
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 16x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	40-VFQFN Exposed Pad
Supplier Device Package	40-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f963-a-gmr

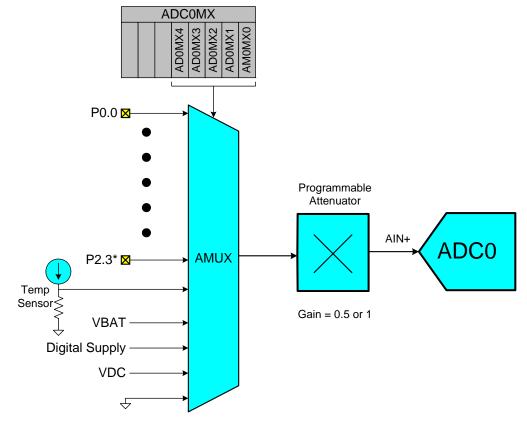
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	5.10. External Voltage Reference	
	5.11. Internal Voltage Reference	
	5.12. Analog Ground Reference	101
	5.13. Temperature Sensor Enable	
	5.14. Voltage Reference Electrical Specifications	
6.	Programmable Current Reference (IREF0)	
	6.1. PWM Enhanced Mode	103
	6.2. IREF0 Specifications	
7.	Comparators	
	7.1. Comparator Inputs	105
	7.2. Comparator Outputs	
	7.3. Comparator Response Time	
	7.4. Comparator Hysterisis	107
	7.5. Comparator Register Descriptions	
	7.6. Comparator0 and Comparator1 Analog Multiplexers	112
8.	CIP-51 Microcontroller	115
	8.1. Instruction Set	116
	8.1.1. Instruction and CPU Timing	116
	8.2. CIP-51 Register Descriptions	121
9.	Memory Organization	
	9.1. Program Memory	124
	9.1.1. MOVX Instruction and Program Memory	127
	9.2. Data Memory	
	9.2.1. Internal RAM	127
	9.2.2. External RAM	128
10	. External Data Memory Interface and On-Chip XRAM	129
	10.1. Accessing XRAM	129
	10.1.1. 16-Bit MOVX Example	
	10.1.2. 8-Bit MOVX Example	129
	10.2. Configuring the External Memory Interface	
	10.3. Port Configuration	
	10.4. Multiplexed and Non-multiplexed Selection	134
	10.4.1. Multiplexed Configuration	134
	10.4.2. Non-multiplexed Configuration	
	10.5. Memory Mode Selection	
	10.5.1. Internal XRAM Only	136
	10.5.2. Split Mode without Bank Select	
	10.5.3. Split Mode with Bank Select	
	10.5.4. External Only	
	10.6. Timing	
	10.6.1. Non-Multiplexed Mode	
	10.6.2. Multiplexed Mode	
11	. Direct Memory Access (DMA0)	
	11.1. DMA0 Architecture	
	11.2. DMA0 Arbitration	

Table 4.15. IREF0 Electrical Characteristics

 V_{BAT} = 1.8 to 3.8 V, –40 to +85 °C, unless otherwise specified.


Parameter	Conditions	Min	Тур	Max	Units
Static Performance		L	•		
Resolution			6		bits
Output Compliance Range	Low Power Mode, Source High Current Mode, Source Low Power Mode, Sink High Current Mode, Sink	0 0 0.3 0.8		$V_{BAT} - 0.4$ $V_{BAT} - 0.8$ V_{BAT} V_{BAT}	V
Integral Nonlinearity		_	<±0.2	±1.0	LSB
Differential Nonlinearity			<±0.2	±1.0	LSB
Offset Error		_	<±0.1	±0.5	LSB
	Low Power Mode, Source			±5	%
Full Scale Error	High Current Mode, Source			±6	%
	Low Power Mode, Sink	_		±8	%
	High Current Mode, Sink	_		±8	%
Absolute Current Error	Low Power Mode Sourcing 20 µA	_	<±1	±3	%
Dynamic Performance					
Output Settling Time to 1/2 LSB			300		ns
Startup Time			1	—	μs
Power Consumption			1		
Net Power Supply Current (V _{BAT} supplied to IREF0 minus any output source current)	Low Power Mode, Source IREF0DAT = 000001 IREF0DAT = 111111 High Current Mode, Source IREF0DAT = 000001 IREF0DAT = 111111 Low Power Mode, Sink IREF0DAT = 000001 IREF0DAT = 111111 High Current Mode, Sink IREF0DAT = 000001		10 10 10 10 1 1 11		μΑ μΑ μΑ μΑ μΑ
	IREF0DAT = 111111		81	—	μΑ
Note: Refer to "6.1. PWM Enhance	d Mode" on page 103 for informatio	n on how t	o improve	IREF0 resoluti	on.

5.7. ADC0 Analog Multiplexer

ADC0 on C8051F96x has an analog multiplexer, referred to as AMUX0.

AMUX0 selects the positive inputs to the single-ended ADC0. Any of the following may be selected as the positive input: Port I/O pins, the on-chip temperature sensor, the VBAT Power Supply, Regulated Digital Supply Voltage (Output of VREG0), VDC Supply, or the positive input may be connected to GND. The ADC0 input channels are selected in the ADC0MX register described in SFR Definition 5.12.

*P1.0 – P1.3 are not available as analog inputs Figure 5.7. ADC0 Multiplexer Block Diagram

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to 0 the corresponding bit in register PnMDIN and disable the digital driver (PnMDOUT = 0 and Port Latch = 1). To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register PnSKIP. See Section "27. Port Input/Output" on page 351 for more Port I/O configuration details.

SFR Definition 5.13. TOFFH: Temperature Sensor Offset High Byte

Bit	7	6	5	4	3	2	1	0
Name	TOFF[9:2]							
Туре	R	R	R	R	R	R	R	R
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Page = 0xF; SFR Address = 0x86

Bit	Name	Function
7:0		Temperature Sensor Offset High Bits.
		Most Significant Bits of the 10-bit temperature sensor offset measurement.

SFR Definition 5.14. TOFFL: Temperature Sensor Offset Low Byte

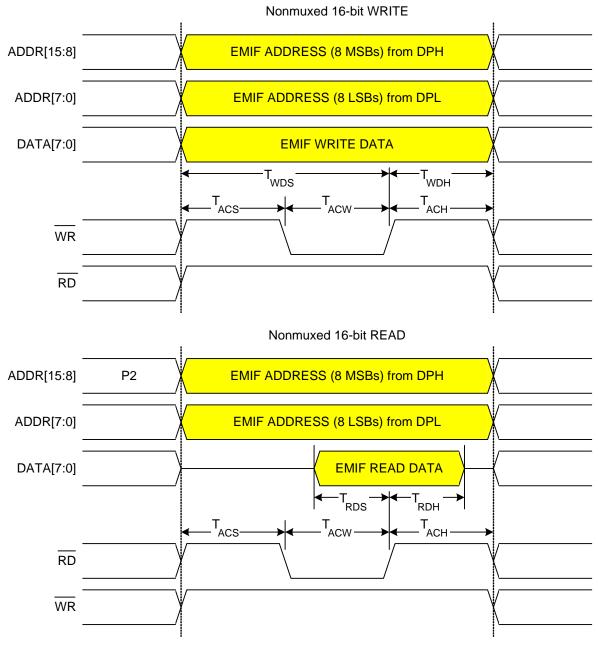
Bit	7	6	5	4	3	2	1	0
Name	TOFF[1:0]							
Туре	R	R						
Reset	Varies	Varies	0	0	0	0	0	0

SFR Page = 0xF; SFR Address = 0x85

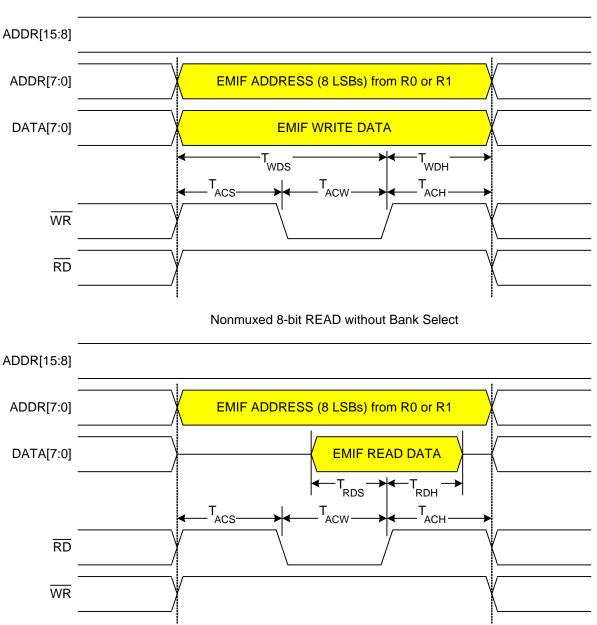
Bit	Name	Function
7:6	TOFF[1:0]	Temperature Sensor Offset Low Bits. Least Significant Bits of the 10-bit temperature sensor offset measurement.
5:0	Unused	Read = 0; Write = Don't Care.

SFR Definition 7.5. CPT0MX: Comparator0 Input Channel Select

Bit	7	6	5	4	3	2	1	0
Name		CMX0	N[3:0]		CMX0P[3:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1


SFR Page = 0x0; SFR Address = 0x9F

Bit	Name		Fui	nction	
7:4	CMX0N	-	O Negative Input Selection. negative input channel for Cor		
		0000:	P0.1	1000:	P2.1
		0001:	P0.3	1001:	P2.3
		0010:	P0.5	1010:	Reserved
		0011:	Reserved	1011:	Reserved
		0100:	Reserved	1100:	Compare
		0101:	Reserved	1101:	VBAT divided by 2
		0110:	P1.5	1110:	Digital Supply Voltage
		0111:	P1.7	1111:	Ground
3:0	CMX0P		O Positive Input Selection.	nparator0.	
		0000:	P0.0	1000:	P2.0
		0001:	P0.2	1001:	P2.2
		0010:	P0.4	1010:	Reserved
		0011:	P0.6	1011:	Reserved
		0100:	Reserved	1100:	Compare
		0101:	Reserved	1101:	VBAT divided by 2
		0110:	P1.4	1110:	VBAT Supply Voltage
		0111:	P1.6	1111:	VBAT Supply Voltage


10.6.1. Non-Multiplexed Mode 10.6.1.1. 16-bit MOVX: EMI0CF[4:2] = 101, 110, or 111

10.6.1.2. 8-bit MOVX without Bank Select: EMI0CF[4:2] = 101 or 111

Nonmuxed 8-bit WRITE without Bank Select

Figure 10.5. Non-multiplexed 8-bit MOVX without Bank Select Timing

14.5.2. AES Block Cipher Decryption using SFRs

- First Configure AES Module for AES Block Cipher
 - Reset AES module by writing 0x00 to AES0BCFG.
 - Configure the AES Module data flow for AES Block Cipher by writing 0x00 to the AES0DCFG sfr.
 - Write key size to bits 1 and 0 of the AES0BCFG.
 - Configure the AES core for decryption by setting bit 2 of AES0BCFG.
 - Enable the AES core by setting bit 3 of AES0BCFG.
- Repeat alternating write sequence 16 times
 - Write ciphertext byte to AES0BIN.
 - Write decryption key byte to AES0KIN.
- Write remaining decryption key bytes to AES0KIN for 192-bit and 256-bit decryption only.
- Wait on AES done interrupt or poll bit 5 of AES0BCFG.
- Read 16 plaintext bytes from the AES0YOUT sfr.

If decrypting multiple blocks, this process may be repeated. It is not necessary reconfigure the AES module for each block.

SFR Definition 14.2. AES0DCFG: AES Data Configuration

Bit	7	6	5	4	3	2	1	0
Name						OUTSI	EL[1:0]	XORIN
Туре	R	R	R	R	R	R/W		R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xEA; SFR page = 0x2; Not bit-Addressable

Bit	Name	Function
2:1	OUTSEL[1:0]	DATA Select.
		These bits select the output data source for the AES0YOUT sfr.
		00: Direct AES Data
		01: AES Data XOR with AES0XIN
		10: Inverse Key
		11: reserved
0	XORIN	XOR Input Enable.
		Setting this bit with enable the XOR data path on the AES input. If enabled, AES0BIN will be XORed with the AES0XIN and the results will feed into the AES data input. Clearing this bit to 0 will disable the XOR gate on the input. The con- tents of AES0BIN will go directly into the AES data input.

Table 16.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	SFR Page	Description	Page
TL0	0x8A	0x0	Timer/Counter 0 Low	452
TL1	0x8B	0x0	Timer/Counter 1 Low	452
TMOD	0x89	0x0	Timer/Counter Mode	451
TMR2CN	0xC8	All Pages	Timer/Counter 2 Control	457
TMR2H	0xCD	0x0	Timer/Counter 2 High	459
TMR2L	0xCC	0x0	Timer/Counter 2 Low	459
TMR2RLH	0xCB	0x0	Timer/Counter 2 Reload High	458
TMR2RLL	0xCA	0x0	Timer/Counter 2 Reload Low	458
TMR3CN	0x91	0x0	Timer/Counter 3 Control	463
TMR3H	0x95	0x0	Timer/Counter 3 High	465
TMR3L	0x94	0x0	Timer/Counter 3 Low	465
TMR3RLH	0x93	0x0	Timer/Counter 3 Reload High	464
TMR3RLL	0x92	0x0	Timer/Counter 3 Reload Low	464
TOFFH	0xBB	0xF	Temperature Offset High	99
TOFFL	0xBD	0xF	Temperature Offset Low	99
VDM0CN	0xFF	All Pages	VDD Monitor Control	282
XBR0	0xE1	0x0 and 0xF	Port I/O Crossbar Control 0	358
XBR1	0xE2	0x0 and 0xF	Port I/O Crossbar Control 1	359
XBR2	0xE3	0x0 and 0xF	Port I/O Crossbar Control 2	360

22.2. Power-Fail Reset

C8051F96x devices have two Active Mode Supply Monitors that can hold the system in reset if the supply voltage drops below V_{RST} . The first of the two identical supply monitors is connected to the output of the supply select switch (which chooses the VBAT or VDC pin as the source of the digital supply voltage) and is enabled and selected as a reset source after each power-on or power-fail reset. This supply monitor will be referred to as the digital supply monitor. The second supply monitor is connected directly to the VBAT pin and is disabled after each power-on or power-fail reset. This supply monitor will be referred to as the analog supply monitor. The analog supply monitor should be enabled any time the supply select switch is set to the VDC pin to ensure that the VBAT supply does not drop below V_{RST} .

When enabled and selected as a reset source, any power down transition or power irregularity that causes the monitored supply voltage to drop below V_{RST} will cause the RST pin to be driven low and the CIP-51 will be held in a reset state (see Figure 22.2). When the supply voltage returns to a level above V_{RST} , the CIP-51 will be released from the reset state.

After a power-fail reset, the PORSF flag reads 1, the contents of RAM are invalid, and the digital supply monitor is enabled and selected as a reset source. The enable state of either supply monitor and its selection as a reset source is only altered by power-on and power-fail resets. For example, if the supply monitor is de-selected as a reset source and disabled by software, then a software reset is performed, the supply monitor will remain disabled and de-selected after the reset.

In battery-operated systems, the contents of RAM can be preserved near the end of the battery's usable life if the device is placed in Sleep Mode prior to a power-fail reset occurring. When the device is in Sleep Mode, the power-fail reset is automatically disabled, both active mode supply monitors are turned off, and the contents of RAM are preserved as long as the supply does not fall below V_{POR} . A large capacitor can be used to hold the power supply voltage above V_{POR} while the user is replacing the battery. Upon waking from Sleep mode, the enable and reset source select state of the V_{DD} supply monitor are restored to the value last set by the user.

To allow software early notification that a power failure is about to occur, the VDDOK bit is cleared when the supply falls below the V_{WARN} threshold. The VDDOK bit can be configured to generate an interrupt. Each of the active mode supply montiors have their independent VDDOK and V_{WARN} flags. See Section "17. Interrupt Handler" on page 232 for more details.

Important Note: To protect the integrity of Flash contents, **the active mode supply monitor(s) must be enabled and selected as a reset source if software contains routines which erase or write Flash memory.** If the digital supply monitor is not enabled, any erase or write performed on Flash memory will cause a Flash Error device reset.

SFR Definition 24.3. RTC0DAT: SmaRTClock Data

Bit	7	6	5	4	3	2	1	0
Name				RTC0D	AT[7:0]			
Туре				R/	W			
Reset	0	0	0	0	0	0	0	0
SFR Pa	ge= 0x0; SF	R Address =	0xAD					
Bit	Name				Function			
7:0	RTC0DAT	SmaRTClock Data Bits. Holds data transferred to/from the internal SmaRTClock register selected by RTC0ADR.						
Note: F	Note: Read-modify-write instructions (orl, anl, etc.) should not be used on this register.							

24.2.6. Missing SmaRTClock Detector

The missing SmaRTClock detector is a one-shot circuit enabled by setting MCLKEN (RTC0CN.6) to 1. When the SmaRTClock Missing Clock Detector is enabled, OSCFAIL (RTC0CN.5) is set by hardware if SmaRTClock oscillator remains high or low for more than 100 μ s.

A SmaRTClock Missing Clock detector timeout can trigger an interrupt, wake the device from a low power mode, or reset the device. See Section "17. Interrupt Handler" on page 232, Section "19. Power Management" on page 257, and Section "22. Reset Sources" on page 278 for more information.

Note: The SmaRTClock Missing Clock Detector should be disabled when making changes to the oscillator settings in RTC0XCN.

24.2.7. SmaRTClock Oscillator Crystal Valid Detector

The SmaRTClock oscillator crystal valid detector is an oscillation amplitude detector circuit used during crystal startup to determine when oscillation has started and is nearly stable. The output of this detector can be read from the CLKVLD bit (RTX0XCN.4).

Notes:

- 1. The CLKVLD bit has a blanking interval of 2 ms. During the first 2 ms after turning on the crystal oscillator, the output of CLKVLD is not valid.
- This SmaRTClock crystal valid detector (CLKVLD) is not intended for detecting an oscillator failure. The missing SmaRTClock detector (CLKFAIL) should be used for this purpose.
- **3.** The CLKVLD bit output is driven low when BIASX2 is disabled.

24.3. SmaRTClock Timer and Alarm Function

The SmaRTClock timer is a 32-bit counter that, when running (RTC0TR = 1), is incremented every SmaRTClock oscillator cycle. The timer has an alarm function that can be set to generate an interrupt, wake the device from a low power mode, or reset the device at a specific time. See Section "17. Interrupt Handler" on page 232, Section "19. Power Management" on page 257, and Section "22. Reset Sources" on page 278 for more information.

The SmaRTClock timer includes an Auto Reset feature, which automatically resets the timer to zero one SmaRTClock cycle after the alarm 0 signal is deasserted. When using Auto Reset, the Alarm match value should always be set to 2 counts less than the desired match value. When using the LFO in combination with Auto Reset, the right-justified Alarm match value should be set to 4 counts less than the desired match value. Auto Reset can be enabled by writing a 1 to ALRM (RTCOCN.2).

24.3.1. Setting and Reading the SmaRTClock Timer Value

The 32-bit SmaRTClock timer can be set or read using the six CAPTUREn internal registers. Note that the timer does not need to be stopped before reading or setting its value. The following steps can be used to set the timer value:

- 1. Write the desired 32-bit set value to the CAPTUREn registers.
- 2. Write 1 to RTC0SET. This will transfer the contents of the CAPTUREn registers to the SmaRTClock timer.
- 3. Operation is complete when RTC0SET is cleared to 0 by hardware.

The following steps can be used to read the current timer value:

- 1. Write 1 to RTC0CAP. This will transfer the contents of the timer to the CAPTUREn registers.
- 2. Poll RTC0CAP until it is cleared to 0 by hardware.
- 3. A snapshot of the timer value can be read from the CAPTUREn registers

Notes:

- 1. If the system clock is faster than 4x the SmaRTClock, then the HSMODE bit should be set to allow the set and capture operations to be concluded quickly (system clock used for transfers).
- 2. If the system clock is slower than 4x the SmaRTClock, then HSMODE should be set to zero, and RTC must be

LCD0CF Register.

- 8. Set the LCD contrast using the LCD0CNTRST register.
- 9. Set the desired threshold for the VBAT Supply Monitor.
- 10. Set the LCD refresh rate using the LCD0DIVH:LCD0DIVL registers.
- 11. Write a pattern to the LCD0Dn registers.
- 12. Enable the LCD by setting bit 0 of LCD0MSCN to logic 1 (LCD0MSCN |= 0x01).

26.2. Mapping Data Registers to LCD Pins

The LCD0 data registers are organized as 16 byte-wide special function registers (LCD0Dn), each halfbyte or nibble in these registers controls 1 LCD output pin. There are 32 nibbbles used to control the 32 segment pins.

Each LCD0 segment pin can control 1, 2, 3, or 4 LCD segments depending on the selected mux mode. The least significant bit of each nibble controls the segment connected to the backplane signal COM0. The next to least significant bit controls the segment associated with COM1, the next bit controls the segment associated with COM2, and the most significant bit in the 4-bit nibble controls the segment associated with COM3.

In static mode, only the least significant bit in each nibble is used and the three remaining bits in each nibble are ignored. In 2-mux mode, only the two least significant bits are used; in 3-mux mode, only the three least significant bits are used, and in 4-mux mode, each of the 4 bits in the nibble controls one LCD segment. Bits with a value of 1 turn on the associated segment and bits with a value of 0 turn off the associated segment.

Bit	7	6	5	4	3	2	1	0
Name	LCD0Dn							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Definition 26.1. LCD0Dn: LCD0 Data

SFR Page: 0x2

Addresses: LCD0D0 = 0x89, LCD0D1 = 0x8A, LCD0D2 = 0x8B, LCD0D3 = 0x8C, LCD0D4 = 0x8D, LCD0D5 = 0x8E, LCD0D6 = 0x91, LCD0D7 = 0x92, LCD0D8 = 0x93, LCD0D9 = 0x94, LCD0DA = 0x95, LCD0DB = 0x96, LCD0DC = 0x97, LCD0DD = 0x99, LCD0DE = 0x9A, LCD0DF = 0x9B.

Bit	Name	Function
7:0	LCD0Dn	LCD Data.
		Each nibble controls one LCD pin. See "Mapping Data Registers to LCD Pins" on page 335 for additional information.

SFR Definition 27.1. XBR0: Port I/O Crossbar Register 0

Bit	7	6	5	4	3	2	1	0
Name	CP1AE	CP1E	CP0AE	CP0E	SYSCKE	SMB0E	SPI0E	URT0E
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xE1

Bit	Name	Function
7	CP1AE	Comparator1 Asynchronous Output Enable. 0: Asynchronous CP1 output unavailable at Port pin. 1: Asynchronous CP1 output routed to Port pin.
6	CP1E	Comparator1 Output Enable. 0: CP1 output unavailable at Port pin. 1: CP1 output routed to Port pin.
5	CP0AE	Comparator0 Asynchronous Output Enable. 0: Asynchronous CP0 output unavailable at Port pin. 1: Asynchronous CP0 output routed to Port pin.
4	CP0E	Comparator0 Output Enable. 0: CP1 output unavailable at Port pin. 1: CP1 output routed to Port pin.
3	SYSCKE	SYSCLK Output Enable.0: SYSCLK output unavailable at Port pin.1: SYSCLK output routed to Port pin.
2	SMB0E	SMBus I/O Enable.0: SMBus I/O unavailable at Port pin.1: SDA and SCL routed to Port pins.
1	SPI0E	 SPI0 I/O Enable 0: SPI0 I/O unavailable at Port pin. 1: SCK, MISO, and MOSI (for SPI0) routed to Port pins. NSS (for SPI0) routed to Port pin only if SPI0 is configured to 4-wire mode.
0	URT0E	UART0 Output Enable. 0: UART I/O unavailable at Port pin. 1: TX0 and RX0 routed to Port pins P0.4 and P0.5.
Note: S	PI0 can be a	ssigned either 3 or 4 Port I/O pins.

SFR Definition 27.16. P1MDOUT: Port1 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P1MDOUT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xA5

Bit	Name	Function
7:0	P1MDOUT[7:0]	Output Configuration Bits for P1.7–P1.0 (respectively).
		 These bits control the digital driver even when the corresponding bit in register P1MDIN is logic 0. 0: Corresponding P1.n Output is open-drain. 1: Corresponding P1.n Output is push-pull.

SFR Definition 27.17. P1DRV: Port1 Drive Strength

Bit	7	6	5	4	3	2	1	0
Name	P1DRV[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page = 0xF; SFR Address = 0xA5

Bit	Name	Function
7:0	P1DRV[7:0]	Drive Strength Configuration Bits for P1.7–P1.0 (respectively).
		Configures digital I/O Port cells to high or low output drive strength. 0: Corresponding P1.n Output has low output drive strength. 1: Corresponding P1.n Output has high output drive strength.

SFR Definition 31.2. SPI1CN: SPI1 Control

Bit	7	6	5	4	3	2	1	0
Name	SPIF	WCOL	MODF	RXOVRN	NSSMD[1:0]		TXBMT	SPIEN
Туре	R/W	R/W	R/W	R/W	R/W		R	R/W
Reset	0	0	0	0	0	1	1	0

SFR Page = 0x0; SFR Address = 0xB0; Bit-Addressable

Bit	Name	Function
7	SPIF	SPI1 Interrupt Flag.
		This bit is set to logic 1 by hardware at the end of a data transfer. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
6	WCOL	Write Collision Flag.
		This bit is set to logic 1 if a write to SPI1DAT is attempted when TXBMT is 0. When this occurs, the write to SPI1DAT will be ignored, and the transmit buffer will not be written. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
5	MODF	Mode Fault Flag.
		This bit is set to logic 1 by hardware when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
4	RXOVRN	Receive Overrun Flag (valid in slave mode only).
		This bit is set to logic 1 by hardware when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI1 shift register. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
3:2	NSSMD[1:0]	Slave Select Mode.
		Selects between the following NSS operation modes: (See Section 31.2 and Section 31.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMD0.
1	TXBMT	Transmit Buffer Empty.
		This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.
0	SPIEN	SPI1 Enable.
		0: SPI disabled. 1: SPI enabled.

