxd4N is	gated into lcx	q3						
	0 = Icxd4N is	not gated into	lcxg3						
bit 5	LCxG3D3T: 0	Gate 3 Data 3 1	rue (non-inve	rted) bit					
	1 = lcxd3T is	gated into lcxg	j3						
h:+ 4	0 = 10000000000000000000000000000000000	not gated into	ICXg3	-41) - :4					
DIL 4	$1 = \log d3N$ is	Gale 3 Dala 3 I	negated (invel 13	rted) bit					
	0 = lcxd3N is	not gated into	lcxg3						
bit 3	LCxG3D2T: O	Gate 3 Data 2 1	rue (non-inve	rted) bit					
	1 = Icxd2T is	gated into lcxg	j 3						
	0 = lcxd2T is	not gated into	lcxg3						
bit 2	LCxG3D2N: (Gate 3 Data 2 I	Negated (inve	rted) bit					
	1 = Icxd2N is 0 = Icxd2N is	gated into lcx	J3 Jexa3						
bit 1		Fate 3 Data 1 1	rue (non-inve	rted) hit					
	1 = lcxd1T is	gated into Icxo	13						
	0 = Icxd1T is	not gated into	lcxg3						
bit 0	LCxG3D1N:	Gate 3 Data 1 I	Negated (inver	rted) bit					
	1 = lcxd1N is	gated into Icx	g3						
	0 = Icxd1N is	not gated into	Icxg3						

REGISTER 24-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

PIC16(L)F1508/9

REGISTER 25-6: NCOxINCL: NCOx INCREMENT REGISTER – LOW BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1			
NCOxINC<7:0>										
bit 7	bit 7 bit 0									

Legend:

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<7:0>: NCOx Increment, Low Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See 25.1.4 "Increment Registers" for more information.

REGISTER 25-7: NCOxINCH: NCOx INCREMENT REGISTER – HIGH BYTE⁽¹⁾

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
NCOxINC<15:8>									
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxINC<15:8>: NCOx Increment, High Byte

Note 1: Write the NCOxINCH register first, then the NCOxINCL register. See **25.1.4 "Increment Registers"** for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	—	—	_	SSSEL	T1GSEL	—	CLC1SEL	NCO1SEL	107
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
NCO1ACCH	NCO1ACC<15:8>								
NCO1ACCL	NCO1ACC<7:0>								
NCO1ACCU		-	_		NCO1ACC<19:16>				278
NCO1CLK	N1PWS<2:0>				—	—	N1CK	277	
NCO1CON	N1EN	N1OE	N1OUT	N1POL	—	—	—	N1PFM	277
NCO1INCH				NCO1IN	C<15:8>				279
NCO1INCL				NCO1IN	NC<7:0>				279
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	NCO1IE	—	_	77
PIR2	OSFIF	C2IF	C1IF		BCL1IF	NCO1IF	_	_	80
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	109
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117

TABLE 25-1: SUMMARY OF REGISTERS ASSOCIATED WITH NCOx

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for NCOx module.

Note 1: Unimplemented, read as '1'.

26.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces a complementary waveform with dead-band delay from a selection of input sources.

The CWG module has the following features:

- · Selectable dead-band clock source control
- Selectable input sources
- · Output enable control
- · Output polarity control
- Dead-band control with independent 6-bit rising and falling edge dead-band counters
- Auto-shutdown control with:
- Selectable shutdown sources
- Auto-restart enable
- Auto-shutdown pin override control

26.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 26.5 "Dead-Band Control"**. A typical operating waveform, with dead band, generated from a single input signal is shown in Figure 26-2.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 26.9 "Auto-Shutdown Control"**.

26.2 Clock Source

The CWG module allows the following clock sources to be selected:

- Fosc (system clock)
- HFINTOSC (16 MHz only)

The clock sources are selected using the G1CS0 bit of the CWGxCON0 register (Register 26-1).

26.3 Selectable Input Sources

The CWG generates the output waveforms from the input sources in Table 26-1.

TABLE 26-1:	SELECTABLE INPUT
	SOURCES

Source Peripheral	Signal Name
Comparator C1	C1OUT_sync
Comparator C2	C2OUT_sync
PWM1	PWM1_out
PWM2	PWM2_out
PWM3	PWM3_out
PWM4	PWM4_out
NCO1	NCO1_out
CLC1	LC1_out

The input sources are selected using the GxIS<2:0> bits in the CWGxCON1 register (Register 26-2).

26.4 Output Control

Immediately after the CWG module is enabled, the complementary drive is configured with both CWGxA and CWGxB drives cleared.

26.4.1 OUTPUT ENABLES

Each CWG output pin has individual output enable control. Output enables are selected with the GxOEA and GxOEB bits of the CWGxCON0 register. When an output enable control is cleared, the module asserts no control over the pin. When an output enable is set, the override value or active PWM waveform is applied to the pin per the port priority selection. The output pin enables are dependent on the module enable bit, GxEN. When GxEN is cleared, CWG output enables and CWG drive levels have no effect.

26.4.2 POLARITY CONTROL

The polarity of each CWG output can be selected independently. When the output polarity bit is set, the corresponding output is active-high. Clearing the output polarity bit configures the corresponding output as active-low. However, polarity does not affect the override levels. Output polarity is selected with the GxPOLA and GxPOLB bits of the CWGxCON0 register.

29.0 ELECTRICAL SPECIFICATIONS

29.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40°C to +125°C	С
Storage temperature	С
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1508/90.3V to +6.5	V
-0.3V to +4.0	V
on MCLR pin	V
on all other pins	/)
Maximum current	
on Vss pin ⁽¹⁾	
$-40^{\circ}C \le T_A \le +85^{\circ}C$	А
+85°C \leq TA \leq +125°C	А
on VDD pin ⁽¹⁾	
-40°C \leq TA \leq +85°C	А
+85°C \leq TA \leq +125°C	А
Sunk by any standard I/O pin	А
Sourced by any standard I/O pin 50 m/	А
Clamp current, Ik (VPIN < 0 or VPIN > VDD)	А
Total power dissipation ⁽²⁾	Ν

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 29-6 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD -VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

PIC16(L)F1508/9

DS40001609E-page 340

THE MICROCHIP WEBSITE

Microchip provides online support via our website at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://www.microchip.com/support