

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1508t-i-gz

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) **TABLE 3-9:**

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1	0										
50Ch to 51Fh	—	Unimplemen	ted							-	—
Bank 1	1										
58Ch to 59Fh	_	Unimplemen	Jnimplemented								_
Bank 1	2										•
60Ch to 610h	_	Unimplemen	ted							—	_
611h	PWM1DCL	PWM1D	CL<7:6>					-		00	00
612h	PWM1DCH				PWM1	DCH<7:0>				xxxx xxxx	uuuu uuuu
613h	PWM1CON0	PWM1EN	PWM10E	PWM10UT	PWM1POL	-	-	—	—	0000	0000
614h	PWM2DCL	PWM2D	CL<7:6>	-	-	-	-	—	—	00	00
615h	PWM2DCH				PWM2	DCH<7:0>				xxxx xxxx	uuuu uuuu
616h	PWM2CON0	PWM2EN	PWM2OE	PWM2OUT	PWM2POL			-		0000	0000
617h	PWM3DCL	PWM3D	CL<7:6>							00	00
618h	PWM3DCH				PWM3I	DCH<7:0>				xxxx xxxx	uuuu uuuu
619h	PWM3CON0	PWM3EN	PWM3OE	PWM3OUT	PWM3POL			-		0000	0000
61Ah	PWM4DCL	PWM4D	CL<7:6>					-		00	00
61Bh	PWM4DCH				PWM4I	DCH<7:0>				XXXX XXXX	uuuu uuuu
61Ch	PWM4CON0	PWM4EN	PWM4OE	PWM4OUT	PWM4POL			-		0000	0000
61Dh to 61Fh	_	Unimplemen	Unimplemented							_	_
Bank 1	3										
68Ch to 690h	_	Unimplemen	Unimplemented							—	—
691h	CWG1DBR	— — CWG1DBR<5:0>					00 0000	00 0000			
692h	CWG1DBF	_	_			CWG1	DBF<5:0>			xx xxxx	xx xxxx
693h	CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	_	_	G1CS0	0000 00	0000 00
694h	CWG1CON1	G1ASD	LB<1:0>	G1ASD	LA<1:0>	_		G1IS<2:0>		0000 -000	0000 -000
695h	CWG1CON2	G1ASE	G1ARSEN	—	—	G1ASDSC2	G1ASDSC1	G1ASDSFLT	G1ASDSCLC2	00 0000	00 0000
696h to 69Fh	6h _ Unimplemented								_		

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

12.6 Register Definitions: Interrupt-on-Change Control

REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	
bit 7				-			bit 0	
Legend:								
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'				
u = Bit is unchan	ged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all other I	Resets	
'1' = Bit is set		'0' = Bit is clear	ed					

bit 7-6 Unimplemented: Read as '0'

bit 5-0

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—		IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-6 Unimplemented: Read as '0'

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- · Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

15.1.2 CHANNEL SELECTION

There are 15 channel selections available:

- AN<11:0> pins
- · Temperature Indicator
- DAC1_output
- FVR buffer1

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay (TACQ) is required before starting the next conversion. Refer to **Section 15.2.6 "ADC Conversion Procedure"** for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADC module uses a positive and a negative voltage reference. The positive reference is labeled ref+ and the negative reference is labeled ref-.

The positive voltage reference (ref+) is selected by the ADPREF bits in the ADCON1 register. The positive voltage reference source can be:

- VREF+ pin
- Vdd

The negative voltage reference (ref-) source is:

Vss

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (internal RC oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 29.0 "Electrical Specifications"** for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

15.4 ADC Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 15-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), refer to Figure 15-4. The maximum recommended impedance for analog sources is 10 k Ω . As the

source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed), an ADC acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 15-1 may be used. This equation assumes that 1/2 LSb error is used (1,024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 15-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 5.0V VDD

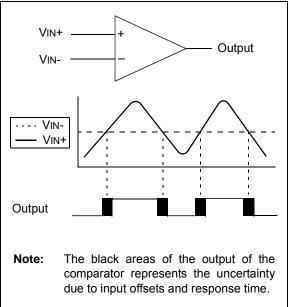
$$T_{ACQ} = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= T_{AMP} + T_C + T_{COFF}
= 2\mu s + T_C + [(Temperature - 25°C)(0.05\mu s/°C)]
The value for T_C can be approximated with the following equations:
$$V_{APPLIED} \left(1 - \frac{1}{(2^{n+1}) - 1} \right) = V_{CHOLD} ; [1] V_{CHOLD} charged to within 1/2 lsb$$

$$V_{APPLIED} \left(1 - e^{\frac{-T_C}{RC}} \right) = V_{CHOLD} ; [2] V_{CHOLD} charge response to V_{APPLIED} V_{APPLIED} \left(1 - e^{\frac{-T_C}{RC}} \right) = V_{APPLIED} \left(1 - \frac{1}{(2^{n+1}) - 1} \right) ; combining [1] and [2]$$
Note: Where n = number of bits of the ADC.
Solving for T_C:

$$T_C = -C_{HOLD}(R_{IC} + R_{SS} + R_S) \ln(1/2047)$$$$

$$FC = -CHOLD(KIC + KSS + KS) ln(1/2047)$$

= -12.5pF(1k\Omega + 7k\Omega + 10k\Omega) ln(0.0004885)
= 1.72\mu s


Therefore:

$$TACQ = 2\mu s + 1.72\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 4.97\mu s

Note 1: The reference voltage (VRPOS) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

FIGURE 17-2: SINGLE COMPARATOR

17.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 17-1) contain Control and Status bits for the following:

- Enable
- Output selection
- Output polarity
- Speed/Power selection
- Hysteresis enable
- Output synchronization

The CMxCON1 registers (see Register 17-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

17.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

17.2.2 COMPARATOR POSITIVE INPUT SELECTION

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN+ analog pin
- DAC1_output
- FVR buffer2
- Vss

See Section 13.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 16.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

17.2.3 COMPARATOR NEGATIVE INPUT SELECTION

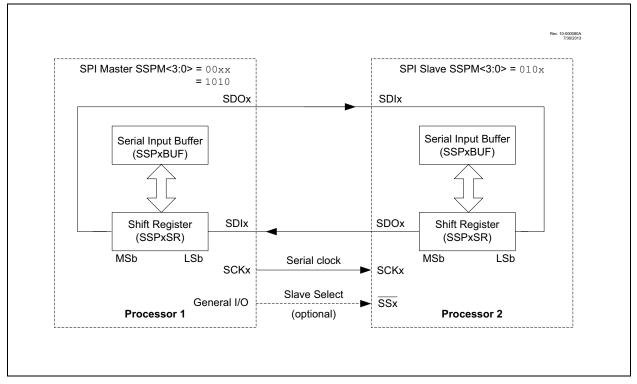
The CxNCH<2:0> bits of the CMxCON0 register direct one of the input sources to the comparator inverting input.

Note: To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

17.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set


The synchronous comparator output signal (CxOUT_sync) is available to the following peripheral(s):

- Configurable Logic Cell (CLC)
- Analog-to-Digital Converter (ADC)
- Timer1

The asynchronous comparator output signal (CxOUT_async) is available to the following peripheral(s):

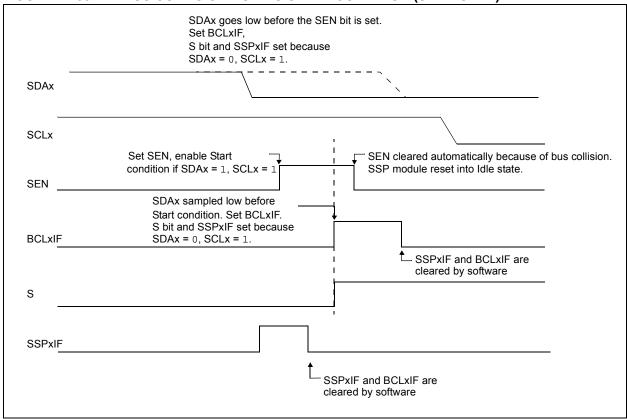
- Complementary Waveform Generator (CWG)
 - Note 1: The CxOE bit of the CMxCON0 register overrides the PORT data latch. Setting the CxON bit of the CMxCON0 register has no impact on the port override.
 - 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

21.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

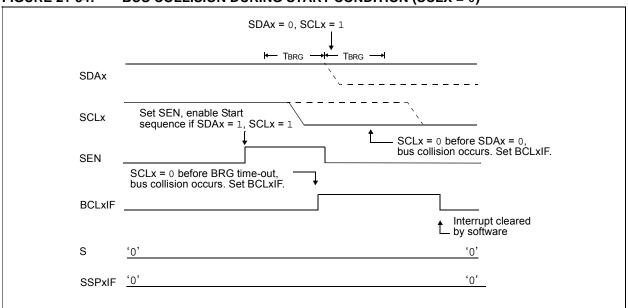
- a) SDA or SCL are sampled low at the beginning of the Start condition (Figure 21-33).
- b) SCL is sampled low before SDAx is asserted low (Figure 21-34).

During a Start condition, both the SDAx and the SCL pins are monitored.


If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- · the BCL1IF flag is set and
- the MSSP module is reset to its Idle state (Figure 21-33).

The Start condition begins with the SDAx and SCLx pins deasserted. When the SDAx pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCLx pin is sampled low while SDAx is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.


If the SDAx pin is sampled low during this count, the BRG is reset and the SDAx line is asserted early (Figure 21-35). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDAx before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

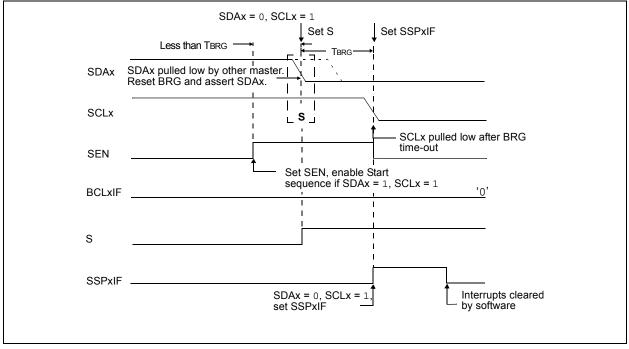
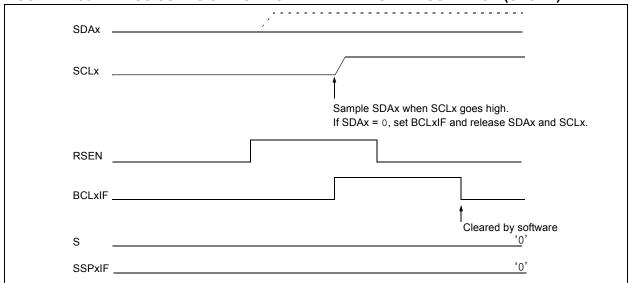


FIGURE 21-33: BUS COLLISION DURING START CONDITION (SDAX ONLY)

21.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:


- a) A low level is sampled on SDAx when SCLx goes from low level to high level (Case 1).
- SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1' (Case 2).

When the user releases SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled. If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 21-36). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.


If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 21-37.

If, at the end of the BRG time-out, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 21-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)

FIGURE 21-37: BUS COLLISION DURING REPEATED START CONDITION (CASE 2)

24.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- Data selection
- · Data gating
- · Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

24.1.1 DATA SELECTION

There are 16 signals available as inputs to the configurable logic. Four 8-input multiplexers are used to select the inputs to pass on to the next stage. The 16 inputs to the multiplexers are arranged in groups of four. Each group is available to two of the four multiplexers, in each case, paired with a different group. This arrangement makes possible selection of up to two from a group without precluding a selection from another group.

Data selection is through four multiplexers as indicated on the left side of Figure 24-2. Data inputs in the figure are identified by a generic numbered input name.

Table 24-1 correlates the generic input name to the actual signal for each CLC module. The columns labeled lcxd1 through lcxd4 indicate the MUX output for the selected data input. D1S through D4S are abbreviations for the MUX select input codes: LCxD1S<2:0> through LCxD4S<2:0>, respectively. Selecting a data input in a column excludes all other inputs in that column.

Data inputs are selected with CLCxSEL0 and CLCxSEL1 registers (Register 24-3 and Register 24-5, respectively).

Note: Data selections are undefined at power-up.

Data Input	lcxd1 D1S	lcxd2 D2S	lcxd3 D3S	lcxd4 D4S	CLC 1	CLC 2	CLC 3	CLC 4
LCx_in[0]	000			100	CLC1IN0	CLC2IN0	CLC3IN0	CLC4IN0
LCx_in[1]	001	_	_	101	CLC1IN1	CLC2IN1	CLC3IN1	CLC4IN1
LCx_in[2]	010	_	_	110	C1OUT_sync	C1OUT_sync	C1OUT_sync	C1OUT_sync
LCx_in[3]	011	_	_	111	C2OUT_sync	C2OUT_sync	C2OUT_sync	C2OUT_sync
LCx_in[4]	100	000	_	_	Fosc	Fosc	Fosc	Fosc
LCx_in[5]	101	001			T0_overflow	T0_overflow	T0_overflow	T0_overflow
LCx_in[6]	110	010	_	_	T1_overflow	T1_overflow	T1_overflow	T1_overflow
LCx_in[7]	111	011	_	_	T2_match	T2_match	T2_match	T2_match
LCx_in[8]	_	100	000	_	LC1_out	LC1_out	LC1_out	LC1_out
LCx_in[9]	_	101	001	_	LC2_out	LC2_out	LC2_out	LC2_out
LCx_in[10]	_	110	010	_	LC3_out	LC3_out	LC3_out	LC3_out
LCx_in[11]	_	111	011	—	LC4_out	LC4_out	LC4_out	LC4_out
LCx_in[12]	-	-	100	000	NCO1_out	LFINTOSC	TX_out (EUSART)	SCK_out (MSSP)
LCx_in[13]	—	—	101	001	HFINTOSC	FRC	LFINTOSC	SDO_out (MSSP)
LCx_in[14]	_	_	110	010	PWM3_out	PWM1_out	PWM2_out	PWM1_out
LCx_in[15]	_	_	111	011	PWM4_out	PWM2_out	PWM3_out	PWM4_out

TABLE 24-1: CLCx DATA INPUT SELECTION

REGISTER 24-9: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	R-0	R-0	R-0	R-0	
—	—	—	MLC4OUT	MLC3OUT	MLC2OUT	MLC1OUT	
						bit 0	
oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'		
nged	x = Bit is unkn	nown	-n/n = Value at POR and BOR/Value at all other Resets				
	'0' = Bit is clea	ared					
Unimplemente	ed: Read as '0'						
MLC4OUT: M	irror copy of LC	C4OUT bit					
MLC3OUT: M	irror copy of LC	C3OUT bit					
MLC2OUT: M	irror copy of LC	2001 bit					
		it W = Writable nged x = Bit is unkr '0' = Bit is clear Unimplemented: Read as '0' MLC4OUT: Mirror copy of LC	it W = Writable bit	— — MLC4OUT iit W = Writable bit U = Unimpler nged x = Bit is unknown -n/n = Value a '0' = Bit is cleared '0' Unimplemented: Read as '0' MLC4OUT: Mirror copy of LC4OUT bit	— — MLC4OUT MLC3OUT iit W = Writable bit U = Unimplemented bit, read nged x = Bit is unknown -n/n = Value at POR and BOI '0' = Bit is cleared Unimplemented: Read as '0' MLC4OUT: Mirror copy of LC4OUT bit	— — MLC4OUT MLC3OUT MLC2OUT iit W = Writable bit U = Unimplemented bit, read as '0' nged x = Bit is unknown -n/n = Value at POR and BOR/Value at all o '0' = Bit is cleared	

REGISTER 25-3: NCOxACCL: NCOx ACCUMULATOR REGISTER – LOW BYTE

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | NCOxA | CC<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |
| | 1.11 | | | | | | |

'1' = Bit is set	'0' = Bit is cleared	
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'

Accumulator, Low Byte
ŀ

REGISTER 25-4: NCOxACCH: NCOx ACCUMULATOR REGISTER – HIGH BYTE

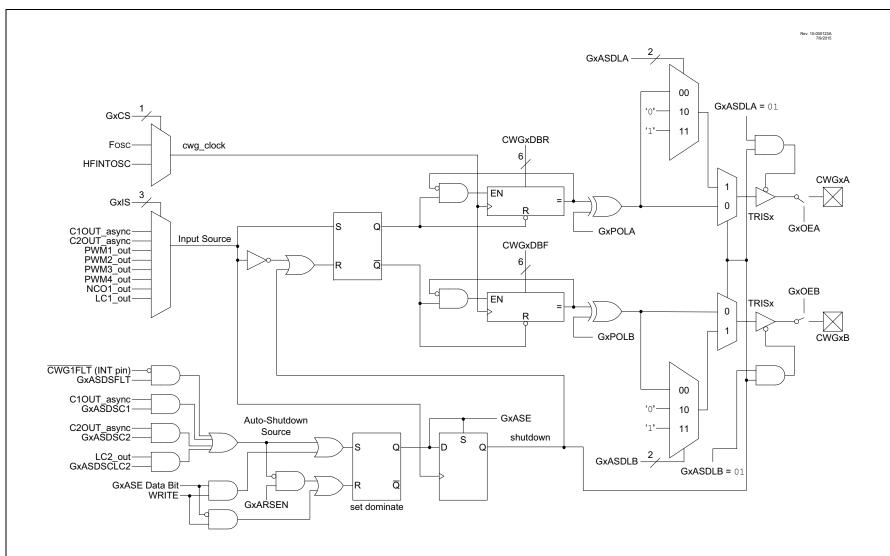
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			NCOxAC	C<15:8>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplem	nented bit, read	l as '0'	

bit 7-0 NCOxACC<15:8>: NCOx Accumulator, High Byte

'0' = Bit is cleared

REGISTER 25-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—		NCOXAC	C<19:16>	
bit 7							bit 0


Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCOxACC<19:16>: NCOx Accumulator, Upper Byte

'1' = Bit is set

FIGURE 26-1: SIMPLIFIED CWG BLOCK DIAGRAM

PIC16(L)F1508/9

DS40001609E-page 281

26.12 Register Definitions: CWG Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0
GxEN	GxOEB	GxOEA	GxPOLB	GxPOLA	—		GxCS0
bit 7		•					bit (
Legend:							
R = Readable	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
u = Bit is unc	hanged	x = Bit is unki	nown	-n/n = Value a	at POR and BOF	R/Value at all	other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared	q = Value dep	oends on conditi	on	
bit 7	GxEN: CWG						
	1 = Module i 0 = Module i						
bit 6			abla hit				
		GxOEB: CWGxB Output Enable bit 1 = CWGxB is available on appropriate I/O pin					
		is not available		•			
bit 5	GxOEA: CWGxA Output Enable bit						
	1 = CWGxA	is available on	appropriate I/	O pin			
	0 = CWGxA	is not available	e on appropria	te I/O pin			
bit 4		WGxB Output F	•				
		s inverted polar	,				
L H 0	•	s normal polarit	•				
bit 3		WGxA Output F s inverted polar	-				
		s normal polarit					
bit 2-1	•	Unimplemented: Read as '0'					
bit 0	•	Gx Clock Sourc					
	1 = HFINTO						
	$\perp = HFINTO$	50					

REGISTER 26-1: CWGxCON0: CWG CONTROL REGISTER 0

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1→ TOS, k → PC<10:0>, (PCLATH<6:3>) → PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruc- tion.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$00h \rightarrow WDT$ $0 \rightarrow WDT \text{ prescaler,}$ $1 \rightarrow \overline{TO}$ $1 \rightarrow PD$ $\overline{TO, PD}$
Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CALLW	Subroutine Call With W
Syntax:	[label] CALLW
Operands:	None
Operation:	$\begin{array}{l} (\text{PC}) +1 \rightarrow \text{TOS}, \\ (\text{W}) \rightarrow \text{PC} < 7:0 >, \\ (\text{PCLATH} < 6:0 >) \rightarrow \text{PC} < 14:8 > \end{array}$
Status Affected:	None
Description:	Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction.

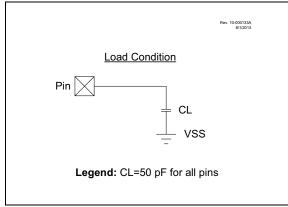
COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are com- plemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \leq f \leq 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

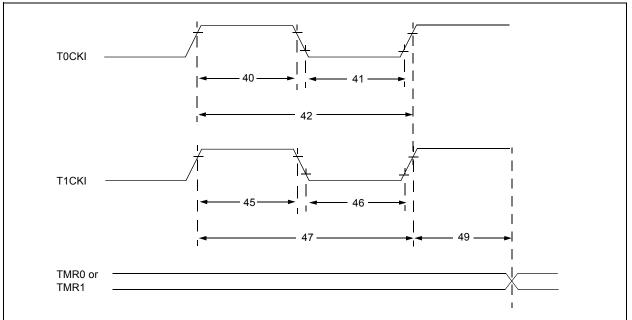
CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{O0h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

29.4 AC Characteristics


Timing Parameter Symbology has been created with one of the following formats:

1. TppS2ppS


2. TppS

T									
-									
F	Frequency	Т	Time						
Lowerc	Lowercase letters (pp) and their meanings:								
рр									
сс	CCP1	osc	CLKIN						
ck	CLKOUT	rd	RD						
CS	CS	rw	RD or WR						
di	SDIx	sc	SCKx						
do	SDO	SS	SS						
dt	Data in	tO	ТОСКІ						
io	I/O PORT	t1	T1CKI						
mc	MCLR	wr	WR						
Uppercase letters and their meanings:									
S									
F	Fall	Р	Period						
Н	High	R	Rise						
I	Invalid (High-impedance)	V	Valid						
L	Low	Z	High-impedance						

FIGURE 29-4: LOAD CONDITIONS

FIGURE 29-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 29-11: TIME	R0 AND TIMER1 EXTERNAL	CLOCK REQUIREMENTS
-------------------	------------------------	--------------------

Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions	
40*	T⊤0H	T0CKI High Pulse Width		No Prescaler	0.5 Tcy + 20	—	—	ns		
				With Prescaler	10	—	_	ns		
41*	T⊤0L			No Prescaler	0.5 Tcy + 20	_	_	ns		
				With Prescaler	10	_	_	ns		
42*	Тт0Р	T0CKI Period			Greater of: 20 or <u>Tcy + 40</u> N	Ι	—	ns	N = prescale value	
45*	T⊤1H	T1CKI High Time	Synchronous, I	No Prescaler	0.5 Tcy + 20	—		ns		
			Synchronous, v	with Prescaler	15	—	—	ns		
			Asynchronous		30	_	_	ns		
46*	TT1L	T1CKI Low Time	Synchronous, I	No Prescaler	0.5 Tcy + 20	—	_	ns		
			Synchronous, v	with Prescaler	15	—	_	ns		
			Asynchronous		30	_	_	ns		
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	Ι	_	ns	N = prescale value	
			Asynchronous		60	_	_	ns		
48	FT1	Secondary Oscillator Input Frequency Range (Oscillator enabled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz			
49*	TCKEZTMR1	Delay from External Clock Edge to Timer Increment			2 Tosc	—	7 Tosc	—	Timers in Sync mode	

These parameters are characterized but not tested. *

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

FIGURE 30-11: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC16LF1508/9 ONLY

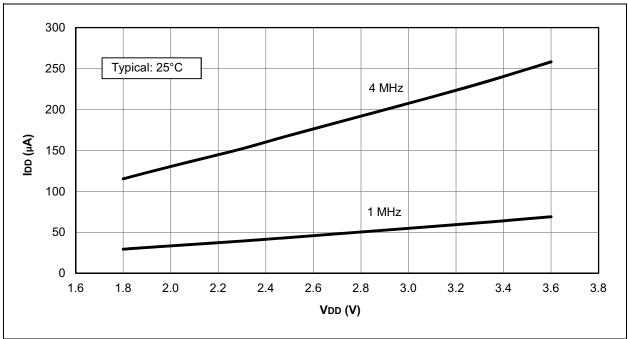


FIGURE 30-12: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC16LF1508/9 ONLY

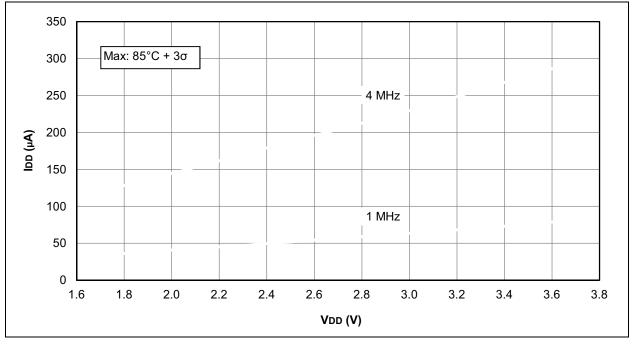


FIGURE 30-75: LOW-POWER SLEEP MODE, WAKE PERIOD WITH HFINTOSC SOURCE, VREGPM = 1, PIC16F1508/9 ONLY

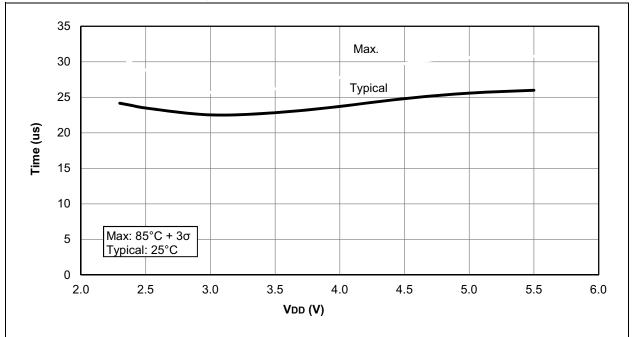
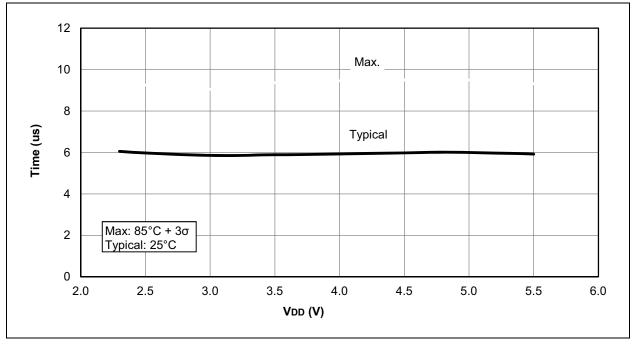



FIGURE 30-76: SLEEP MODE, WAKE PERIOD WITH HFINTOSC SOURCE, VREGPM = 0, PIC16F1508/9 ONLY

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-918-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.