E·XFL

Welcome to E-XFL.COM

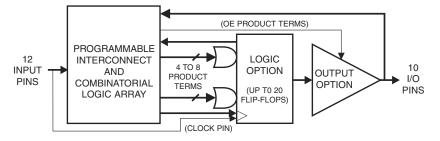
Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Details	
Product Status	Obsolete
Programmable Type	EE PLD
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	3V ~ 5.5V
Number of Logic Elements/Blocks	-
Number of Macrocells	10
Number of Gates	-
Number of I/O	10
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	24-DIP (0.300", 7.62mm)
Supplier Device Package	24-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atf750lvc-15pi


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Features

- 3.0V to 5.5V Operating Range
- Advanced, High-speed, Electrically-erasable Programmable Logic Device
 - Superset of 22V10
 - Enhanced Logic Flexibility
 - Architecturally Compatible with ATV750B and ATV750 Software and Hardware
- D- or T-type Flip-flop
- Product Term or Direct Input Pin Clocking
- 10 ns Maximum Pin-to-pin Delay with 5V Operation
- 15 ns Maximum Pin-to-pin Delay with 3V Operation
- Highest Density Programmable Logic Available in 24-pin Package
 - Advanced Electrically-erasable Technology
 - Reprogrammable
 - 100% Tested
- Increased Logic Flexibility
 - 42 Array Inputs, 20 Sum Terms and 20 Flip-flops
- Enhanced Output Logic Flexibility
 - All 20 Flip-flops Feed Back Internally
 - 10 Flip-flops are also Available as Outputs
- Programmable Pin-keeper Circuits
- Dual-in-line and Surface Mount Package in Standard Pinouts
- Commercial and Industrial Temperature Ranges
- 20-year Data Retention
- 2000V ESD Protection
- 1000 Erase/Write Cycles
- Green Package Options (Pb/Halide-free/RoHS Compliant) Available

1. Block Diagram

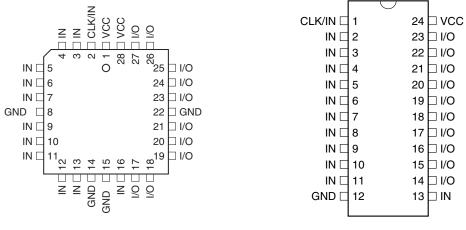
2. Description

The Atmel[®] "750" architecture is twice as powerful as most other 24-pin programmable logic devices. Increased product terms, sum terms, flip-flops and output logic configurations translate into more usable gates. High-speed logic and uniform, predictable delays guarantee fast in-system performance. The ATF750LVC is a highperformance CMOS (electrically-erasable) complex programmable logic device (CPLD) that utilizes Atmel's proven electrically-erasable technology.

High-speed Complex Programmable Logic Device

ATF750LVC

1447F-PLD-11/08


3. Pin Configurations

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I/O	Bi-directional Buffers
GND	Ground
VCC	3V to 5.5V Supply

3.2

DIP/SOIC/TSSOP

3.1 PLCC

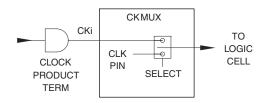
Note: 1. For PLCC, pins 1, 8, 15, and 22 can be left unconnected. For superior performance, connect VCC to pin 1 and GND to pins 8, 15, and 22.

Each of the ATF750LVC's 22 logic pins can be used as an input. Ten of these can be used as inputs, outputs or bi-directional I/O pins. Each flip-flop is individually configurable as either D- or T-type. Each flip-flop output is fed back into the array independently. This allows burying of all the sum terms and flip-flops.

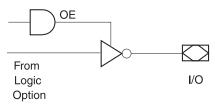
There are 171 total product terms available. There are two sum terms per output, providing added flexibility. A variable format is used to assign between four to eight product terms per sum term. Much more logic can be replaced by this device than by any other 24-pin PLD. With 20 sum terms and flip-flops, complex state machines are easily implemented with logic to spare.

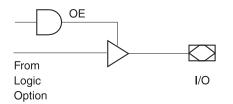
Product terms provide individual clocks and asynchronous resets for each flip-flop. Each flipflop may also be individually configured to have direct input pin controlled clocking. Each output has its own enable product term. One product term provides a common synchronous preset for all flip-flops. Register preload functions are provided to simplify testing. All registers automatically reset upon power-up.

4. Absolute Maximum Ratings*


	_
Temperature Under Bias40°C to +85°C	
Storage Temperature65°C to +150°C	
Voltage on Any Pin with Respect to Ground2.0V to +7V ⁽¹⁾	
Voltage on Input Pins with Respect to Ground During Programming2.0V to +14.0V ⁽¹⁾	
Programming Voltage with Respect to Ground2.0V to +14.0V ⁽¹⁾	

- *NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- Note: 1. Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} + 0.75V DC, which may overshoot to 7V for pulses of less than 20 ns with VCC at VCC max.


5. DC and AC Operating Conditions

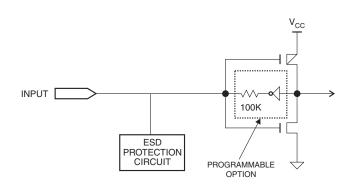

	Commercial	Industrial
Operating Temperature (Ambient)	0°C - 70°C	-40°C - +85°C
V _{CC} Power Supply	3.0 - 5.25V	3.0 - 5.5V

6. Clock Mux

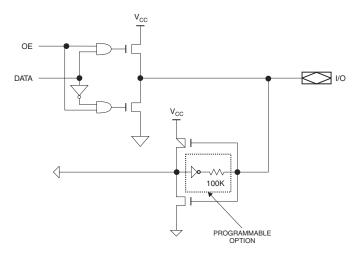
7. Output Options

8. Bus-friendly Pin-keeper Input and I/Os

All input and I/O pins on the ATF750LVC have programmable "pin-keeper" circuits. If activated, when any pin is driven high or low and then subsequently left floating, it will stay at that previous high or low level.


This circuitry prevents unused input and I/O lines from floating to intermediate voltage levels, which cause unnecessary power consumption and system noise. The keeper circuits eliminate the need for external pull-up resistors and eliminate their DC power consumption.

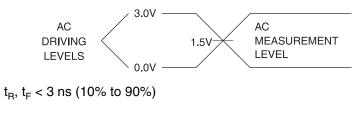
Enabling or disabling of the pin-keeper circuits is controlled by the device type chosen in the logic compiler device selection menu. Please refer to the software compiler table for more details. Once the pin-keeper circuits are disabled, normal termination procedures are required for unused inputs and I/Os.


 Table 1. Software Compiler Mode Selection

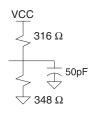
Synario	WinCupl	Pin-keeper Circuit
ATF750LVC	V750C	Disabled
ATF750LVC (PPK)	V750CPPK	Enabled

9. Input Diagram

10. I/O Diagram

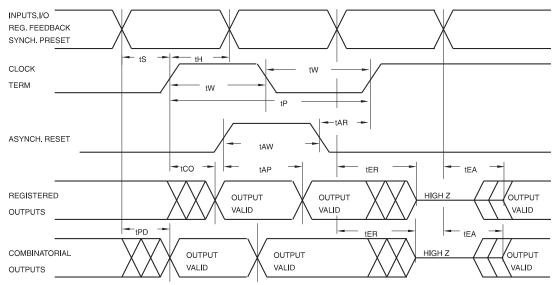

Symbol	Parameter	Condition		Min	Тур	Max	Units	
		3V Operation			3.0	3.3	3.6	V
V _{cc}	Power Supply Voltage			Com.	4.75	5.0	5.25	V
	vollago	5V Operation		Ind.	4.5	5.0	5.5	V
I _{LI}	Input Load Current	V_{IN} = -0.1V to V_{CC}	+ 1V				10	μA
I _{LO}	Output Leakage Current	$V_{OUT} = -0.1 V$ to V_{C}	_C + 0.1V				10	μA
	Power Supply	$V_{\rm CC} = 3.6 V$		Com.		65	90	mA
I _{CC}	Current, Standby	V _{IN} = 3.6V Outputs Open	C-15	Ind.		70	100	mA
		$V_{CC} = 5.25V$ $V_{IN} = 5.25V$ Outputs Open		Com.		100	180	mA
I _{CC}	Current, Standby		C-15	Ind.		110	190	mA
I _{OS} ⁽¹⁾⁽²⁾	Output Short Circuit Current	V _{OUT} = 0.5V					-120	mA
V _{IL}	Input Low Voltage	$Min \le V_{CC} \le Max$			-0.6		0.8	V
V _{IH}	Input High Voltage						V _{CC} + 0.75	v
			l _{OL} = 16 mA	Com., Ind.			0.5	V
V _{OL}	Output Low Voltage	$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{CC} = Min$	I _{OL} = 12 mA	Mil.			0.5	V
		• 66 – 1000	I _{OL} = 24 mA	Com.			0.8	V
V	Output High $V_{IN} = V_{IH}$ or V_{II}	$V_{IN} = V_{IH} \text{ or } V_{IL},$	I _{OH} = -100 μA		VCC - 0.3V			V
V _{OH}	Voltage	$V_{CC} = Min$ $I_{OH} = -2$			2.4			V

11. DC Characteristics

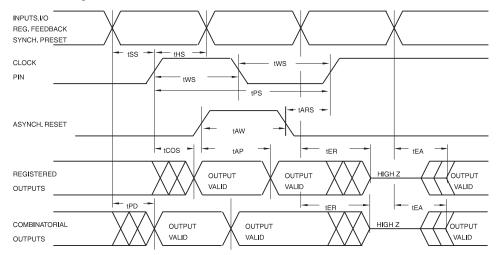

Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.

2. This test is performed at initial characterisation only.

12. Input Test Waveforms and Measurement Levels


13. Output Test Load

14. AC Waveforms, Product Term Clock⁽¹⁾



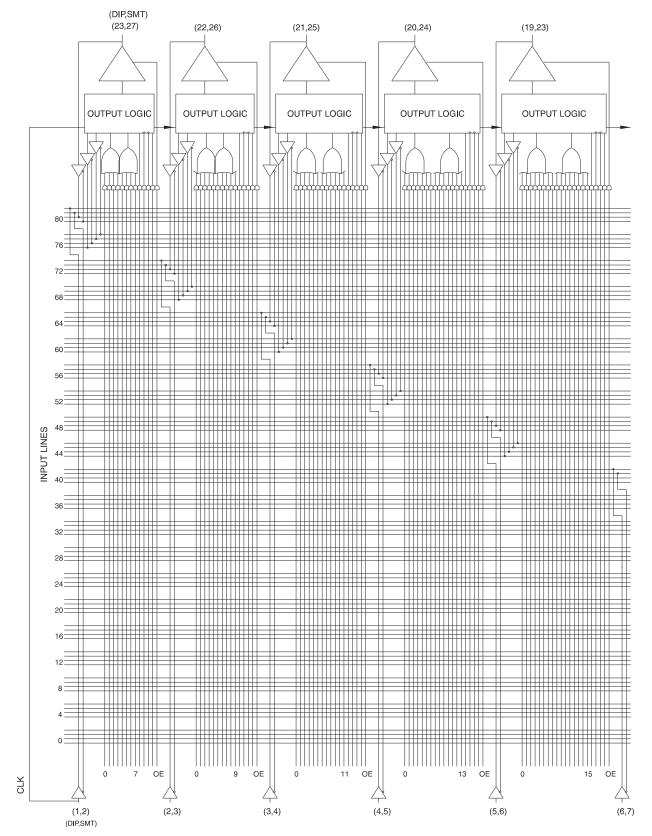
Note:	1.	Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.
15.	AC	Characteristics, Product Term Clock ⁽¹⁾

		-15 (5V Operation)		-15 (3V Operation)		
Symbol	Parameter	Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Non-registered Output		10		15	ns
t _{EA}	Input to Output Enable		10		15	ns
t _{ER}	Input to Output Disable		10		15	ns
t _{co}	Clock to Output	4	10	5	12	ns
t _{CF}	Clock to Feedback	4	7.5	5	9	ns
t _s	Input Setup Time	4		8		ns
t _{SF}	Feedback Setup Time	4		7		ns
t _H	Hold Time	2		5		ns
t _P	Clock Period	11		14		ns
t _w	Clock Width	5.5		7		ns
	External Feedback 1/(t _S + t _{CO})		71		50	MHz
f _{MAX}	Internal Feedback 1/(t _{SF} + t _{CF})		86		62	MHz
	No Feedback 1/(t _P)		90		71	MHz
t _{AW}	Asynchronous Reset Width	10		15		ns
t _{AR}	Asynchronous Reset Recovery Time	10		15		ns
t _{AP}	Asynchronous Reset to Registered Output Reset		12		15	ns
t _{SP}	Setup Time, Synchronous Preset	7		8		ns

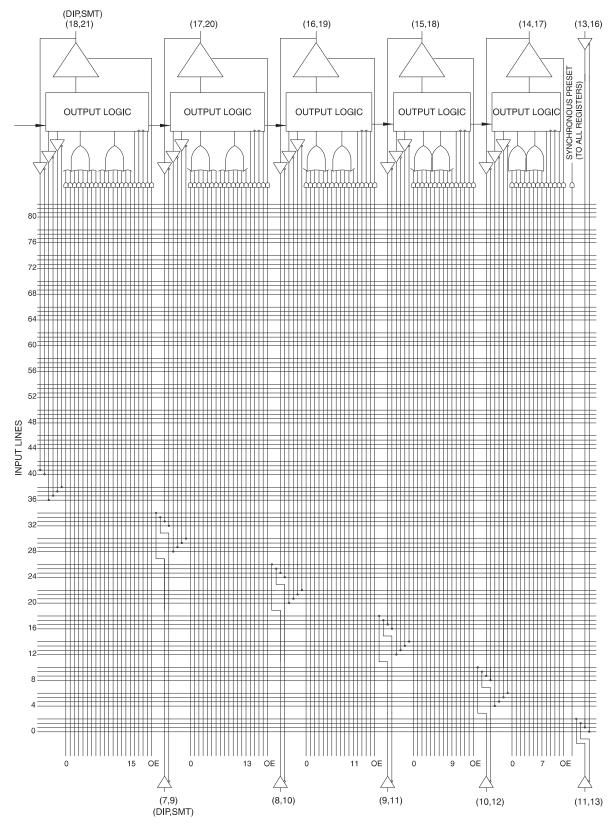
Note: 1. See ordering information for valid part numbers.

16. AC Waveforms, Input Pin Clock⁽¹⁾

Note: 1. Timing measurement reference is 1.5V. Input AC driving levels are 0.0V and 3.0V, unless otherwise specified.


17. AC Characteristics, Input Pin Clock

		-15 (5V C	-15 (5V Operation)		-15 (3V Operation)	
Symbol	Parameter	Min	Max	Min	Max	Units
t _{PD}	Input or Feedback to Non-registered Output		10		15	ns
t _{EA}	Input to Output Enable		10		15	ns
t _{ER}	Input to Output Disable		10		15	ns
t _{COS}	Clock to Output	0	7	0	10	ns
t _{CFS}	Clock to Feedback	0	5	0	5.5	ns
t _{SS}	Input Setup Time	5		8		ns
t _{SFS}	Feedback Setup Time	5		7		ns
t _{HS}	Hold Time	0		5		ns
t _{PS}	Clock Period	10		14		ns
t _{WS}	Clock Width	5		7		ns
	External Feedback 1/t _{SS} + t _{COS}		83		55	MHz
f _{MAXS}	Internal Feedback 1/t _{SFS} + t _{CFS}		100		80	MHz
	No Feedback 1/t _{PS}		100		83	MHz
t _{AW}	Asynchronous Reset Width	10		15		ns
t _{ARS}	Asynchronous Reset Recovery Time	10		15		ns
t _{AP}	Asynchronous Reset to Registered Output Reset		10		15	ns
t _{SPS}	Setup Time, Synchronous Preset	5		11		ns


18. Functional Logic Diagram ATF750LVC, Upper Half

ATF750LVC

8

19. Functional Logic Diagram ATF750LVC, Lower Half

20. Using the ATF750LVC's Many Advanced Features

The ATF750LVC's advanced flexibility packs more usable gates into 24-pins than any other logic device. The ATF750LVCs start with the popular 22V10 architecture, and add several enhanced features:

• Selectable D- and T-type Registers

Each ATF750LVC flip-flop can be individually configured as either D- or T-type. Using the T-type configuration, JK and SR flip-flops are also easily created. These options allow more efficient product term usage.

Selectable Asynchronous Clocks

Each of the ATF750LVC's flip-flops may be clocked by its own clock product term or directly from Pin 1 (SMD Lead 2). This removes the constraint that all registers must use the same clock. Buried state machines, counters and registers can all coexist in one device while running on separate clocks. Individual flip-flop clock source selection further allows mixing higher performance pin clocking and flexible product term clocking within one design.

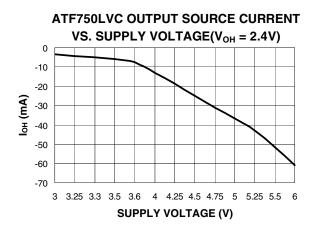
• A Full Bank of Ten More Registers

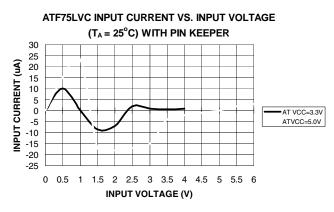
The ATF750LVC provides two flip-flops per output logic cell for a total of 20. Each register has its own sum term, its own reset term and its own clock term.

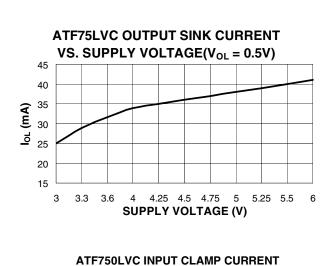
Independent I/O Pin and Feedback Paths

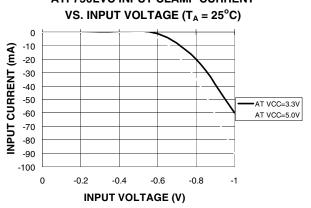
Each I/O pin on the ATF750LVC has a dedicated input path. Each of the 20 registers has its own feedback terms into the array as well. This feature, combined with individual product terms for each I/O's output enable, facilitates true bi-directional I/O design.

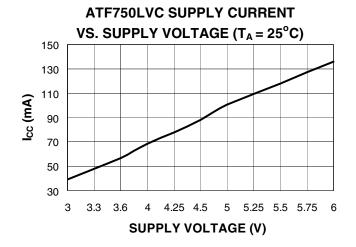
21. Synchronous Preset and Asynchronous Reset

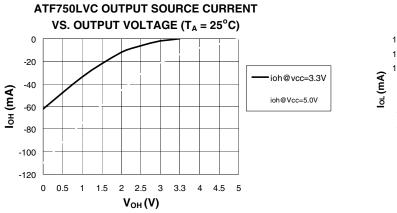

One synchronous preset line is provided for all 20 registers in the ATF750LVC. The appropriate input signals to cause the internal clocks to go to a high state must be received during a synchronous preset. Appropriate setup and hold times must be met, as shown in the switching waveform diagram.

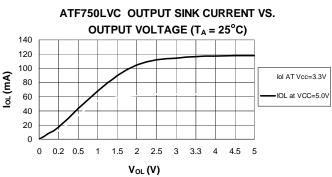

An individual asynchronous reset line is provided for each of the 20 flip-flops. Both master and slave halves of the flip-flops are reset when the input signals received force the internal resets high.

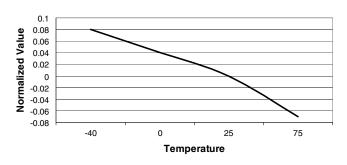

22. Security Fuse Usage


A single fuse is provided to prevent unauthorized copying of the ATF750LVC fuse patterns. Once the security fuse is programmed, all fuses will appear programmed during verify.


The security fuse should be programmed last, as its effect is immediate.







ATF750LVC SUPPLY CURRENT VS. INPUT FREQUENCY ($T_A = 25^{\circ}C$) 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 lcc (mA) AT VCC=3.3V At VCC=5.0V 0 5 10 15 20 50 75 100 Frequency (MHz)

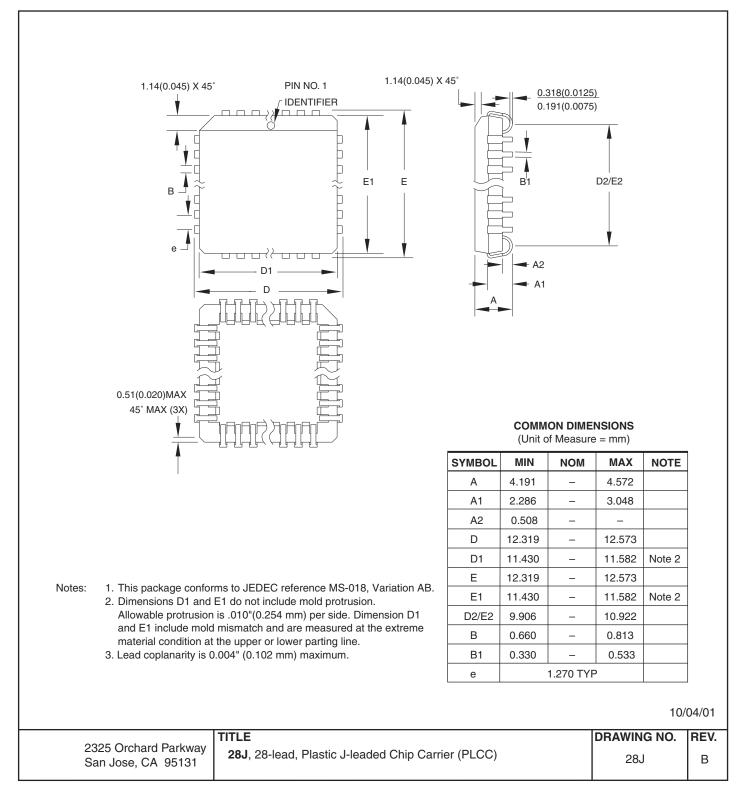
NORMALIZED SUPPLY CURRENT OVER TEMPERATURE (AT V_{CC} = 3.3V & 5.0V)

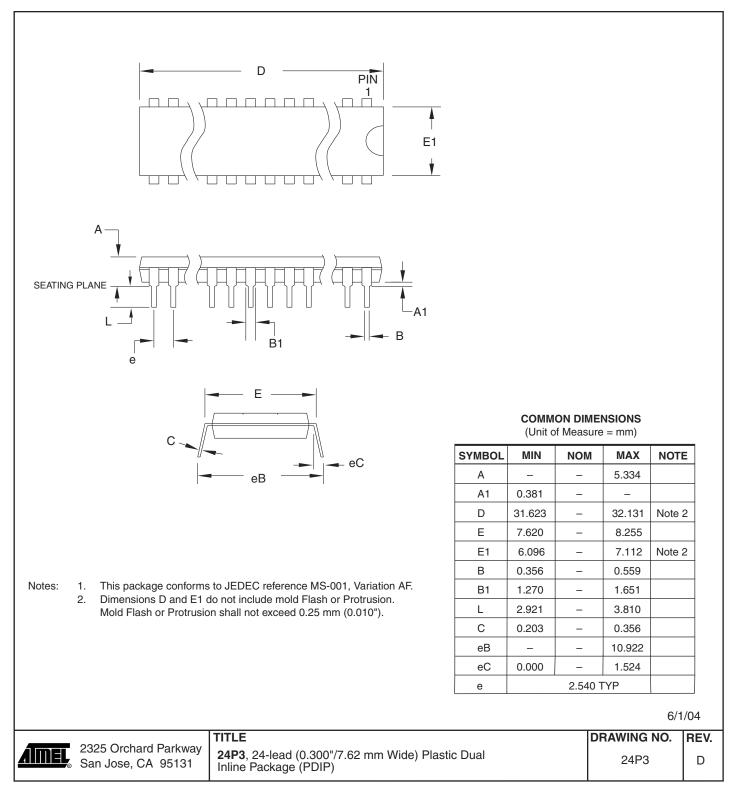
23. ATF750LVC Ordering Information

23.1 ATF750LVC Green Package Options (Pb/Halide-free/RoHS Compliant)

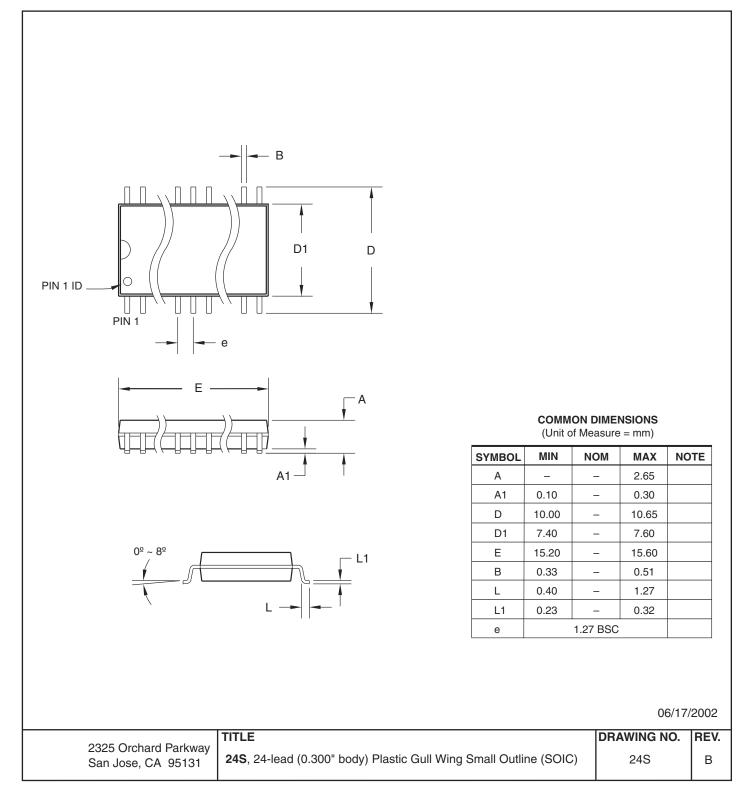
t _{PD} (ns)	t _{cos} (ns)	Ext. f _{MAXS} (MH _z)	Ordering Code	Package	Operation Range
15	10	55	ATF750LVC-15JU ATF750LVC-15PU ATF750LVC-15SU ATF750LVC-15XU ⁽¹⁾	28J 24P3 24S 24X	Industrial (-40°C to 85°C)

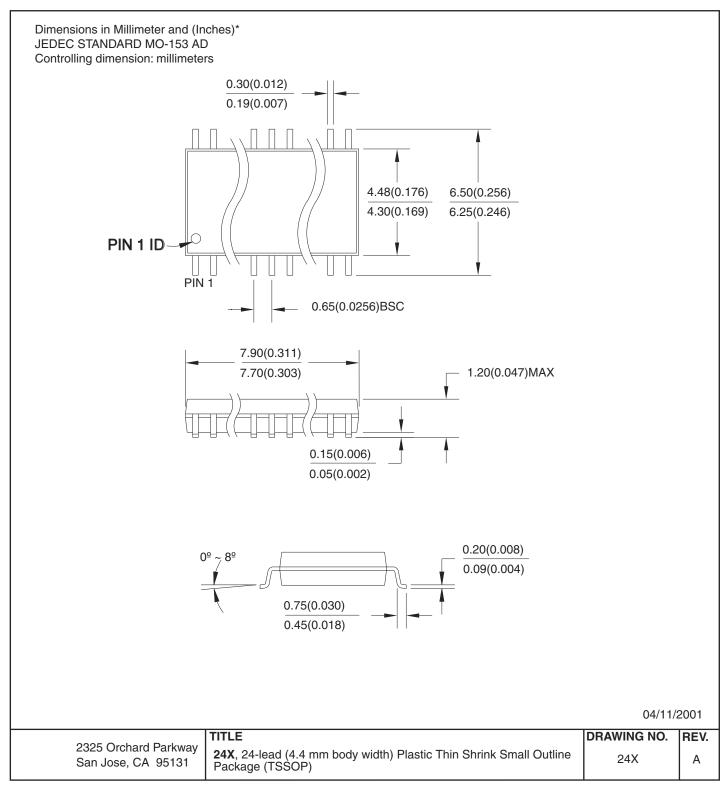
Note: 1. Special order only; TSSOP package requires special thermal management.


	Package Type				
28J	28J 28-Lead, Plastic J-leaded Chip Carrier (PLCC)				
24P3	24-lead, 0.300' Wide, Plastic Dual Inline Package (PDIP)				
24S	24-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)				
24X*	24-lead, 0.173" Wide, Thin Shrink Small Outline (TSSOP)				



24. Package Information


24.2 24P3 – PDIP



24.3 24S - SOIC

24.4 24X – TSSOP

25. Revision History

Revision Level – Release Date	History		
F – November 2008	Updated datasheet with extended voltage range offering. Removed the leaded parts offering.		

Headquarters

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site www.atmel.com Technical Support PLD@atmel.com Sales Contact www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel[®], Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.