

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1509-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-9: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	1										
F8Ch — FE3h	_	Unimplemen	ted							_	-
FE4h	STATUS_ SHAD	_		_	—	_	Z_SHAD	DC_SHAD	C_SHAD	xxx	:uuu
FE5h	WREG_ SHAD	Working Reg	ister Shadow							XXXX XXX	uuuu uuuu
FE6h	BSR_ SHAD	_	-	_	Bank Select	Register Sh	adow			x xxxx	:u uuuu
FE7h	PCLATH_ SHAD	_	Program Co	unter Latch H	ligh Register	Shadow				-xxx xxx	uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data	Memory Add	ress 0 Low F	Pointer Shado	W				XXXX XXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data	ndirect Data Memory Address 0 High Pointer Shadow							XXXX XXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data	ndirect Data Memory Address 1 Low Pointer Shadow						XXXX XXX	uuuu uuuu	
FEBh	FSR1H_ SHAD	Indirect Data	Indirect Data Memory Address 1 High Pointer Shadow						XXXX XXX	uuuu uuuu	
FECh		Unimplemen	Unimplemented							_	
FEDh	STKPTR	-	—	—	Current Stat	ck Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Low byte							XXXX XXXX	uuuu uuuu
FEFh	TOSH	—	Top-of-Stack	High byte						-xxx xxxx	-uuu uuuu

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1508/9 only.

 2:
 Unimplemented, read as '1'.

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	CLC4IE	CLC3IE	CLC2IE	CLC1IE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncl	hanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-4	Unimplemen	ted: Read as '	כי				
bit 3	CLC4IE: Con	ifigurable Logic	Block 4 Inter	rrupt Enable bit			
	1 = Enables	the CLC 4 inter	rupt				
	0 = Disables	the CLC 4 inte	rrupt				
bit 2	CLC3IE: Con	figurable Logic	Block 3 Inte	rrupt Enable bit			
	1 = Enables	the CLC 3 inter	rupt				
L:1		the CLC 3 Inte	rrupt Dis els 2 lintes	www.mt Enchla hit			
DIT		Ingurable Logic		rrupt Enable bit			
	1 = Enables the CLC 2 interrupt						
bit 0	bit 0 CI C1JE: Configurable Logic Block 1 Interrupt Enable bit						
1 = Enables the CLC 1 interrupt							
	0 = Disables	the CLC 1 inte	rrupt				
			must bo				
NOLE. DI		I CON TEGISLEI	must be				

REGISTER 7-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

set to enable any peripheral interrupt.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	75
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		154
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	—	TMR2IE	TMR1IE	76
PIE2	OSFIE	C2IE	C1IE	_	BCL1IE	NCO1IE		_	77
PIE3			_		CLC4IE	CLC3IE	CLC2IE	CLC1IE	78
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	_	TMR2IF	TMR1IF	79
PIR2	OSFIF	C2IF	C1IF	_	BCL1IF	NCO1IF	_	_	80
PIR3	_		—	_	CLC4IF	CLC3IF	CLC2IF	CLC1IF	81

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	—	—	—	—	ADRE	S<9:8>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Rese			other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 15-6: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 1

bit 7-2 **Reserved**: Do not use.

bit 1-0	ADRES<9:8>: ADC Result Register bits
	Upper two bits of 10-bit conversion result

REGISTER 15-7: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 1

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | ADRES | 6<7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADRES<7:0>: ADC Result Register bits Lower eight bits of 10-bit conversion result

16.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (VSOURCE+) of the DAC can be connected to:

- External VREF+ pin
- VDD supply voltage

The negative input source (VSOURCE-) of the DAC can be connected to:

Vss

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- Comparator positive input
- · ADC input channel
- DACxOUT1 pin
- DACxOUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACxCON0 register.

FIGURE 16-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

19.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

19.4 Timer1 (Secondary) Oscillator

A dedicated low-power 32.768 kHz oscillator circuit is built-in between pins SOSCI (input) and SOSCO (amplifier output). This internal circuit is to be used in conjunction with an external 32.768 kHz crystal. The oscillator circuit is enabled by setting the T1OSCEN bit of the T1CON register. The oscillator will continue to run during Sleep.

Note: The oscillator requires some time to start-up and stabilize before use. The SOSCR bit in the OSCSTAT register monitors the oscillator and indicates when the oscillator is ready for use. When T1OSCEN is set, the SOSCR bit is cleared. After 1024 cycles of the oscillator are countered, the SOSCR bit is set, indicating that the oscillator should be stable and ready for use.

19.5 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If the external clock source is selected then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 19.5.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	When switching from synchronous to
	asynchronous operation, it is possible to
	skip an increment. When switching from
	asynchronous to synchronous operation,
	it is possible to produce an additional
	increment.

19.5.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads. For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

19.6 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 Gate Enable.

Timer1 gate can also be driven by multiple selectable sources.

19.6.1 TIMER1 GATE ENABLE

The Timer1 Gate Enable mode is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 Gate Enable mode is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See Figure 19-3 for timing details.

TABLE 19-3: TIMER1 GATE ENABLE SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
1	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

19.6.2 TIMER1 GATE SOURCE SELECTION

Timer1 gate source selections are shown in Table 19-4. Source selection is controlled by the T1GSS<1:0> bits of the T1GCON register. The polarity for each available source is also selectable. Polarity selection is controlled by the T1GPOL bit of the T1GCON register.

TABLE 19-4:	TIMER1 GA	ATE SOURCES
-------------	-----------	--------------------

T1GSS	Timer1 Gate Source
00	Timer1 Gate pin (T1G)
01	Overflow of Timer0 (T0_overflow) (TMR0 increments from FFh to 00h)
10	Comparator 1 Output (C1OUT_sync) ⁽¹⁾
11	Comparator 2 Output (C2OUT_sync) ⁽¹⁾
N / /	

Note 1: Optionally synchronized comparator output.

FIGURE 21-7: SPI DAISY-CHAIN CONNECTION

FIGURE 21-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

	: : :			 		·····	****	****	****	*****	
2024) 2022 - 2	· · ·								- S		
	: : :		, , ,		:			; ; ;			
8088 (CR92 = 1 CX65 = 0)											
VV1109-309	: : :	:			· · · · · · · · · · · · · · · · · · ·			- 	,	: :)) (
53258US	, , :)))			SI 184	: Tift register Tid bit count	: SSPxSR fare reset			
SSPXBUF to SSPXSR	; ; ;		, ,	, , ,	; ; ;		, 	, ,	: :		, ,
SDC×		× 398.7	X - 231 - 6							× 58.0	
909a	: :							; ;;;; <i>111111111</i> 1111 ;			
ingué Sampia	;							. ///e	<u></u>	*	*
SSFX# Interrept Fay SSPXBX to SSPXBX#	: 		2 · · · · · · · · · · · · · · · · · · ·		,		1	:			

21.5.3.3 7-bit Transmission with Address Hold Enabled

Setting the AHEN bit of the SSPxCON3 register enables additional clock stretching and interrupt generation after the eighth falling edge of a received matching address. Once a matching address has been clocked in, CKP is cleared and the SSPxIF interrupt is set.

Figure 21-19 displays a standard waveform of a 7-bit Address Slave Transmission with AHEN enabled.

- 1. Bus starts idle.
- Master sends Start condition; the S bit of SSPxSTAT is set; SSPxIF is set if interrupt on Start detect is enabled.
- Master sends matching address with R/W bit set. After the eighth falling edge of the SCLx line the CKP bit is cleared and SSPxIF interrupt is generated.
- 4. Slave software clears SSPxIF.
- Slave software reads ACKTIM bit of SSPxCON3 register, and R/W and D/A of the SSPxSTAT register to determine the source of the interrupt.
- 6. Slave reads the address value from the SSPxBUF register clearing the BF bit.
- Slave software decides from this information if it wishes to ACK or not ACK and sets the ACKDT bit of the SSPxCON2 register accordingly.
- 8. Slave sets the CKP bit releasing SCLx.
- 9. Master clocks in the \overline{ACK} value from the slave.
- 10. Slave hardware automatically clears the CKP bit and sets SSPxIF after the ACK if the R/W bit is set.
- 11. Slave software clears SSPxIF.
- 12. Slave loads value to transmit to the master into SSPxBUF setting the BF bit.

Note: SSPxBUF cannot be loaded until after the ACK.

- 13. Slave sets the CKP bit, releasing the clock.
- 14. Master clocks out the data from the slave and sends an ACK value on the ninth SCLx pulse.
- 15. Slave hardware copies the ACK value into the ACKSTAT bit of the SSPxCON2 register.
- 16. Steps 10-15 are repeated for each byte transmitted to the master from the slave.
- 17. If the master sends a not ACK the slave releases the bus allowing the master to send a Stop and end the communication.

Note: Master must send a not ACK on the last byte to ensure that the slave releases the SCLx line to receive a Stop.

21.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPxCON2 register. When this bit is set, the SCLx pin is pulled low and the contents of the Acknowledge data bit are presented on the SDAx pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCLx pin is deasserted (pulled high). When the SCLx pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCLx pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 21-30).

21.6.8.1 WCOL Status Flag

If the user writes the SSPxBUF when an Acknowledge sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

21.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDAx pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPxCON2 register. At the end of a receive/transmit, the SCLx line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDAx line low. When the SDAx line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCLx pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDAx pin will be deasserted. When the SDAx pin is sampled high while SCLx is high, the P bit of the SSPxSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPxIF bit is set (Figure 21-31).

21.6.9.1 WCOL Status Flag

If the user writes the SSPxBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 21-30: ACKNOWLEDGE SEQUENCE WAVEFORM

21.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I²C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPxADD register (Register 21-6). When a write occurs to SSPxBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 21-40 triggers the value from SSPxADD to be loaded into the BRG counter. This occurs twice for each oscillation of the

module clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 21-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPxADD.

EQUATION 21-1:

$$FCLOCK = \frac{FOSC}{(SSPxADD+1)(4)}$$

FIGURE 21-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 21-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FCLOCK (Two Rollovers of BRG)
16 MHz	4 MHz	09h	400 kHz
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note: Refer to the I/O port electrical and timing specifications in Table 29-9 and Figure 29-7 to ensure the system is designed to support the I/O timing requirements.

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0					
ABDOVF	RCIDL		SCKP	BRG16	—	WUE	ABDEN					
bit 7				I			bit 0					
Legend:												
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'										
u = Bit is unch	anged	x = Bit is unkr	c = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets									
'1' = Bit is set		'0' = Bit is cle	ared									
bit 7	ABDOVF: Au	to-Baud Detec	t Overflow bit									
	Asynchronous 1 = Auto-baud 0 = Auto-baud Synchronous Don't care	<u>s mode</u> : d timer overflov d timer did not <u>mode</u> :	ved overflow									
bit 6	RCIDL: Rece	ive Idle Flag bi	t									
	Asynchronous 1 = Receiver 0 = Start bit h Synchronous Don't care	<u>s mode</u> : is idle as been receiv <u>mode</u> :	ed and the re	ceiver is receiv	ving							
bit 5	Unimplemen	ted: Read as '	0'									
bit 4	SCKP: Synch	ronous Clock I	Polarity Select	t bit								
	Asynchronous 1 = Transmit i 0 = Transmit	<u>s mode</u> : inverted data to non-inverted da	o the TX/CK p ata to the TX/	in CK pin								
	<u>Synchronous</u> 1 = Data is clo 0 = Data is clo	<u>mode</u> : ocked on rising ocked on falling	edge of the ogen o	clock clock								
bit 3	BRG16: 16-b 1 = 16-bit Ba 0 = 8-bit Bau	it Baud Rate G ud Rate Gener d Rate Genera	enerator bit ator is used itor is used									
bit 2	Unimplemen	ted: Read as '	0'									
bit 1	WUE: Wake-u	up Enable bit										
	Asynchronous 1 = Receiver automatic 0 = Receiver Synchronous Don't care	<u>s mode</u> : is waiting for a ally clear after is operating no <u>mode</u> :	falling edge. I RCIF is set. ormally	No character w	vill be received, I	RCIF bit will be	set. WUE will					
bit 0	ABDEN: Auto	-Baud Detect	Enable bit									
	Asynchronous 1 = Auto-Bau 0 = Auto-Bau Synchronous Don't care	<u>s mode</u> : id Detect mode id Detect mode <u>mode</u> :	e is enabled (o e is disabled	clears when au	to-baud is comp	olete)						

REGISTER 22-3: BAUDCON: BAUD RATE CONTROL REGISTER

23.1 PWMx Pin Configuration

All PWM outputs are multiplexed with the PORT data latch. The user must configure the pins as outputs by clearing the associated TRIS bits.

Note:	Clearing the PWMxOE bit will relinquish
	control of the PWMx pin.

23.1.1 FUNDAMENTAL OPERATION

The PWM module produces a 10-bit resolution output. Timer2 and PR2 set the period of the PWM. The PWMxDCL and PWMxDCH registers configure the duty cycle. The period is common to all PWM modules, whereas the duty cycle is independently controlled.

Note:	The Timer2 postscaler is not used in the
	determination of the PWM frequency. The
	postscaler could be used to have a servo
	update rate at a different frequency than
	the PWM output.

All PWM outputs associated with Timer2 are set when TMR2 is cleared. Each PWMx is cleared when TMR2 is equal to the value specified in the corresponding PWMxDCH (8 MSb) and PWMxDCL<7:6> (2 LSb) registers. When the value is greater than or equal to PR2, the PWM output is never cleared (100% duty cycle).

Note: The PWMxDCH and PWMxDCL registers are double buffered. The buffers are updated when Timer2 matches PR2. Care should be taken to update both registers before the timer match occurs.

23.1.2 PWM OUTPUT POLARITY

The output polarity is inverted by setting the PWMxPOL bit of the PWMxCON register.

23.1.3 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 23-1.

EQUATION 23-1: PWM PERIOD

$$PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$$

(TMR2 Prescale Value)

Note: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWM output is active. (Exception: When the PWM duty cycle = 0%, the PWM output will remain inactive.)
- The PWMxDCH and PWMxDCL register values are latched into the buffers.

Note:	The Timer2 postscaler has no effect on
	the PWM operation.

23.1.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDCH and PWMxDCL register pair. The PWMxDCH register contains the eight MSbs and the PWMxDCL<7:6>, the two LSbs. The PWMxDCH and PWMxDCL registers can be written to at any time.

Equation 23-2 is used to calculate the PWM pulse width.

Equation 23-3 is used to calculate the PWM duty cycle ratio.

EQUATION 23-2: PULSE WIDTH

 $Pulse Width = (PWMxDCH:PWMxDCL<7:6>) \bullet$

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

EQUATION 23-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(PWMxDCH:PWMxDCL<7:6>)}{4(PR2+1)}$$

The 8-bit timer TMR2 register is concatenated with the two Least Significant bits of 1/Fosc, adjusted by the Timer2 prescaler to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

Figure 23-2 shows a waveform of the PWM signal when the duty cycle is set for the smallest possible pulse.

FIGURE 23-2: PWM OUTPUT

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG2D4T: (Gate 2 Data 4 T	rue (non-inve	rted) bit			
	1 = lcxd4T is	gated into lcxg	12 10×22				
bit 6		Gate 2 Data 4 I	logatod (invo	rtad) bit			
DILO	$1 = \log dAN$ is	Gale 2 Dala 4 i	12 12 12 12 12 12 12 12 12 12 12 12 12 1	neu) bit			
	0 = lcxd4N is	not gated into icx	lcxq2				
bit 5	LCxG2D3T: (Gate 2 Data 3 T	rue (non-inve	rted) bit			
	1 = Icxd3T is	gated into lcxg	12	,			
	0 = Icxd3T is	not gated into	lcxg2				
bit 4	LCxG2D3N:	Gate 2 Data 3 I	Negated (inver	rted) bit			
	1 = Icxd3N is	gated into lcx	j2				
	0 = Icxd3N is	not gated into	lcxg2				
bit 3	LCxG2D2T: (Gate 2 Data 2 T	rue (non-inve	rted) bit			
	1 = ICXd2I is 0 = Icxd2T is	gated into loxg	j2 Icxa2				
hit 2		Gate 2 Data 2 I	Negated (inve	rted) hit			
Sit 2	1 = lcxd2N is	aated into Icxo	12				
	0 = lcxd2N is	not gated into	lcxg2				
bit 1	LCxG2D1T: (Gate 2 Data 1 T	rue (non-inve	rted) bit			
	1 = Icxd1T is	gated into lcxg	12				
	0 = lcxd1T is	not gated into	lcxg2				
bit 0	LCxG2D1N:	Gate 2 Data 1 I	Negated (inver	rted) bit			
	1 = lcxd1N is	gated into lcxo	g2				
	0 = ICX01N IS	not gated into	icxg2				

REGISTER 24-6: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER

PIC16LF1508/9		Stand	ard Opera	ating Cor	nditions (u	inless otl	herwise stated)	
PIC16F1	PIC16F1508/9							
Param.	Device	Min.	Typt	Max.	Units	Conditions		
No.	Characteristics					VDD	Note	
D019B		1 —	6	16	μΑ	1.8	Fosc = 32 kHz,	
		_	8	22	μA	3.0	External Clock (ECL), Low-Power mode	
D019B			13	28	μA	2.3	Fosc = 32 kHz,	
		_	15	31	μA	3.0	External Clock (ECL),	
		—	16	36	μA	5.0	Low-Power mode	
D019C		—	19	35	μA	1.8	Fosc = 500 kHz,	
		—	32	55	μA	3.0	External Clock (ECL), Low-Power mode	
D019C		_	31	52	μA	2.3	Fosc = 500 kHz,	
			38	65	μA	3.0	External Clock (ECL),	
		—	44	74	μA	5.0	Low-Power mode	
D020			140	210	μA	1.8	Fosc = 4 MHz,	
			250	330	μA	3.0	EXTRC (Note 3)	
D020			210	290	μA	2.3	Fosc = 4 MHz,	
			280	380	μA	3.0	EXTRC (Note 3)	
			350	470	μA	5.0		
D021		-	1135	1700	μA	3.0	Fosc = 20 MHz, HS Oscillator	
D021			1170	1800	μA	3.0	Fosc = 20 MHz,	
			1555	2300	μA	5.0	HS Oscillator	

SUPPLY CURRENT (IDD)^(1,2) (CONTINUED) **TABLE 29-2:**

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

For RC oscillator configurations, current through REXT is not included. The current through the resistor can 3: be extended by the formula IR = VDD/2REXT (mA) with REXT in k Ω .

31.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

31.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

31.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

31.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- Rich directive set
- · Flexible macro language
- · MPLAB X IDE compatibility

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensior	MIN	NOM	MAX	
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	X			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (10/2011)

Original release.

Revision B (6/2013)

Updated Electrical Specifications and added Characterization Data.

Revision C (7/2013)

Corrected upper and lower bit definitions of address, Section 3.2. Added clarification of Buffer Gain Selection bits, Section 13.2. Removed "Preliminary" status from Section 30. Updated Figures 15-1, 29-9. Clarified information in Registers 7-1,13-1, 15-2. Clarified information in Tables 29-5, 29-10, 29-13. Removed Index.

Revision D (10/2014)

Document re-release.

Revision E (10/2015)

Added Section 3.2 High-Endurance Flash. Updated Figure 26-1; Registers 4-2, 7-5, and 26-3; Sections 22.4.2, 24.1.5, 26.9.1.2, 26.11.1, and 29.1; and Table 26-2.