
Silicon Labs - C8051F961-B-GM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity I²C, SPI, UART/USART

Peripherals DMA, LCD, POR, PWM, WDT

Number of I/O 34

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 8.25K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.8V

Data Converters A/D 16x10b/12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 40-VFQFN Exposed Pad

Supplier Device Package 40-QFN (6x6)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f961-b-gm

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f961-b-gm-4415762
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F96x

5 Rev. 1.0

15. Encoder/Decoder ... 207
15.1. Manchester Encoding.. 208
15.2. Manchester Decoding.. 209
15.3. Three-out-of-Six Encoding.. 210
15.4. Three-out-of-Six Decoding .. 211
15.5. Encoding/Decoding with SFR Access ... 212
15.6. Decoder Error Interrupt.. 212
15.7. Using the ENC0 module with the DMA.. 213

16. Special Function Registers... 216
16.1. SFR Paging ... 216
16.2. Interrupts and SFR Paging.. 216

17. Interrupt Handler.. 232
17.1. Enabling Interrupt Sources.. 232
17.2. MCU Interrupt Sources and Vectors.. 232
17.3. Interrupt Priorities .. 233
17.4. Interrupt Latency.. 233
17.5. Interrupt Register Descriptions .. 235
17.6. External Interrupts INT0 and INT1... 242

18. Flash Memory... 244
18.1. Programming the Flash Memory ... 244

18.1.1. Flash Lock and Key Functions .. 244
18.1.2. Flash Erase Procedure ... 244
18.1.3. Flash Write Procedure .. 245
18.1.4. Flash Write Optimization ... 246

18.2. Non-volatile Data Storage ... 247
18.3. Security Options .. 247
18.4. Determining the Device Part Number at Run Time 249
18.5. Flash Write and Erase Guidelines ... 250

18.5.1. VDD Maintenance and the VDD Monitor .. 250
18.5.2. PSWE Maintenance.. 251
18.5.3. System Clock .. 251

18.6. Minimizing Flash Read Current ... 252
19. Power Management ... 257

19.1. Normal Mode... 258
19.2. Idle Mode... 258
19.3. Stop Mode ... 259
19.4. Low Power Idle Mode.. 259
19.5. Suspend Mode .. 263
19.6. Sleep Mode ... 263
19.7. Configuring Wakeup Sources.. 264
19.8. Determining the Event that Caused the Last Wakeup................................... 264
19.9. Power Management Specifications ... 268

20. On-Chip DC-DC Buck Converter (DC0).. 269
20.1. Startup Behavior.. 270
20.4. Optimizing Board Layout ... 271

C8051F96x

Rev. 1.0 41

P5.2

LCD18

B23 63 D I/O or
A In

A O

Port 5.2. See Port I/O Section for a complete
description.

LCD Segment Pin 18

P5.3

LCD19

B22 62 D I/O or
A In

A O

Port 5.3. See Port I/O Section for a complete
description.

LCD Segment Pin 19

P5.4

LCD20

D4 59 D I/O or
A In

A O

Port 5.4. See Port I/O Section for a complete
description.

LCD Segment Pin 20

P5.5

LCD21

B21 55 D I/O or
A In

A O

Port 5.5. See Port I/O Section for a complete
description.

LCD Segment Pin 21

P5.6

LCD22

B15 44 D I/O or
A In

A O

Port 5.6. See Port I/O Section for a complete
description.

LCD Segment Pin 22

P5.7

LCD23

D3 42 D I/O or
A In

A O

Port 5.7. See Port I/O Section for a complete
description.

LCD Segment Pin 23

P6.0

LCD24

B14 40 D I/O or
A In

A O

Port 6.0. See Port I/O Section for a complete
description.

LCD Segment Pin 24

P6.1

LCD25

B13 37 D I/O or
A In

A O

Port 6.1. See Port I/O Section for a complete
description.

LCD Segment Pin 25

Table 3.1. Pin Definitions for the C8051F96x (Continued)

Name
Pin Numbers

Type Description
DQFN76 TQFP80 QFN40

C8051F96x

48 Rev. 1.0

3.1.3. Soldering Guidelines

3.1.3.1. Solder Mask Design

All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the
metal pad is to be 60 μm minimum, all the way around the pad.

3.1.3.2. Stencil Design

1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to
assure good solder paste release.

2. The stencil thickness should be 0.125 mm (5 mils).

3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

4. A 2x2 array of 1.25 mm square openings on 1.60 mm pitch should be used for the center ground
pad.

3.1.3.3. Card Assembly

1. A No-Clean, Type-3 solder paste is recommended.

2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body
Components.

3.1.3.4. Inner via placement

1. Inner via placement per Figure 3.6.

2. Reccomended via hole size is 0.150 mm (6 mil) laser drilled holes.

C8051F96x

Rev. 1.0 107

7.3. Comparator Response Time
Comparator response time may be configured in software via the CPTnMD registers described on
“CPT0MD: Comparator 0 Mode Selection” on page 109 and “CPT1MD: Comparator 1 Mode Selection” on
page 111. Four response time settings are available: Mode 0 (Fastest Response Time), Mode 1, Mode 2,
and Mode 3 (Lowest Power). Selecting a longer response time reduces the Comparator active supply cur-
rent. The Comparators also have low power shutdown state, which is entered any time the comparator is
disabled. Comparator rising edge and falling edge response times are typically not equal. See Table 4.16
on page 74 for complete comparator timing and supply current specifications.

7.4. Comparator Hysterisis
The Comparators feature software-programmable hysterisis that can be used to stabilize the comparator
output while a transition is occurring on the input. Using the CPTnCN registers, the user can program both
the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going sym-
metry of this hysteresis around the threshold voltage (i.e., the comparator negative input).

Figure 7.3 shows that when positive hysterisis is enabled, the comparator output does not transition from
logic 0 to logic 1 until the comparator positive input voltage has exceeded the threshold voltage by an
amount equal to the programmed hysterisis. It also shows that when negative hysterisis is enabled, the
comparator output does not transition from logic 1 to logic 0 until the comparator positive input voltage has
fallen below the threshold voltage by an amount equal to the programmed hysterisis.

The amount of positive hysterisis is determined by the settings of the CPnHYP bits in the CPTnCN register
and the amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits in the
same register. Settings of 20 mV, 10 mV, 5 mV, or 0 mV can be programmed for both positive and negative
hysterisis. See Section “Table 4.16. Comparator Electrical Characteristics” on page 74 for complete com-
parator hysterisis specifications.

Figure 7.3. Comparator Hysteresis Plot

Positive Hysteresis Voltage
(Programmed with CP0HYP Bits)

Negative Hysteresis Voltage
(Programmed by CP0HYN Bits)

VIN-

VIN+

INPUTS

CIRCUIT CONFIGURATION

+

_

CPn+

CPn-
CPn

VIN+

VIN-
OUT

VOH

Positive Hysteresis
Disabled

Maximum
Positive Hysteresis

Negative Hysteresis
Disabled

Maximum
Negative Hysteresis

OUTPUT

VOL

C8051F96x

Rev. 1.0 117

Table 8.1. CIP-51 Instruction Set Summary

Mnemonic Description Bytes Clock
Cycles

Arithmetic Operations
ADD A, Rn Add register to A 1 1
ADD A, direct Add direct byte to A 2 2
ADD A, @Ri Add indirect RAM to A 1 2
ADD A, #data Add immediate to A 2 2
ADDC A, Rn Add register to A with carry 1 1
ADDC A, direct Add direct byte to A with carry 2 2
ADDC A, @Ri Add indirect RAM to A with carry 1 2
ADDC A, #data Add immediate to A with carry 2 2
SUBB A, Rn Subtract register from A with borrow 1 1
SUBB A, direct Subtract direct byte from A with borrow 2 2
SUBB A, @Ri Subtract indirect RAM from A with borrow 1 2
SUBB A, #data Subtract immediate from A with borrow 2 2
INC A Increment A 1 1
INC Rn Increment register 1 1
INC direct Increment direct byte 2 2
INC @Ri Increment indirect RAM 1 2
DEC A Decrement A 1 1
DEC Rn Decrement register 1 1
DEC direct Decrement direct byte 2 2
DEC @Ri Decrement indirect RAM 1 2
INC DPTR Increment Data Pointer 1 1
MUL AB Multiply A and B 1 4
DIV AB Divide A by B 1 8
DA A Decimal adjust A 1 1

Logical Operations
ANL A, Rn AND Register to A 1 1
ANL A, direct AND direct byte to A 2 2
ANL A, @Ri AND indirect RAM to A 1 2
ANL A, #data AND immediate to A 2 2
ANL direct, A AND A to direct byte 2 2
ANL direct, #data AND immediate to direct byte 3 3
ORL A, Rn OR Register to A 1 1
ORL A, direct OR direct byte to A 2 2
ORL A, @Ri OR indirect RAM to A 1 2
ORL A, #data OR immediate to A 2 2
ORL direct, A OR A to direct byte 2 2
ORL direct, #data OR immediate to direct byte 3 3
XRL A, Rn Exclusive-OR Register to A 1 1
XRL A, direct Exclusive-OR direct byte to A 2 2
XRL A, @Ri Exclusive-OR indirect RAM to A 1 2
XRL A, #data Exclusive-OR immediate to A 2 2
XRL direct, A Exclusive-OR A to direct byte 2 2
XRL direct, #data Exclusive-OR immediate to direct byte 3 3

C8051F96x

Rev. 1.0 152

SFR Page = 0x2; SFR Address = 0xD4

SFR Definition 11.3. DMA0MINT: DMA0 Mid-Point Interrupt

Bit 7 6 5 4 3 2 1 0

Name CH6_MINT CH5_MINT CH4_MINT CH3_MINT CH2_MINT CH1_MINT CH0_MINT

Type R R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 Unused Read = 0b, Write = Don’t Care

6 CH6_MINT Channel 6 Mid-Point Interrupt Flag.

0: Mid-Point interrupt has not occured on channel 6.
1: Mid-Point interrupt has not occured on channel 6.

5 CH5_MINT Channel 5 Mid-Point Interrupt Flag.

0: Mid-Point interrupt has not occured on channel 5.
1: Mid-Point interrupt has not occured on channel 5.

4 CH4_MINT Channel 4 Mid-Point Interrupt Flag.

0: Mid-Point interrupt has not occured on channel 4.
1: Mid-Point interrupt has not occured on channel 4.

3 CH3_MINT Channel 3 Mid-Point Interrupt Flag.

0: Mid-Point interrupt has not occured on channel 3.
1: Mid-Point interrupt has not occured on channel 3.

2 CH2_MINT Channel 2 Mid-Point Interrupt Flag.

0: Mid-Point interrupt has not occured on channel 2.
1: Mid-Point interrupt has not occured on channel 2.

1 CH1_MINT Channel 1 Mid-Point Interrupt Flag.

0: Mid-Point interrupt has not occured on channel 1.
1: Mid-Point interrupt has not occured on channel 1.

0 CH0_MINT Channel 0 Mid-Point Interrupt Flag.

0: Mid-Point interrupt has not occured on channel 0.
1: Mid-Point interrupt has not occured on channel 0.

Note: Mid-point Interrupt flag is set when the offset address DMA0NAOH/L equals to half of data transfer
size DMA0NSZH/L if the transfer size is an even number or half of data transfer size
DMA0NSZH/L plus one if the transfer size is an odd number. This flag must be cleared by software
or system reset.The mid-point interrupt is enabled by setting bit 6 of DMA0NCF with DMA0SEL configured
for the corresponding channel.

C8051F96x

Rev. 1.0 162

12.2. 32-bit CRC Algorithm

The C8051F41x CRC unit calculates the 32-bit CRC using a poly of 0x04C11DB7. The CRC-32 algorithm
is "reflected", meaning that all of the input bytes and the final 32-bit output are bit-reversed in the process-
ing engine. The following is a description of a simplified CRC algorithm that produces results identical to
the hardware:

Step 1. XOR the least-significant byte of the current CRC result with the input byte. If this is the
first iteration of the CRC unit, the current CRC result will be the set initial value
(0x00000000 or 0xFFFFFFFF).

Step 2. Right-shift the CRC result.
Step 3. If the LSB of the CRC result is set, XOR the CRC result with the reflected polynomial

(0xEDB88320).
Step 4. Repeat at Step 2 for the number of input bits (8).

For example, the 32-bit 'F41x CRC algorithm can be described by the following code:

unsigned long UpdateCRC (unsigned long CRC_acc, unsigned char CRC_input)
{
 unsigned char i; // loop counter
 #define POLY 0xEDB88320 // bit-reversed version of the poly 0x04C11DB7
 // Create the CRC "dividend" for polynomial arithmetic (binary arithmetic
 // with no carries)

 CRC_acc = CRC_acc ^ CRC_input;

 // "Divide" the poly into the dividend using CRC XOR subtraction
 // CRC_acc holds the "remainder" of each divide
 //
 // Only complete this division for 8 bits since input is 1 byte
 for (i = 0; i < 8; i++)
 {
 // Check if the MSB is set (if MSB is 1, then the POLY can "divide"
 // into the "dividend")
 if ((CRC_acc & 0x00000001) == 0x00000001)
 {
 // if so, shift the CRC value, and XOR "subtract" the poly
 CRC_acc = CRC_acc >> 1;
 CRC_acc ^= POLY;
 }
 else
 {
 // if not, just shift the CRC value
 CRC_acc = CRC_acc >> 1;
 }
 }
 // Return the final remainder (CRC value)
 return CRC_acc;
}

The following table lists several input values and the associated outputs using the 32-bit 'F41x CRC algo-
rithm (an initial value of 0xFFFFFFFF is used):

C8051F96x

176 Rev. 1.0

14.1. Hardware Description

Figure 14.1. AES Peripheral Block Diagram

The AES Encryption module consists of these elements.

 AES Encryption/Decryption Core

 Configuration sfrs

 Key input sfr

 Data sfrs

 Input Multiplexer

 Output Multiplexer

 Input Exclusive OR block

 Output Exclusive OR block

 Internal State Machine

AES
Core

Key
In

Key
Out

Data In

Data Out

AES0BIN

AES0XIN

AES0KIN

AES0YOUT

AES0DCF

AES0BCFG

+

+

internal state
machine

C8051F96x

192 Rev. 1.0

14.6.2. CBC Encryption Initialization Vector Location

The first block to be encrypted uses the initialization vector for the AES0XIN data. Subsequent blocks will
use the encrypted ciphertext from the previous block. The DMA is capable of encrypting multiple blocks. If
the initialization is located at an arbitrary location in xram, the DMA base address location will need to be
changed to the start of the encrypted ciphertext after encrypting the first block. However, if the initialization
vector explicitly located in xram immediately before the encrypted ciphertext, the pointer will be advanced
to the start of the encrypted ciphertext naturally and multiple blocks can be encrypted autonomously.

14.6.3. CBC Encryption using DMA

Normally, the AES block is used with the DMA. This provides the best performance and lowest power con-
sumption. Code examples are provided in 8051 compiler independent C code using the DMA. It is highly
recommended to use with the code examples. The steps are documented in the datasheet for complete-
ness.

 Prepare encryption Key, initialization vector, and data to be encrypted in xram.

(The initialization vector should be located immediately before the data to be encrypted to encrypt multiple
blocks.)

 Reset AES module by clearing bit 2 of AES0BCFG.

 Disable the first four DMA channels by clearing bits 0 to 3 in the DMA0EN sfr.

 Configure the first DMA channel for the AES0KIN sfr
Select the first DMA channel by writing 0x00 to the DMA0SEL sfr
Configure the first DMA channel to move xram to AES0KIN sfr by writing 0x05 to the DMA0NCF sfr
Write 0x01 to DMA0NMD to enable wrapping
Write the xram location of encryption key to the DMA0NBAH and DMA0NBAL sfrs.
Write the key length in bytes to DMA0NSZL sfr
Clear the DMA0NSZH sfr
Clear the DMA0NAOH and DMA0NAOL sfrs

 Configure the second DMA channel for the AES0BIN sfr.
Select the second DMA channel by writing 0x01 to the DMA0SEL sfr.
Configure the second DMA channel to move xram to AES0BIN sfr by writing 0x06 to the DMA0NCF sfr.
Clear DMA0NMD to disable wrapping.
Write the xram address of the data to be encrypted to the DMA0NBAH and DMA0NBAL sfrs.
Write the number of bytes to be encrypted in multiples of 16 bytes to the DMA0NSZH and DMA0NSZL sfrs.
Clear the DMA0NAOH and DMA0NAOL sfrs.

 Configure the third DMA channel for the AES0XIN sfr.
Select the third DMA channel by writing 0x02 to the DMA0SEL sfr.
Configure the third DMA channel to move xram to AES0XIN sfr by writing 0x07 to the DMA0NCF sfr.
Clear DMA0NMD to disable wrapping.
Write the xram address of initialization vector to the DMA0NBAH and DMA0NBAL sfrs.
Write the number of bytes to be encrypted in multiples of 16 bytes to the DMA0NSZH and DMA0NSZL sfrs.
Clear the DMA0NAOH and DMA0NAOL sfrs.

 * Configure the fourth DMA channel for the AES0YOUT sfr
Select the fourth channel by writing 0x03 to the DMA0SEL sfr
Configure the fourth DMA channel to move the contents of the AES0YOUT sfr to xram by writing 0x08 to the

DMA0NCF sfr
Enable transfer complete interrupt by setting bit 7 of DMA0NCF sfr
Clear DMA0NMD to disable wrapping
Write the xram address for encrypted data to the DMA0NBAH and DMA0NBAL sfrs.
Write the number of bytes to be encrypted in multiples of 16 bytes to the DMA0NSZH and DMA0NSZL sfrs.
Clear the DMA0NAOH and DMA0NAOL sfrs.

 Clear first four DMA interrupts by clearing bits 0 to 2 in the DMA0INT sfr.

C8051F96x

Rev. 1.0 203

SFR Address = 0xEA; SFR page = 0x2; Not bit-Addressable

SFR Definition 14.2. AES0DCFG: AES Data Configuration

Bit 7 6 5 4 3 2 1 0

Name OUTSEL[1:0] XORIN

Type R R R R R R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

2:1 OUTSEL[1:0] DATA Select.

These bits select the output data source for the AES0YOUT sfr.
00: Direct AES Data
01: AES Data XOR with AES0XIN
10: Inverse Key
11: reserved

0 XORIN XOR Input Enable.

Setting this bit with enable the XOR data path on the AES input. If enabled,
AES0BIN will be XORed with the AES0XIN and the results will feed into the AES
data input. Clearing this bit to 0 will disable the XOR gate on the input. The con-
tents of AES0BIN will go directly into the AES data input.

C8051F96x

216 Rev. 1.0

C8051F96x

Rev. 1.0 236

SFR Page = All Pages; SFR Address = 0xA8; Bit-Addressable

SFR Definition 17.1. IE: Interrupt Enable

Bit 7 6 5 4 3 2 1 0

Name EA ESPI0 ET2 ES0 ET1 EX1 ET0 EX0

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 EA Enable All Interrupts.

Globally enables/disables all interrupts. It overrides individual interrupt mask settings.
0: Disable all interrupt sources.
1: Enable each interrupt according to its individual mask setting.

6 ESPI0 Enable Serial Peripheral Interface (SPI0) Interrupt.

This bit sets the masking of the SPI0 interrupts.
0: Disable all SPI0 interrupts.
1: Enable interrupt requests generated by SPI0.

5 ET2 Enable Timer 2 Interrupt.

This bit sets the masking of the Timer 2 interrupt.
0: Disable Timer 2 interrupt.
1: Enable interrupt requests generated by the TF2L or TF2H flags.

4 ES0 Enable UART0 Interrupt.

This bit sets the masking of the UART0 interrupt.
0: Disable UART0 interrupt.
1: Enable UART0 interrupt.

3 ET1 Enable Timer 1 Interrupt.

This bit sets the masking of the Timer 1 interrupt.
0: Disable all Timer 1 interrupt.
1: Enable interrupt requests generated by the TF1 flag.

2 EX1 Enable External Interrupt 1.

This bit sets the masking of External Interrupt 1.
0: Disable external interrupt 1.
1: Enable interrupt requests generated by the INT1 input.

1 ET0 Enable Timer 0 Interrupt.

This bit sets the masking of the Timer 0 interrupt.
0: Disable all Timer 0 interrupt.
1: Enable interrupt requests generated by the TF0 flag.

0 EX0 Enable External Interrupt 0.

This bit sets the masking of External Interrupt 0.
0: Disable external interrupt 0.
1: Enable interrupt requests generated by the INT0 input.

C8051F96x

Rev. 1.0 292

SFR Page = 0x0; SFR Address = 0xB2

SFR Definition 23.2. OSCICN: Internal Oscillator Control

Bit 7 6 5 4 3 2 1 0

Name IOSCEN IFRDY

Type R/W R R/W R/W R/W R/W R/W R/W

Reset 0 0 Varies Varies Varies Varies Varies Varies

Bit Name Function

7 IOSCEN Internal Oscillator Enable.

0: Internal oscillator disabled.
1: Internal oscillator enabled.

6 IFRDY Internal Oscillator Frequency Ready Flag.

0: Internal oscillator is not running at its programmed frequency.
1: Internal oscillator is running at its programmed frequency.

5:0 Reserved Must perform read-modify-write.

Notes:
1. Read-modify-write operations such as ORL and ANL must be used to set or clear the enable bit of this

register.
2. OSCBIAS (REG0CN.4) must be set to 1 before enabling the precision internal oscillator.

C8051F96x

Rev. 1.0 303

ness. As shown in Figure 24.2, duty cycles less than 65% indicate a robust oscillation. As the duty cycle
approaches 68%, oscillation becomes less reliable and the risk of clock failure increases. Increasing the
bias current (by disabling AGC) will always improve oscillation robustness and will reduce the output
clock’s duty cycle. This test should be performed at the worst case system conditions, as results at very
low temperatures or high supply voltage will vary from results taken at room temperature or low supply
voltage.

Figure 24.2. Interpreting Oscillation Robustness (Duty Cycle) Test Results

As an alternative to performing the oscillation robustness test, Automatic Gain Control may be disabled at
the cost of increased power consumption (approximately 200 nA). Disabling Automatic Gain Control will
provide the crystal oscillator with higher immunity against external factors which may lead to clock failure.
Automatic Gain Control must be disabled if using the SmaRTClock oscillator in self-oscillate mode.

Table 24.3 shows a summary of the oscillator bias settings. The SmaRTClock Bias Doubling feature allows
the self-oscillation frequency to be increased (almost doubled) and allows a higher crystal drive strength in
crystal mode. High crystal drive strength is recommended when the crystal is exposed to poor environmen-
tal conditions such as excessive moisture. SmaRTClock Bias Doubling is enabled by setting BIASX2
(RTC0XCN.5) to 1.

.
Table 24.3. SmaRTClock Bias Settings

Mode Setting Power
Consumption

Crystal Bias Double Off, AGC On Lowest

Bias Double Off, AGC Off Low

Bias Double On, AGC On High

Bias Double On, AGC Off Highest

Self-Oscillate Bias Double Off Low

Bias Double On High

Duty Cycle25% 65% 68%

Safe Operating Zone
Low Risk of Clock

Failure
High Risk of Clock

Failure

C8051F96x

Rev. 1.0 320

25.10.2. Flutter Detection

The flutter detection can be used with either quadrature counter mode or dual counter mode when the two
inputs are expected to be in step. Flutter refers to the case where one input continues toggling while the
other input stops toggling. This may indicate a broken reed switch or a pressure oscillation when the wheel
magnet stops at just the right distance from the reed switch. If a pressure oscillation causes a slight rota-
tional oscillation in the wheel, it could cause a number of pulses on one of the inputs, but not on the other.
All four edges are checked by the flutter detection feature (PC1 positive, PC1 negative, PC0 positive, and
PC0 negative).When enabled, Flutter detection may be used as an interrupt or wake-up source.

Figure 25.5. Flutter Example

For example, flutter detected on the PC0 positive edge means that 4 edges (positive or negative) were
detected on PC1 since the last PC0 positive edge. Each PC0 positive edge resets the flutter detection
counter while either PC1 edge increments the counter. There are similar counters for all four edges.

The flutter detection circuit provides interrupts or wake-up sources, but firmware must also read the Pulse
Counter registers to determine what corrective action, if any, must be taken.

On the start of flutter event, the firmware should save both counter values and the PC0HIST register. Once
the end of flutter event occurs the firmware should also save both counter values and the PC0HIST regis-
ter. The stop count on flutter, STPCNTFLTR (PCMD[2]), be used to stop the counters when flutter is occur-
ring (quadrature mode only). For quadrature mode, the opposite counter should be decremented by one.
In other words, if the direction was clock-wise, the counter clock-wise counter (counter 1) should be decre-
mented by one to correct for one increment before flutter was detected. For dual mode, two reed switches
can be used to get a redundant count. If flutter starts during dual mode, both counters should be saved by
firmware. After flutter stops, both counters should be read again. The counter that incremented the most
was the one that picked up the flutter. There is also a mode to switch from quadrature to dual (PC0MD[1])
when flutter occurs. This changes the counter style from quadrature (count on any edge of PC1 or PC0) to
dual to allow all counts to be recorded. Once flutter ends, this mode switches the counters back to quadra-
ture mode. STPCNTFLTR does not function when PC0MD[1] is set.

PC1

PC0

Next expected pulse

Next expected pulse with direction change Flutter detected

0 +1 +2 +3 +4

C8051F96x

341 Rev. 1.0

SFR Page = 0x2; SFR Address = 0x9C

SFR Definition 26.3. LCD0CNTRST: LCD0 Contrast Adjustment

Bit 7 6 5 4 3 2 1 0

Name Reserved Reserved Reserved CNTRST

Type R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:5 Reserved Read = 000. Write = Must write 000.

4:0 CNTRST Contrast Setpoint.

Determines the setpoint for the VLCD voltage necessary to achieve the desired
contrast.

00000:
00001:
00010:
00011:
00100:
00101:
00110:
00111:
01000:
01001:
01010:
01011:
01100:
01101:
01110:
01111:
10000:
10001:
10010:
10011:
10100:
10101:
10110:
10111:
11000:
11001:
11010:
11011:
11100:
11101:
11110:
11111:

1.90
1.96
2.02
2.08
2.13
2.19
2.25
2.31
2.37
2.43
2.49
2.55
2.60
2.66
2.72
2.78
2.84
2.90
2.96
3.02
3.07
3.13
3.19
3.25
3.31
3.37
3.43
3.49
3.54
3.60
3.66
3.72

C8051F96x

374 Rev. 1.0

SFR Page = 0xF; SFR Address = 0xF2

SFR Page = 0xF; SFR Address = 0xF9

SFR Definition 27.28. P4MDIN: Port4 Input Mode

Bit 7 6 5 4 3 2 1 0

Name P4MDIN[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P4MDIN[3:0] Analog Configuration Bits for P4.7–P4.0 (respectively).

Port pins configured for analog mode have their weak pullup and digital receiver
disabled. The digital driver is not explicitly disabled.
0: Corresponding P4.n pin is configured for analog mode.
1: Corresponding P4.n pin is not configured for analog mode.

SFR Definition 27.29. P4MDOUT: Port4 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P4MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P4MDOUT[7:0] Output Configuration Bits for P4.7–P4.0 (respectively).

These bits control the digital driver even when the corresponding bit in register
P4MDIN is logic 0.
0: Corresponding P4.n Output is open-drain.
1: Corresponding P4.n Output is push-pull.

C8051F96x

416 Rev. 1.0

wire slave mode), and the serial input data synchronously with the slave’s system clock. If the master
issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec)
must be less than 1/10 the system clock frequency. In the special case where the master only wants to
transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the
SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency.
This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave’s
system clock.

Figure 30.5. Master Mode Data/Clock Timing

Figure 30.6. Slave Mode Data/Clock Timing (CKPHA = 0)

SCK
(CKPOL=0, CKPHA=0)

SCK
(CKPOL=0, CKPHA=1)

SCK
(CKPOL=1, CKPHA=0)

SCK
(CKPOL=1, CKPHA=1)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MISO/MOSI

NSS (Must Remain High
in Multi-Master Mode)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MISO

NSS (4-Wire Mode)

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0MOSI

SCK
(CKPOL=0, CKPHA=0)

SCK
(CKPOL=1, CKPHA=0)

C8051F96x

436 Rev. 1.0

To to initiate a fixed-length SPI Slave mode bidirectional data transfer:

1. Configure the SPI1 SFRs normally for Slave mode.

a. Enable Slave mode by clearing bit 6 in SPI1CFG.

b. Configure the clock polarity CKPOL and clock phase CKPHA as desired in SPI1CFG.

c. Configure SPI1CKR for the desired SPI clock rate.

d. Configure SPI1CN for 4-wire slave mode.

e. Enable the SPI by setting bit 0 of SPI1CN.

2. Configure the first DMA channel for the XRAM-to-SPI1DATA transfer:

a. Disable the first DMA channel by clearing the corresponding bit in DMA0EN.

b. Select the first DMA channel by writing to DMA0SEL.

c. Configure the selected DMA channel to use the XRAM-to-SPI1DAT peripheral request by writing
0x03 to DMA0NCF.

d. Write 0 to DMA0NMD to disable wrapping.

e. Write the address of the first byte of the slave output (MISO) data to DMA0NBAH:L.

f. Write the size of the SPI transfer in bytes to DMA0NSZH:L.

g. Clear the address offset SFRs DMA0A0H:L.

3. Configure the second DMA channel for the SPI1DAT-to-XRAM transfer:

a. Disable the second DMA channel by clearing the corresponding bit in DMA0EN.

b. Select the second DMA channel by writing to DMA0SEL.

c. Configure the selected DMA channel to use the SPI1DAT-to-XRAM peripheral request by writing
0x04 to DMA0NCF.

d. Enable DMA interrupts for the second channel by setting bit 7 of DMA0NCF.

e. Write 0 to DMA0NMD to disable wrapping.

f. Write the address for the first byte of the slave input (MOSI) data to DMA0NBAH:L.

g. Write the size of the SPI transfer in bytes to DMA0NSZH:L.

h. Clear the address offset SFRs DMA0A0H:L.

i. Enable the interrupt on the second channel by setting the corresponding bit in DMA0INT.

j. Enable DMA interrupts by setting bit 5 of EIE2.

4. Clear the interrupt bits in DMA0INT for both channels.

5. Enable both channels by setting the corresponding bits in the DMA0EN SFR to initiate the SPI
transfer operation.

6. Wait on the DMA interrupt.

7. Clear the DMA enables in the DMA0EN SFR.

8. Clear the DMA interrupts in the DMA0INT SFR.

C8051F96x

Rev. 1.0 458

SFR Page = 0x0; SFR Address = 0xCA

SFR Page = 0x0; SFR Address = 0xCB

SFR Definition 32.9. TMR2RLL: Timer 2 Reload Register Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2RLL[7:0] Timer 2 Reload Register Low Byte.

TMR2RLL holds the low byte of the reload value for Timer 2.

SFR Definition 32.10. TMR2RLH: Timer 2 Reload Register High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLH[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2RLH[7:0] Timer 2 Reload Register High Byte.

TMR2RLH holds the high byte of the reload value for Timer 2.

