

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VFQFN Exposed Pad
Supplier Device Package	20-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1509-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1508/9 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description			
RA0/AN0/C1IN+/DAC1OUT1/	RA0	TTL	CMOS	General purpose I/O.			
ICSPDAT/ICDDAT	AN0	AN	—	ADC Channel input.			
	C1IN+	AN		Comparator positive input.			
	DAC10UT1		AN	Digital-to-Analog Converter output.			
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.			
	ICDDAT	ST	CMOS	In-Circuit Debug data.			
RA1/AN1/CLC4IN1/VREF+/	RA1	TTL	CMOS	General purpose I/O.			
C1IN0-/C2IN0-/ICSPCLK/	AN1	AN	_	ADC Channel input.			
ICDCLK	CLC4IN1	ST	_	Configurable Logic Cell source input.			
	VREF+	AN		ADC Positive Voltage Reference input.			
	C1IN0-	AN	_	Comparator negative input.			
	C2IN0-	AN	_	Comparator negative input.			
	ICSPCLK	ST		ICSP Programming Clock.			
	ICDCLK	ST		In-Circuit Debug Clock.			
RA2/AN2/C1OUT/DAC1OUT2/	RA2	ST	CMOS	General purpose I/O.			
TOCKI/INT/PWM3/CLC1/	AN2	AN	_	ADC Channel input.			
CWG1FLI	C1OUT	_	CMOS	Comparator output.			
	DAC10UT2	_	AN	Digital-to-Analog Converter output.			
	T0CKI	ST	_	Timer0 clock input.			
	INT	ST		External interrupt.			
	PWM3	_	CMOS	PWM output.			
	CLC1	_	CMOS	Configurable Logic Cell source output.			
	CWG1FLT	ST		Complementary Waveform Generator Fault input.			
RA3/CLC1IN0/VPP/T1G ⁽¹⁾ /SS ⁽¹⁾ /	RA3	TTL		General purpose input with IOC and WPU.			
MCLR	CLC1IN0	ST		Configurable Logic Cell source input.			
	VPP	ΗV		Programming voltage.			
	T1G	ST		Timer1 Gate input.			
	SS	ST		Slave Select input.			
	MCLR	ST	_	Master Clear with internal pull-up.			
RA4/AN3/SOSCO/	RA4	TTL	CMOS	General purpose I/O.			
CLKOUT/T1G	AN3	AN		ADC Channel input.			
	SOSCO	XTAL	XTAL	Secondary Oscillator Connection.			
	CLKOUT	_	CMOS	Fosc/4 output.			
	T1G	ST	_	Timer1 Gate input.			
RA5/CLKIN/T1CKI/NCO1CLK/	RA5	TTL	CMOS	General purpose I/O.			
SOSCI	CLKIN	CMOS	—	External clock input (EC mode).			
	T1CKI	ST	—	Timer1 clock input.			
	NCO1CLK	ST	—	Numerically Controlled Oscillator Clock source input.			
	SOSCI	XTAL	XTAL	Secondary Oscillator Connection.			
Legend: AN = Analog input or c TTL = TTL compatible i	output CMOS nput ST	= CMOS = Schmit	compatil tt Trigger	ble input or output OD = Open-Drain input with CMOS levels I^2C = Schmitt Trigger input with I^2C			

HV = High Voltage XTAL = Crystal

 Schmitt Trigger input with levels

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

TABLE 3-5: PIC16(L)F1508/9 MEMORY MAP, BANK 8-23

	BANK 8		BANK 9		BANK 10		BANK 11		BANK 12		BANK 13		BANK 14		BANK 15
400h		480h		500h		580h		600h		680h		700h		780h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
40Bh		48Bh		50Bh		58Bh		60Bh		68Bh		70Bh		78Bh	
40Ch	—	48Ch	—	50Ch	—	58Ch	—	60Ch	—	68Ch	-	70Ch		78Ch	—
40Dh	_	48Dh	—	50Dh	—	58Dh	—	60Dh	—	68Dh	—	70Dh	—	78Dh	—
40Eh	_	48Eh	_	50Eh	_	58Eh	_	60Eh	_	68Eh	_	70Eh		78Eh	—
40Fh	_	48Fh	_	50Fh	_	58Fh	_	60Fh	_	68Fh	_	70Fh		78Fh	—
410h	_	490h	_	510h	_	590h	_	610h	—	690h	_	710h		790h	—
411h	—	491h	_	511h	_	591h		611h	PWM1DCL	691h	CWG1DBR	711h	_	791h	
412h	—	492h	—	512h	—	592h	—	612h	PWM1DCH	692h	CWG1DBF	712h	—	792h	—
413h	—	493h	_	513h	_	593h		613h	PWM1CON	693h	CWG1CON0	713h	_	793h	
414h	—	494h	—	514h	—	594h	—	614h	PWM2DCL	694h	CWG1CON1	714h	—	794h	—
415h	—	495h	—	515h	—	595h	—	615h	PWM2DCH	695h	CWG1CON2	715h	—	795h	—
416h	—	496h	—	516h	—	596h	—	616h	PWM2CON	696h	—	716h	—	796h	—
417h	—	497h	_	517h	_	597h		617h	PWM3DCL	697h		717h	_	797h	
418h		498h	NCO1ACCL	518h	_	598h	_	618h	PWM3DCH	698h		718h	_	798h	_
419h	_	499h	NCO1ACCH	519h	_	599h		619h	PWM3CON	699h	_	719h	_	799h	_
41Ah	_	49Ah	NCO1ACCU	51Ah	_	59Ah		61Ah	PWM4DCL	69Ah	_	71Ah	_	79Ah	_
41Bh		49Bh	NCO1INCL	51Bh	—	59Bh	—	61Bh	PWM4DCH	69Bh	—	71Bh	—	79Bh	
41Ch	—	49Ch	NCO1INCH	51Ch	_	59Ch		61Ch	PWM4CON	69Ch		71Ch	_	79Ch	
41Dh		49Dh	—	51Dh	—	59Dh	—	61Dh	_	69Dh	—	71Dh	—	79Dh	
41Eh	_	49Eh	NCO1CON	51Eh	_	59Eh		61Eh	_	69Eh	_	71Eh	_	79Eh	_
41Fh		49Fh	NCO1CLK	51Fh	—	59Fh	—	61Fh	_	69Fh	—	71Fh	—	79Fh	
4200		4A011		5200		SAUN		62011		6A01		72011		7 AUN	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
46Fh		4FFh		56Fh		5EFh		66Fh		6FFh		76Fh		7FFh	
470h		4F0h		570h		5F0h		670h		6F0h		770h		7F0h	
	٨٥٥٥٥٥٥		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses		Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
47 C b	/011 //11	455h		FZEN		FFFh		675h	7011 7111	655h	7011 7111	7756		7556	7011 7111
47 FD		4660		57FN		SEEU		07FI		огги		//F0		7660	
_	BANK 16		BANK 17		BANK 18		BANK 19		BANK 20		BANK 21		BANK 22		BANK 23
800h		880h		900h		980h		A00h		A80h		B00h		B80h	
	Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)		Core Registers (Table 3-2)
80Bh		88Bh		90Bh		98Bh		A0Bh		A8Bh		B0Bh		B8Bh	
80Ch		88Ch		90Ch		98Ch		A0Ch		A8Ch		B0Ch		B8Ch	
	Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'		Unimplemented Read as '0'
86Fb		8FFh		96Fh		9EFh		A6Fh		AEFh		B6Fb		BEFh	
870h		8F0h		970h		9F0h		A70h		AF0h		B70h		BE0h	
01011	Accesses	51 511	Accesses	57011	Accesses	51 511	Accesses		Accesses		Accesses	5, 011	Accesses	5.01	Accesses
	70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh		70h – 7Fh
87Fh		8FFh		97Fh		9FFh		A7Fh		AFFh		B7Fb		BEEh	
01111		21111				21111						2		2	

Legend: = Unimplemented data memory locations, read as '0'.

4.2 Register Definitions: Configuration Words

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	U-1			
		FCMEN ⁽¹⁾	IESO ⁽¹⁾	CLKOUTEN	BOREI	N<1:0>(2)	_			
		bit 13					bit 8			
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
CP ⁽³⁾	MCLRE	PWRTE	WDT	E<1:0>		FOSC<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	P = Programm	able bit	U = Unimplem	ented bit, rea	d as '1'				
'0' = Bit is clea	ared	'1' = Bit is set		-n = Value whe	en blank or af	ter Bulk Erase				
bit 13	FCMEN: Fail- 1 = Fail-Safe 0 = Fail-Safe	Safe Clock Mo Clock Monitor is Clock Monitor is	nitor Enable t s enabled ⁽¹⁾ s disabled	bit						
bit 12	IESO: Internal External Switchover bit ⁽¹⁾ 1 = Internal/External Switchover (Two-Speed Start-up) mode is enabled 0 = Internal/External Switchover mode is disabled									
bit 11	CLKOUTEN: Clock Out Enable bit 1 = CLKOUT function is disabled. I/O function on the CLKOUT pin 0 = CLKOUT function is enabled on the CLKOUT pin									
bit 10-9	BOREN<1:0>: Brown-Out Reset Enable bits ⁽²⁾ 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the BORCON register 00 = BOR disabled									
bit 8	Unimplemen	ted: Read as '1	,							
bit 7	CP : Code Pro 1 = Program 0 = Program	otection bit ⁽³⁾ memory code p memory code p	rotection is d rotection is e	isabled nabled						
bit 6	$MCLRE: \overline{MCLR}/VPP \text{ Pin Function Select bit}$ $\frac{If LVP \text{ bit } = 1}{This \text{ bit is ignored.}}$ $\frac{If LVP \text{ bit } = 0}{1 = MCLR}$ $Weak \text{ pull-up enabled.}$									
bit 5	WPUA	A3 bit. ver-Up Timer Er	nable bit							
	1 = PWRT di 0 = PWRT er	sabled nabled								
bit 4-3	WDTE<1:0>: 11 = WDT en: 10 = WDT en: 01 = WDT con 00 = WDT dis	Watchdog Time abled abled while run ntrolled by the S abled	er Enable bits ning and disa SWDTEN bit i	bled in Sleep n the WDTCON	register					

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1

5.5 Fail-Safe Clock Monitor

The Fail-Safe Clock Monitor (FSCM) allows the device to continue operating should the external oscillator or external clock fail. If an oscillator mode is selected, the FSCM can detect oscillator failure any time after the Oscillator Start-up Timer (OST) has expired. When an external clock mode is selected, the FSCM can detect failure as soon as the device is released from Reset.

FSCM is enabled by setting the FCMEN bit in the Configuration Words. The FSCM is applicable to external oscillator modes (LP, XT, HS) and external clock modes (ECH, ECM, ECL, EXTRC) and the Secondary Oscillator (SOSC).

5.5.1 FAIL-SAFE DETECTION

The FSCM module detects a failed oscillator by monitoring falling clock edges and using LFINTOSC as a time base. See Figure 5-9. Detection of a failed oscillator will take 32 to 96 cycles of the LFINTOSC. Figure 5-10 shows a timing diagram of the FSCM module.

5.5.2 FAIL-SAFE OPERATION

When the external clock fails, the FSCM switches the CPU clock to an internal clock source and sets the OSFIF bit of the PIR2 register. The internal clock source is determined by the IRCF<3:0> bits in the OSCCON register.

When the OSFIF bit is set, an interrupt will be generated, if the OSFIE bit in the PIE2 register is enabled. The user's firmware in the Interrupt Service Routine (ISR) can then take steps to mitigate the problems that may arise from the failed clock.

The system clock will continue to be sourced from the internal clock source until the fail-safe condition has been cleared, see Section 5.5.3 "Fail-Safe Condition Clearing".

5.5.3 FAIL-SAFE CONDITION CLEARING

When a Fail-Safe condition exists, the user must take the following actions to clear the condition before returning to normal operation with the external source.

The next sections describe how to clear the Fail-Safe condition for specific clock selections (FOSC bits) and clock switching modes (SCS bit settings).

When a Fail-Safe condition occurs with the FOSC bits selecting external oscillator (FOSC<2:0> = HS, XT, LP) and the clock switch has been selected to run from the FOSC selection (SCS<1:0> = 00), the condition is cleared by performing the following procedure.

When SCS<1:0> = 00 (Running from FOSC selection)

SCS<1:0> = 1x:

Change the SCS bits in the OSCCON register to select the internal oscillator block. This resets the OST timer and allows it to operate again.

OSFIF = 0:

Clear the OSFIF bit in the PIR2 register.

SCS<1:0> = 00:

Change the SCS bits in the OSCCON register to select the FOSC Configuration Word clock selection. This will start the OST. The CPU will continue to operate from the internal oscillator until the OST count is reached. When OST expires, the clock module will switch to the external oscillator and the Fail-Safe condition will be cleared.

If the Fail-Safe condition still exists, the OSFIF bit will again be set by hardware.

5.5.3.2 External Clock with SCS<1:0> = 00

When a Fail-Safe condition occurs with the FOSC bits selecting external clock (FOSC<2:0> = ECH, ECM, ECL, EXTRC) and the clock switch has selected to run from the FOSC selection (SCS<1:0> = 00), the condition is cleared by performing the following procedure.

When SCS<1:0> = 00 (Running from FOSC selection)

SCS<1:0> = 1x:

Change the SCS bits in the OSCCON register to select the internal oscillator block. This resets the OST timer and allows it to operate again.

OSFIF = 0:

Clear the OSFIF bit in the PIR2 register.

11.8 Register Definitions: PORTC

REGISTER 11-12: PORTC: PORTC REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Valu			R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **RC<7:0>**: PORTC General Purpose I/O Pin bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 11-13: TRISC: PORTC TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISC<7:0>: PORTC Tri-State Control bits

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

REGISTER 11-14: LATC: PORTC DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATC7 | LATC6 | LATC5 | LATC4 | LATC3 | LATC2 | LATC1 | LATC0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATC<7:0>: PORTC Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTC are actually written to corresponding LATC register. Reads from PORTC register is return of actual I/O pin values.

TABLE 14-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE TEMPERATURE INDICATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR>1:0>		CDAFVR>1:0> ADFVR<1:0>		

Legend: Shaded cells are unused by the temperature indicator module.

FIGURE 17-2: SINGLE COMPARATOR

17.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 17-1) contain Control and Status bits for the following:

- Enable
- Output selection
- Output polarity
- Speed/Power selection
- Hysteresis enable
- Output synchronization

The CMxCON1 registers (see Register 17-2) contain Control bits for the following:

- · Interrupt enable
- · Interrupt edge polarity
- · Positive input channel selection
- Negative input channel selection

17.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

17.2.2 COMPARATOR POSITIVE INPUT SELECTION

Configuring the CxPCH<1:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN+ analog pin
- DAC1_output
- FVR buffer2
- Vss

See Section 13.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 16.0 "5-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

17.2.3 COMPARATOR NEGATIVE INPUT SELECTION

The CxNCH<2:0> bits of the CMxCON0 register direct one of the input sources to the comparator inverting input.

Note: To use CxIN+ and CxINx- pins as analog input, the appropriate bits must be set in the ANSEL register and the corresponding TRIS bits must also be set to disable the output drivers.

17.2.4 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

The synchronous comparator output signal (CxOUT_sync) is available to the following peripheral(s):

- Configurable Logic Cell (CLC)
- Analog-to-Digital Converter (ADC)
- Timer1

The asynchronous comparator output signal (CxOUT_async) is available to the following peripheral(s):

- Complementary Waveform Generator (CWG)
 - Note 1: The CxOE bit of the CMxCON0 register overrides the PORT data latch. Setting the CxON bit of the CMxCON0 register has no impact on the port override.
 - 2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

160KL 19-5.	TIMERT GATE SINGLE-FOLSE MC	
TMR1GE		
T1GPOL		
T1GSPM		
T1GG <u>O/</u> DONE		Cleared by hardware on falling edge of T1GVAL
t1g_in	rising edge of T1G	
T1CKI		
T1GVAL		
Timer1	N N + 1	N + 2
TMR1GIF	Cleared by software	 Set by hardware on falling edge of T1GVAL

21.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCKx)
- Serial Data Out (SDOx)
- Serial Data In (SDIx)
- Slave Select (SSx)

Figure 21-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 21-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 21-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDOx output pin which is connected to, and received by, the slave's SDIx input pin. The slave device transmits information out on its SDOx output pin, which is connected to, and received by, the master's SDIx input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDOx pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDOx pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

SSX Opinesi	\	 								./ ./ х
	-		,							: : :
()%8 = 0) 3()3.x										· · ·
(0X2 + 1) (X25 + 0)										
		 e e e	> < <	; ; ; ; ; , _ / ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		((() () () () () () () () () () () ()	: : : : : : : : : : : : : : : : : : :	5 : 5 : 2 :	: : : : :	• • •
	, , , , ,	, 7. <u></u> 	. / 196.0	7. 22. 4 	/. 1916-3 	> > >	. X. 195. 9		, (38,12 , //////	+ 3 2 5 5
- 1997-199 - 51.2000-100 		 , <i>14</i> 9. 		, 49- 		. <i>14</i> 	, <i>1</i> 9 		¢.	
	- - 	 9 9 9 19	s	: : :	· · · · · · · · · · · · · · · · · · ·	9 9 9 19		< ; < ; s ; s		
5397×520 05 3559×53039	: : 	 ((,	· · · ·	, , , ,		((,	, , , ,	, , , , , , ,	<i>1</i> 4	
Write Collision		 								

FIGURE 21-10: SPI MODE WAVEFORM (SLAVE MODE WITH CKE = 1)

21.6.7 I²C MASTER MODE RECEPTION

Master mode reception (Figure 21-29) is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSPx module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

21.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

21.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

21.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

21.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit of the SSPxCON2 register and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCLx, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxBUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Masters ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

FIGURE 22-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 22-1, Register 22-2 and Register 22-3, respectively.

When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

FIGURE 28-1: GENERAL FORMAT FOR INSTRUCTIONS

OPCODE	, , d	0	f (FILE #)	0
d = 0 for destine	tion W		. (
d = 1 for destina d = 1 for destina f = 7-bit file regis	tion f ster add	lress		
Bit-oriented file regis	ster op 0 9	erati 7	ons 6	0
OPCODE	b (Bľ	T #)	f (FILE #)
b = 3-bit bit addr f = 7-bit file regis	ess ster ado	lress		
Literal and control o	peratio	ons		
General				
13	8	7	L. (134 - 10 - 1)	0
OPCODE			K (literal)	
k = 8-bit immedia	ate valu	le		
CALL and GOTO instru	ctions o	only		
<u>13 11 10</u>)			0
OPCODE		k (l	iteral)	
k = 11-bit immed	iate va	lue		
MONTE D instruction only	,			
13	/	76		0
OPCODE			k (literal)	
k = 7-bit immedia	ate valu	le		
k = 7-bit immedia	ate valu	le		
K = 7-bit immedia	ate valu /	le		
K = 7-bit immedia	ate valu	ie į	5 4 k (literal	0
k = 7-bit immedia MOVLB instruction only 13 OPCODE	ate valu	ie į	5 4 k (literal	0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia	ate valu / ate valu	ie 	5 4 k (literal	0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only	ate valu / ate valu	ie ie	5 4 k (literal	0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13	ate valu / ate valu 9 8	ie į	5 4 k (literal	0)
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE	ate valu / ate valu 9 8	ie į	5 4 k (literal k (literal)	0)
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia	ate valu / ate valu 9 8 ate valu		5 4 k (literal k (literal)	0)
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction	ate valu / ate valu 9 8 ate valu	ne ie	5 4 k (literal k (literal)	0)
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13	ate valu / ate valu 9 8 ate valu ate valu ns 7	ie ie ue	5 4 k (literal k (literal) 5	0)
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE	ate valu ate valu 9 8 4 ate valu 1s 7	ue ue ue <u>6</u> n	5 4 k (literal k (literal) 5 k (literal	0) 0 0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE k = 6-bit immedia	ate valu ate valu 9 8 ate valu s 7 FSR ate valu	ue (5 4 k (literal k (literal) 5 k (literal	0) 0 0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE n = appropriate i k = 6-bit immedia FSR Increment instruction 13	ate valu ate valu 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8	ie ie ue 0 n	5 4 k (literal k (literal) 5 k (literal 3 2 1	0) 0)
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE n = appropriate : k = 6-bit immedia FSR Increment instruct 13 OPCODE	ate valu ate valu 9 8 ate valu ate valu rss 7 FSR ate valu tions	ue (5 4 k (literal) k (literal) 5 k (literal) 3 2 1 n m (m	0)) 0)) 0) 0
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE n = appropriate : k = 6-bit immedia FSR Increment instruct 13 OPCODE n = appropriate : m = 2-bit mode	ate valu ate valu 9 8 9 8 ate valu s FSR value	ue (5 4 k (literal) k (literal) 5 k (literal) 3 2 1 n m (n	0)) 0) 0)
k = 7-bit immedia MOVLB instruction only 13 OPCODE k = 5-bit immedia BRA instruction only 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE k = 9-bit immedia FSR Offset instruction 13 OPCODE n = appropriate : k = 6-bit immedia FSR Increment instruct 13 OPCODE n = appropriate : m = 2-bit mode OPCODE n = appropriate : m = 2-bit mode OPCODE n = appropriate : m = 2-bit mode	ate valu ate valu 9 8 ate valu 9 8 5 8 7 5 8 ate valu FSR ate value	ue (5 4 k (literal) 5 k (literal) 3 2 1 n m (n	0) 0 0

TABLE 29-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF	1508/9	Standard Operating Conditions (unless otherwise stated)							
PIC16F1	508/9								
Param.	Device		T 4		Unite		Conditions		
No.	Characteristics	MIN.	турт	wax.	Units	VDD	Note		
D010		-	8	20	μA	1.8	Fosc = 32 kHz,		
		—	10	25	μA	3.0	LP Oscillator, -40°C \leq TA \leq +85°C		
D010		_	15	31	μA	2.3	Fosc = 32 kHz,		
			17	33	μA	3.0	LP Oscillator, $40^{\circ}C < T_{0} < \pm 85^{\circ}C$		
		—	21	39	μA	5.0	-40 C \leq TA \leq $+85$ C		
D011		—	60	100	μA	1.8	Fosc = 1 MHz,		
		—	100	180	μA	3.0	XT Oscillator		
D011		_	100	180	μA	2.3	Fosc = 1 MHz,		
		—	130	220	μA	3.0	XT Oscillator		
		—	170	280	μA	5.0			
D012		_	140	240	μA	1.8	Fosc = 4 MHz,		
		—	250	360	μA	3.0	XT Oscillator		
D012		—	210	320	μA	2.3	Fosc = 4 MHz,		
		—	280	410	μA	3.0	XT Oscillator		
		—	340	500	μA	5.0			
D013		—	30	65	μA	1.8	Fosc = 1 MHz,		
		—	55	100	μA	3.0	External Clock (ECM), Medium Power mode		
D013		_	65	110	μA	2.3	Fosc = 1 MHz,		
		—	85	140	μA	3.0	External Clock (ECM),		
		—	115	190	μA	5.0	Medium Power mode		
D014		—	115	190	μA	1.8	Fosc = 4 MHz,		
		—	210	310	μA	3.0	External Clock (ECM), Medium Power mode		
D014		_	180	270	μA	2.3	Fosc = 4 MHz,		
		—	240	365	μA	3.0	External Clock (ECM),		
		—	295	460	μA	5.0	Medium Power mode		
D015		—	3.2	12	μA	1.8	Fosc = 31 kHz,		
		—	5.4	20	μA	3.0	LFINTOSC, -40°C \leq Ta \leq +85°C		
D015		_	13	28	μA	2.3	Fosc = 31 kHz,		
		_	15	30	μA	3.0	LFINTOSC,		
		_	17	36	μA	5.0	-40°C ≤ IA ≤ +85°C		
	T I				1		· · · · · · · · · · · · · · · · · · ·		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in $k\Omega$.

PIC16LF1508/9		Standard Operating Conditions (unless otherwise stated)							
PIC16F1508/9									
Param.	Device	Min.	Typt	Max.	Units		Conditions		
No.	Characteristics		- 71- 1			Vdd	Note		
D019B		1 —	6	16	μΑ	1.8	Fosc = 32 kHz,		
		_	8	22	μA	3.0	External Clock (ECL), Low-Power mode		
D019B			13	28	μA	2.3	Fosc = 32 kHz,		
		_	15	31	μA	3.0	External Clock (ECL),		
		—	16	36	μA	5.0	Low-Power mode		
D019C		—	19	35	μA	1.8	Fosc = 500 kHz,		
		—	32	55	μA	3.0	External Clock (ECL), Low-Power mode		
D019C		_	31	52	μA	2.3	Fosc = 500 kHz,		
			38	65	μA	3.0	External Clock (ECL),		
		—	44	74	μA	5.0	Low-Power mode		
D020		_	140	210	μA	1.8	Fosc = 4 MHz,		
			250	330	μA	3.0	EXTRC (Note 3)		
D020			210	290	μA	2.3	Fosc = 4 MHz,		
			280	380	μA	3.0	EXTRC (Note 3)		
			350	470	μA	5.0			
D021		-	1135	1700	μA	3.0	Fosc = 20 MHz, HS Oscillator		
D021			1170	1800	μA	3.0	Fosc = 20 MHz,		
			1555	2300	μA	5.0	HS Oscillator		

SUPPLY CURRENT (IDD)^(1,2) (CONTINUED) **TABLE 29-2:**

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

For RC oscillator configurations, current through REXT is not included. The current through the resistor can 3: be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

TABLE 29-4: I/O PORTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
	VIL	Input Low Voltage						
		I/O PORT:						
D030		with TTL buffer	—	_	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D030A			—	_	0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$	
D031		with Schmitt Trigger buffer	—	—	0.2 VDD	V	$2.0V \leq V\text{DD} \leq 5.5V$	
		with I ² C levels	—	—	0.3 VDD	V		
		with SMbus levels	—	—	0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$	
D032		MCLR, OSC1 (EXTRC mode)	—	—	0.2 VDD	V	(Note 1)	
D033		OSC1 (HS mode)	—		0.3 VDD	V		
	VIH	Input High Voltage						
		I/O PORT:			1			
D040		with TTL buffer	2.0	—	—	V	$4.5V \le VDD \le 5.5V$	
D040A			0.25 VDD + 0.8	_	_	V	$1.8V \le VDD \le 4.5V$	
D041		with Schmitt Trigger buffer	0.8 Vdd	_	_	V	$2.0V \leq V\text{DD} \leq 5.5V$	
		with I ² C levels	0.7 Vdd	_	_	V		
		with SMbus levels	2.1	—	—	V	$2.7V \leq V \text{DD} \leq 5.5V$	
D042		MCLR	0.8 Vdd	—	—	V		
D043A		OSC1 (HS mode)	0.7 Vdd	_	_	V		
D043B		OSC1 (EXTRC mode)	0.9 Vdd	_	_	V	VDD > 2.0V (Note 1)	
	lı∟	Input Leakage Current ⁽²⁾						
D060		I/O Ports	—	± 5	± 125	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C	
			—	± 5	± 1000	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 125°C	
D061		MCLR ⁽³⁾	—	± 50	± 200	nA	$Vss \le VPIN \le VDD$, Pin at high-impedance, 85°C	
	IPUR	Weak Pull-up Current						
D070*			25	100	200	μA	VDD = 3.3V, VPIN = VSS	
			25	140	300	μA	VDD = 5.0V, VPIN = VSS	
	Vol	Output Low Voltage						
D080		I/O Ports					IOL = 8 mA, VDD = 5V	
			—	—	0.6	V	IOL = 6 mA, VDD = 3.3 V	
	Mari	Outrast II'm Maltana					IOL = 1.8 mA, VDD = 1.8 V	
D000	VOH	Output High Voltage			1		$100 = 2.5 \pm 0.100 = 51($	
D090		I/O Ports	V - 0 7	_	_	V	IOH = 3.5 mA, VDD = 5 V IOH = 3 mA, VDD = 3.3 V	
			100 0.7			v	IOH = 1 mA, VDD = 1.8 V	
D101*	COSC2	Capacitive Loading Specificat	tions on Out	out Pins	1		·	
		OSC2 pin					In XT, HS, LP modes when	
			—	_	15	pF	external clock is used to drive OSC1	
D101A*	CIO	All I/O pins	—	_	50	pF		
*	Those n	aramators are characterized but	not tostod		•	•		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In EXTRC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in EXTRC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

FIGURE 29-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 29-11: 1	TIMER0 AND TI	IMER1 EXTERNAL	CLOCK REQUIREMENTS
----------------	---------------	----------------	---------------------------

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.		Characteristi	c	Min.	Тур†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High F	Pulse Width	No Prescaler	0.5 TCY + 20	—	—	ns	
				With Prescaler	10	_	_	ns	
41*	T⊤0L	T0CKI Low F	ulse Width	No Prescaler	0.5 Tcy + 20	_	_	ns	
				With Prescaler	10	_	_	ns	
42*	Тт0Р	T0CKI Period	1		Greater of: 20 or <u>Tcy + 40</u> N		—	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	—	_	ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30	—	_	ns	
46*	T⊤1L	T1CKI Low	Synchronous, N	lo Prescaler	0.5 Tcy + 20	_	_	ns	
		Time	Synchronous, with Prescaler		15	_	_	ns	
			Asynchronous		30	_	_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value
			Asynchronous		60	_	_	ns	
48	Ft1	Secondary O (Oscillator er	scillator Input Frequency Range abled by setting bit T1OSCEN)		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	xternal Clock Ec	lge to Timer	2 Tosc	_	7 Tosc	—	Timers in Sync mode

These parameters are characterized but not tested. *

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

20-Lead Plastic Quad Flat, No Lead Package (ML) – 4x4x0.9 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS				
Dimen	sion Limits	MIN	NOM	MAX		
Number of Pins		20				
Pitch	е		0.50 BSC			
Overall Height	А	0.80 0.90 1				
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E		4.00 BSC			
Exposed Pad Width	E2	2.60 2.70 2.8				
Overall Length	D	4.00 BSC				
Exposed Pad Length	D2	2 2.60 2.70 2				
Contact Width	b	0.18	0.25	0.30		
Contact Length	L			0.50		
Contact-to-Exposed Pad	K	0.20	_	_		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-126B

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-255A Sheet 1 of 2