

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1508t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Data Memory Organization

The data memory is partitioned in 32 memory banks with 128 bytes in a bank. Each bank consists of (Figure 3-2):

- 12 core registers
- 20 Special Function Registers (SFR)
- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

The active bank is selected by writing the bank number into the Bank Select Register (BSR). Unimplemented memory will read as '0'. All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). See **Section 3.6 "Indirect Addressing"** for more information.

Data memory uses a 12-bit address. The upper five bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

3.3.1 CORE REGISTERS

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses x00h/x08h through x0Bh/x8Bh). These registers are listed below in Table 3-2. For detailed information, see Table 3-8.

TARI E 3-2.	CORE REGISTERS
IADLE J-Z.	CORE REGISTERS

Addresses	BANKx
x00h or x80h	INDF0
x01h or x81h	INDF1
x02h or x82h	PCL
x03h or x83h	STATUS
x04h or x84h	FSR0L
x05h or x85h	FSR0H
x06h or x86h	FSR1L
x07h or x87h	FSR1H
x08h or x88h	BSR
x09h or x89h	WREG
x0Ah or x8Ah	PCLATH
0Bh or x8Bh	INTCON

3.3.5 DEVICE MEMORY MAPS

The memory maps for Bank 0 through Bank 31 are shown in the tables in this section.

TABLE 3-3: PIC16(L)F1508 MEMORY MAP, BANK 0-7

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers														
	(Table 3-2)														
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	_	30Ch	_	38Ch	—
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	—	38Dh	_
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	_	28Eh	_	30Eh	_	38Eh	—
00Fh	—	08Fh		10Fh	—	18Fh	—	20Fh	—	28Fh	—	30Fh	—	38Fh	
010h	—	090h	_	110h	—	190h	—	210h	—	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	PMADRL	211h	SSP1BUF	291h	—	311h	—	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	PMADRH	212h	SSP1ADD	292h	—	312h	—	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	PMDATL	213h	SSP1MSK	293h	—	313h	—	393h	IOCAF
014h	_	094h	_	114h	CM2CON1	194h	PMDATH	214h	SSP1STAT	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	PMCON1	215h	SSP1CON1	295h	-	315h	-	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	SSP1CON2	296h	-	316h	-	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON	217h	SSP1CON3	297h	_	317h	_	397h	_
018h	T1CON	098h	_	118h	DAC1CON0	198h		218h	_	298h	_	318h	_	398h	
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RCREG	219h	—	299h	_	319h	_	399h	—
01Ah	TMR2	09Ah	OSCSTAT	11Ah	—	19Ah	TXREG	21Ah	—	29Ah	_	31Ah	—	39Ah	_
01Bh	PR2	09Bh	ADRESL	11Bh	—	19Bh	SPBRG	21Bh	—	29Bh	_	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	_	19Ch	SPBRGH	21Ch	—	29Ch	—	31Ch	—	39Ch	—
01Dh	_	09Dh	ADCON0	11Dh	APFCON	19Dh	RCSTA	21Dh	_	29Dh	_	31Dh	_	39Dh	—
01Eh	—	09Eh	ADCON1	11Eh	_	19Eh	TXSTA	21Eh	—	29Eh	—	31Eh	—	39Eh	—
01Fh	-	09Fh	ADCON2	11Fh	_	19Fh	BAUDCON	21Fh	-	29Fh	-	31Fh	-	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General		General		General										
	Purpose		Purpose		Purpose		Unimplemented								
	Register		Register		Register		Read as '0'								
	80 Bytes		80 Bytes		80 Bytes										
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h	Common RAM	170h	Common RAM	1F0h	Common RAM	270h	Common RAM	2F0h	Common RAM	370h	Common RAM	3F0h	Common RAM
	Common RAM		(Accesses												
	2.5		70h – 7Fh)												
07Fh		0FFh	í í	17Fh	,	1FFh	,	27Fh	,	2FFh	,	37Fh	,	3FFh	í í

Legend: = Unimplemented data memory locations, read as '0'.

PIC16(L)F1508/9

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	1										
F8Ch — FE3h	_	Unimplemen	Jnimplemented								-
FE4h	STATUS_ SHAD	_		_	—	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	:uuu
FE5h	WREG_ SHAD	Working Reg	Norking Register Shadow xxxx								uuuu uuuu
FE6h	BSR_ SHAD	_	— — Bank Select Register Shadow							x xxxx	:u uuuu
FE7h	PCLATH_ SHAD	_	Program Counter Latch High Register Shadow							-xxx xxx	uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data	Indirect Data Memory Address 0 Low Pointer Shadow							uuuu uuuu	
FE9h	FSR0H_ SHAD	Indirect Data	ndirect Data Memory Address 0 High Pointer Shadow xxxx							XXXX XXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data	ndirect Data Memory Address 1 Low Pointer Shadow							XXXX XXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data	Indirect Data Memory Address 1 High Pointer Shadow							XXXX XXX	uuuu uuuu
FECh		Unimplemen	ted								_
FEDh	STKPTR	-	—	—	Current Stat	ck Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Low byte							XXXX XXXX	uuuu uuuu
FEFh	TOSH	—	Top-of-Stack	High byte						-xxx xxxx	-uuu uuuu

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 29.0 "Electrical Specifications"** for the LFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
10		Awake	Active
10	X	Sleep	Disabled
0.1	1	х	Active
UT	0	х	Disabled
00	Х	х	Disabled

TABLE 9-1: WDT OPERATING MODES

9.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- · Any Reset
- CLRWDT instruction is executed
- Device enters Sleep
- · Device wakes up from Sleep
- Oscillator fail
- WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is cleared again.

The WDT remains clear until the OST, if enabled, completes. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. The RWDT bit in the PCON register can also be used. See Section 3.0 "Memory Organization" for more information.

TABLE 9-2:	WDT CLEARING CONDITIONS
------------	-------------------------

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST		
Change INTOSC divider (IRCF bits)	Unaffected		

PIC16(L)F1508/9

FIGURE 10-6: FLASH MEMORY WRITE FLOWCHART

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u		
—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged		x = Bit is unknown		-n/n = Value a	at POR and BOF	R/Value at all o	ther Resets		
'1' = Bit is set	İ.	'0' = Bit is cle	ared						
bit 7-6	Unimplemen	ted: Read as '	0'						
hit 5.4 LATA $-5 \cdot 4 > \cdot PA < 5 \cdot 4 > \cdot Quite ut Later Value hite(1)$									

REGISTER 11-4: LATA: PORTA DATA LATCH REGISTER

- bit 5-4 LATA<5:4>: RA<5:4> Output Latch Value bits⁽¹⁾
- bit 3 Unimplemented: Read as '0'
- bit 2-0 LATA<2:0>: RA<2:0> Output Latch Value bits⁽¹⁾
- **Note 1:** Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

REGISTER 11-5: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	U-0	R/W-1/1	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5	Unimplemented: Read as '0'
bit 4	 ANSA4: Analog Select between Analog or Digital Function on pins RA4, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>: Analog Select between Analog or Digital Function on pins RA<2:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
Note 1.	When setting a pin to an analog input the corresponding TRIS bit must be set to Input mode in order to

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

13.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- · Comparator positive input
- · Comparator negative input

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

13.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the comparator modules. Reference **Section 17.0 "Comparator Module"** for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

13.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See the FVR Stabilization Period characterization graph, Figure 30-64.

FIGURE 13-1: VOLTAGE REFERENCE BLOCK DIAGRAM

TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.
LDO	All PIC16F1508/9 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

21.4.9 ACKNOWLEDGE SEQUENCE

The ninth SCLx pulse for any transferred byte in I^2C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDAx line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (ACK) is an active-low signal, pulling the SDAx line low indicated to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit of the SSPxCON2 register.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit of the SSPxCON2 register is set/cleared to determine the response.

Slave hardware will generate an ACK response if the AHEN and DHEN bits of the SSPxCON3 register are clear.

There are certain conditions where an \overline{ACK} will not be sent by the slave. If the BF bit of the SSPxSTAT register or the SSPOV bit of the SSPxCON1 register are set when a byte is received.

When the module is addressed, after the eighth falling edge of SCLx on the bus, the ACKTIM bit of the SSPxCON3 register is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is enabled.

21.5 I²C Slave Mode Operation

The MSSP Slave mode operates in one of four modes selected in the SSPM bits of SSPxCON1 register. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

21.5.1 SLAVE MODE ADDRESSES

The SSPxADD register (Register 21-6) contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSP Mask register (Register 21-5) affects the address matching process. See **Section21.5.9** "**SSPx Mask Register**" for more information.

21.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

21.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSbs of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCLx is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCLx is held low until SSPxADD is updated to receive a high byte again. When SSPxADD is updated the UA bit is cleared. This ensures the module is ready to receive the high address byte on the next communication.

A high and low address match as a write request is required at the start of all 10-bit addressing communication. A transmission can be initiated by issuing a Restart once the slave is addressed, and clocking in the high address with the R/W bit set. The slave hardware will then acknowledge the read request and prepare to clock out data. This is only valid for a slave after it has received a complete high and low address byte match.

21.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPxSTAT register is cleared. The received address is loaded into the SSPxBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPxSTAT register is set, or bit SSPOV of the SSPxCON1 register is set. The BOEN bit of the SSPxCON3 register modifies this operation. For more information see Register 21-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSPxIF, must be cleared by software.

When the SEN bit of the SSPxCON2 register is set, SCLx will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPxCON1 register, except sometimes in 10-bit mode. See **Section21.2.3 "SPI Master Mode"** for more detail.

21.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 7-bit Addressing mode. Figure 21-14 and Figure 21-15 are used as visual references for this description.

PIC16(L)F1508/9

R/W-0/0	R-0/0	R/W-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/S/HS-0/0	R/W/HS-0/0	
GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	
bit 7	bit 7 bit							
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared	HC = Cleared	d by hardware	S = User set		
bit 7	GCEN: Gene	eral Call Enable	e bit (in I ² C Sla	ve mode only)				
	1 = Enable in	iterrupt when a	general call a	ddress (0x00 d	or 00h) is receiv	ed in the SSP>	κSR	
1.11 O		call address dis						
DIT 6	ACKSTAT: A	cknowledge St	atus dit (in I-C	mode only)				
	0 = Acknowle	edge was not recei	ved					
bit 5	ACKDT: Ack	nowledge Data	bit (in I ² C mo	de only)				
	In Receive m	ode:						
	Value transm	itted when the	user initiates a	an Acknowledg	je sequence at t	the end of a re	ceive	
	1 = Not Acknowle	owledge						
hit 4		suye mowledge Seg	uence Enable	hit (in I ² C Mas	ter mode only)			
	In Master Re	ceive mode:			ter mode omy)			
	1 = Initiate /	Acknowledge	sequence on	SDAx and S	CLx pins, and	transmit ACI	KDT data bit.	
	Automat	ically cleared b	y hardware.					
	0 = Acknowl	edge sequence	e idle					
bit 3	RCEN: Rece	ive Enable bit (in I ² C Master	mode only)				
	\perp = Enables I 0 = Receive i	Receive mode	tor I-C					
bit 2	PEN: Stop Co	ondition Enable	e bit (in I ² C Ma	ster mode only	V)			
2	SCKx Releas	se Control:			<i>,</i>			
	1 = Initiate St	top condition or	n SDAx and S	CLx pins. Auto	matically cleare	d by hardware		
	0 = Stop cond	dition idle						
bit 1	RSEN: Repeated Start Condition Enable bit (in I ² C Master mode only)							
	 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Automatically cleared by hardware. 0 = Repeated Start condition idle 							
bit 0	SEN: Start C	ondition Enable	e/Stretch Enab	le bit				
	In Master mo	de:		o				
	1 = Initiate St0 = Start cond	art condition of	n SDAx and S	CLx pins. Auto	matically cleare	d by hardware		
	In Slave mod	e:						
	1 = Clock stre	<u>et</u> ching is enab	led for both sla	ave transmit ar	nd slave receive	e (stretch enabl	ed)	
	0 = Clock stre	etching is disat	oled					
				-				

REGISTER 21-3: SSPxCON2: SSP CONTROL REGISTER 2⁽¹⁾

Note 1: For bits ACKEN, RCEN, PEN, RSEN, SEN: If the I²C module is not in the Idle mode, this bit may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

- 22.1.2.8 Asynchronous Reception Set-up:
- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- 4. If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit reception is desired, set the RX9 bit.
- 6. Enable reception by setting the CREN bit.
- 7. The RCIF interrupt flag bit will be set when a character is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 8. Read the RCSTA register to get the error flags and, if 9-bit data reception is enabled, the ninth data bit.
- 9. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register.
- 10. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.

22.1.2.9 9-bit Address Detection Mode Set-up

This mode would typically be used in RS-485 systems. To set up an Asynchronous Reception with Address Detect Enable:

- Initialize the SPBRGH, SPBRGL register pair and the BRGH and BRG16 bits to achieve the desired baud rate (see Section22.4 "EUSART Baud Rate Generator (BRG)").
- 2. Clear the ANSEL bit for the RX pin (if applicable).
- 3. Enable the serial port by setting the SPEN bit. The SYNC bit must be clear for asynchronous operation.
- If interrupts are desired, set the RCIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. Enable 9-bit reception by setting the RX9 bit.
- 6. Enable address detection by setting the ADDEN bit.
- 7. Enable reception by setting the CREN bit.
- The RCIF interrupt flag bit will be set when a character with the ninth bit set is transferred from the RSR to the receive buffer. An interrupt will be generated if the RCIE interrupt enable bit was also set.
- 9. Read the RCSTA register to get the error flags. The ninth data bit will always be set.
- 10. Get the received eight Least Significant data bits from the receive buffer by reading the RCREG register. Software determines if this is the device's address.
- 11. If an overrun occurred, clear the OERR flag by clearing the CREN receiver enable bit.
- 12. If the device has been addressed, clear the ADDEN bit to allow all received data into the receive buffer and generate interrupts.

FIGURE 22-5: ASYNCHRONOUS RECEPTION

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		R-0/0	R-0/0	R-0/0
SPEN	RX9	SREN	CREN	ADDEN		FERR	OERR	RX9D
bit 7								bit C
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimple	eme	ented bit, rea	d as '0'	
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value	e at	POR and BC	OR/Value at all o	other Resets
'1' = Bit is set	t	'0' = Bit is cle	ared					
bit 7	SPEN: Seria	I Port Enable b	it					
	1 = Serial po 0 = Serial po	ort enabled (con ort disabled (he	nfigures RX/D ld in Reset)	T and TX/CK	pins	s as serial po	ort pins)	
bit 6	RX9: 9-bit Re	eceive Enable I	oit					
	1 = Selects 0 = Selects	9-bit reception 8-bit reception						
bit 5	SREN: Singl	e Receive Enal	ole bit					
	<u>Asynchronou</u>	<u>is mode</u> :						
	Don't care							
	Synchronous	<u>s mode – Maste</u>	<u>er</u> :					
	\perp = Enables 0 = Disables	single receive						
	This bit is cle	ared after rece	ption is compl	ete.				
	Synchronous	s mode – Slave						
	Don't care							
bit 4	CREN: Cont	inuous Receive	Enable bit					
	Asynchronou	<u>is mode</u> :						
	1 = Enables 0 = Disables	receiver						
	Synchronous	s mode:						
	1 = Enables	continuous rec	eive until ena	ble bit CREN	is c	leared (CRE	N overrides SR	EN)
	0 = Disables	s continuous re	ceive			· ·		
bit 3	ADDEN: Add	dress Detect Er	able bit					
	<u>Asynchronou</u>	<u>is mode 9-bit (F</u>	RX9 = 1):					
	1 = Enables	address detec	tion, enable in	terrupt and lo	ad t	he receive b	uffer when RSF	R<8> is set
	0 = Disables	s address delec	2X9 = 0) [.]	are received	and	ninth dit car	i be used as pa	inty bit
	Don't care		<u>0.00_01</u> .					
bit 2	FERR: Fram	ing Error bit						
	1 = Framing	error (can be u	pdated by rea	ading RCREG	G reg	gister and red	ceive next valid	byte)
	0 = No fram	ing error		-				
bit 1	OERR: Over	run Error bit						
	1 = Overrun	error (can be c	leared by clea	aring bit CREI	N)			
h:+ 0		run error	Detr					
dit U	RX9D: Ninth	bit of Received	i Data	6 and at 10			C	
	This can be a	address/data bi	t or a parity bi	t and must be	e cal	culated by u	ser firmware.	

REGISTER 22-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

U-0	R/W-x/u	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	
		LCxD2S<2:0>(1)	—	L	.CxD1S<2:0> ⁽¹)	
bit 7							bit 0	
Legend:								
R = Readable	R = Readable bit W = Writable bit			U = Unimple	mented bit, read	1 as '0'		
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set '0' = Bit is cleared								
L								
bit 7	Unimpleme	Unimplemented: Read as '0'						
bit 6-4	LCxD2S<2:	0>: Input Data 2	Selection Co	ntrol bits ⁽¹⁾				
	111 = LCx	111 = LCx in[11] is selected for lcxd2						
	110 = LCx	in[10] is selecte	d for lcxd2					
	101 = LCx_	in[9] is selected	for lcxd2					
	100 = LCx_	in[8] is selected	for lcxd2					
	011 = LCx_	in[7] is selected	for lcxd2					
	010 = LCx_	_in[6] is selected	for lcxd2					
	001 = LCx_	in[5] is selected	for lcxd2					
	000 = LCx_	_in[4] is selected	for lcxd2					
bit 3	Unimpleme	nted: Read as '	0'					
bit 2-0	LCxD1S<2:	0>: Input Data 1	Selection Co	ntrol bits ⁽¹⁾				
	111 = LCx	in[7] is selected	for lcxd1					
	110 = LCx	110 = LCx in[6] is selected for load						
	101 = LCx	101 = LCx in[5] is selected for lcxd1						
	100 = LCx	100 = LCx in[4] is selected for lcxd1						
	011 = LCx	in[3] is selected	for lcxd1					
	010 = LCx_	in[2] is selected	for lcxd1					
	001 = LCx_	in[1] is selected	for lcxd1					
	$000 = LCx_in[0]$ is selected for lcxd1							

REGISTER 24-3: CLCxSEL0: MULTIPLEXER DATA 1 AND 2 SELECT REGISTER

Note 1: See Table 24-1 for signal names associated with inputs.

TABLE 24-3:	SUMMARY OF REGISTERS ASSOCIATED WITH CLCx
-------------	---

Name	Bit7	Bit6	Bit5	Bit4	Blt3	Bit2	Bit1	Bit0	Register on Page
ANSELA	_		—	ANSA4	—	ANSA2	ANSA1	ANSA0	110
ANSELB	_	_	ANSB5	ANSB4	—	—	—	—	114
ANSELC	ANSC7	ANSC6	—	—	ANSC3	ANSC2	ANSC1	ANSC0	118
CLC1CON	LC1EN	LC10E	LC10UT	LC1INTP	LC1INTN	L	C1MODE<2:0	>	263
CLCDATA	_	_	_	_	_	MLC3OUT	MLC2OUT	MLC1OUT	271
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	267
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	268
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	269
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	270
CLC1POL	LC1POL	_	_	_	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	264
CLC1SEL0	_		LC1D2S<2:0>		—		LC1D1S<2:0>		265
CLC1SEL1	_		LC1D4S<2:0>		—		LC1D3S<2:0>		266
CLC2CON	LC2EN	LC2OE	LC2OUT	LC2INTP	LC2INTN	L	C2MODE<2:0	>	263
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	267
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	268
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	269
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	270
CLC2POL	LC2POL	_	—	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	264
CLC2SEL0	_		LC2D2S<2:0>		—		LC2D1S<2:0>		265
CLC2SEL1	_		LC2D4S<2:0>		—	LC2D3S<2:0>			266
CLC3CON	LC3EN	LC3OE	LC3OUT	LC3INTP	LC3INTN	LC3MODE<2:0>			263
CLC3GLS0	LC3G1D4T	LC3G1D4N	LC3G1D3T	LC3G1D3N	LC3G1D2T	LC3G1D2N	LC3G1D1T	LC3G1D1N	267
CLC3GLS1	LC3G2D4T	LC3G2D4N	LC3G2D3T	LC3G2D3N	LC3G2D2T	LC3G2D2N	LC3G2D1T	LC3G2D1N	268
CLC3GLS2	LC3G3D4T	LC3G3D4N	LC3G3D3T	LC3G3D3N	LC3G3D2T	LC3G3D2N	LC3G3D1T	LC3G3D1N	269
CLC3GLS3	LC3G4D4T	LC3G4D4N	LC3G4D3T	LC3G4D3N	LC3G4D2T	LC3G4D2N	LC3G4D1T	LC3G4D1N	270
CLC3POL	LC3POL	_	_	_	LC3G4POL	LC3G3POL	LC3G2POL	LC3G1POL	264
CLC3SEL0	_		LC3D2S<2:0>		—		LC3D1S<2:0>	•	265
CLC3SEL1	_		LC3D4S<2:0>		—		LC3D3S<2:0>		266
CLC4CON	LC4EN	LC4OE	LC4OUT	LC4INTP	LC4INTN	L	C4MODE<2:0	>	263
CLC4GLS0	LC4G1D4T	LC4G1D4N	LC4G1D3T	LC4G1D3N	LC4G1D2T	LC4G1D2N	LC4G1D1T	LC4G1D1N	267
CLC4GLS1	LC4G2D4T	LC4G2D4N	LC4G2D3T	LC4G2D3N	LC4G2D2T	LC4G2D2N	LC4G2D1T	LC4G2D1N	268
CLC4GLS2	LC4G3D4T	LC4G3D4N	LC4G3D3T	LC4G3D3N	LC4G3D2T	LC4G3D2N	LC4G3D1T	LC4G3D1N	269
CLC4GLS3	LC4G4D4T	LC4G4D4N	LC4G4D3T	LC4G4D3N	LC4G4D2T	LC4G4D2N	LC4G4D1T	LC4G4D1N	270
CLC4POL	LC4POL	_	_	_	LC4G4POL	LC4G3POL	LC4G2POL	LC4G1POL	264
CLC4SEL0	_		LC4D2S<2:0>		—		LC4D1S<2:0>	•	265
CLC4SEL1	_		LC4D4S<2:0>		_		LC4D3S<2:0>		266
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
PIE3	_		—	—	CLC4IE	CLC3IE	CLC2IE	CLC1IE	78
PIR3	-	_	—	—	CLC4IF	CLC3IF	CLC2IF	CLC1IF	81
TRISA	-	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	109
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—	113
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	117

 Legend:
 — = unimplemented read as '0',. Shaded cells are not used for CLC module.

 Note
 1:
 Unimplemented, read as '1'.

25.9 Register Definitions: NCOx Control Registers

REGISTER 25-1: NCOxCON: NCOx CONTROL REGISTER

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
NxEN	NxOE	NxOUT	NxPOL				NxPFM
bit 7		•		2		•	bit 0
Legend:							
R = Readable bi	t	W = Writable bi	t	U = Unimpleme	ented bit, read as	; 'O'	
u = Bit is unchar	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/V	/alue at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7	bit 7 NxEN: NCOx Enable bit 1 = NCOx module is enabled 0 = NCOx module is disabled						
bit 6	NxOE: NCOx 0 1 = NCOx outp 0 = NCOx outp	Dutput Enable bit ut pin is enabled ut pin is disablec	t I				
bit 5	bit 5 NxOUT: NCOx Output bit 1 = NCOx output is high 0 = NCOx output is low						
bit 4 NxPOL: NCOx Polarity bit 1 = NCOx output signal is active low (inverted) 0 = NCOx output signal is active high (non-inverted)							
bit 3-1	bit 3-1 Unimplemented: Read as '0'						
bit 0	<pre>bit 0 NxPFM: NCOx Pulse Frequency Mode bit 1 = NCOx operates in Pulse Frequency mode 0 = NCOx operates in Fixed Duty Cycle mode</pre>						

REGISTER 25-2: NCOxCLK: NCOx INPUT CLOCK CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
	NxPWS<2:0>(1, 2)	1	—	—	—	NxCK	S<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 NxPWS<2:0>: NCOx Output Pulse Width Select bits^(1, 2)

- 111 = 128 NCOx clock periods
- 110 = 64 NCOx clock periods
- 101 = 32 NCOx clock periods
- 100 = 16 NCOx clock periods
- 011 = 8 NCOx clock periods 010 = 4 NCOx clock periods
- 010 = 4 NCOx clock periods 001 = 2 NCOx clock periods
- 001 2 NCOX clock periods
- 000 = 1 NCOx clock periods
- bit 4-2 Unimplemented: Read as '0'
- bit 1-0 NxCKS<1:0>: NCOx Clock Source Select bits
 - 11 = NCO1CLK pin
 - 10 = LC1_out
 - 01 = Fosc
 - 00 = HFINTOSC (16 MHz)

Note 1: NxPWS applies only when operating in Pulse Frequency mode.

2: If NCOx pulse width is greater than NCO_overflow period, operation is indeterminate.

PIC16(L)F1508/9

REGISTER 26-4: CWGxDBR: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) RISING DEAD-BAND COUNT REGISTER

	02/1						
U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
_	_			CWGxD	BR<5:0>		
bit 7		·					bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimpler	nented bit, read	l as '0'			
u = Bit is unchanged x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	other Resets		
'1' = Bit is se	et	'0' = Bit is cleared q = Value depends on condition		ion			
bit 7-6	Unimplem	ented: Read as '	0'				
bit 5-0	CWGxDBR	2<5:0>: Complem	nentary Wavef	form Generator	(CWGx) Rising	Counts	
	11 1111 =	63-64 counts of	dead band				
	11 1110 =	62-63 counts of	dead band				
	•						
	•						
	•						
	00 0010 -	2.2 counts of do	ad band				

 $00\ 0010 = 2-3$ counts of dead band

00 0001 = 1-2 counts of dead band

00 0000 = 0 counts of dead band

REGISTER 26-5: CWGxDBF: COMPLEMENTARY WAVEFORM GENERATOR (CWGx) FALLING DEAD-BAND COUNT REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	_			CWGxD	BF<5:0>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-6	Unimplemented: Read as '0'
bit 5-0	CWGxDBF<5:0>: Complementary Wavefor

CWGxDBF<5:0>: Complementary Waveform Generator (CWGx) Falling Counts

11 1111 = 63-64 counts of dead band

- 11 1110 = 62-63 counts of dead band
- •
- •
- 00 0010 = 2-3 counts of dead band
- 00 0001 = 1-2 counts of dead band
- 00 0000 = 0 counts of dead band. Dead-band generation is bypassed.

TABLE 29-8:	OSCILLATOR PARAMETERS
-------------	------------------------------

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%		16.0		MHz	VDD = 3.0V, TA = 25°C, (Note 2)
OS09	LFosc	Internal LFINTOSC Frequency	_		31		kHz	(Note 3)
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	_		5	15	μS	
OS10A*	TLFOSC ST	LFINTOSC Wake-up from Sleep Start-up Time	—		0.5		ms	$-40^\circ C \le T \texttt{A} \le +125^\circ C$

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

- 2: See Figure 29-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature", Figure 30-72: "HFINTOSC Accuracy Over Temperature, VDD = 1.8V, PIC16LF1508/9 Only", and Figure 30-73: "HFINTOSC Accuracy Over Temperature, 2.3V ≤ VDD ≤ 5.5V".
- 3: See Figure 30-70: "LFINTOSC Frequency over VDD and Temperature, PIC16LF1508/9 Only", and Figure 30-71: "LFINTOSC Frequency over VDD and Temperature, PIC16F1508/9".

TABLE 29-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	NR	Resolution	—	—	10	bit		
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V	
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error	_	±1	±2.5	LSb	Vref = 3.0V	
AD05	Egn	Gain Error	_	±1	±2.0	LSb	VREF = 3.0V	
AD06	VREF	Reference Voltage	1.8	—	Vdd	V	VREF = (VRPOS - VRNEG) (Note 4)	
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V		
AD08	Zain	Recommended Impedance of Analog Voltage Source	_	_	10	kΩ	Can go higher if external 0.01µF capacitor is present on input pin.	
* These consistences are also as the statistical								

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not t tested.

Note 1:Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: See Section 30.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

4: ADC VREF is selected by ADPREF<0> bit.

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Number of Terminals	N		20				
Pitch	е		0.50 BSC				
Overall Height	Α	0.45	0.50	0.55			
Standoff	A1	0.00	0.02	0.05			
Terminal Thickness	A3	0.127 REF					
Overall Width	E	4.00 BSC					
Exposed Pad Width	E2	2.60	2.70	2.80			
Overall Length	D	4.00 BSC					
Exposed Pad Length	D2	2.60	2.70	2.80			
Terminal Width	b	0.20	0.25	0.30			
Terminal Length	L	0.30	0.40	0.50			
Terminal-to-Exposed-Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-255A Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-918-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.