E·XFL

NXP USA Inc. - MKV46F256VLL16 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	168MHz
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	74
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 38x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkv46f256vll16

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

All digital I/O switching characteristics, unless otherwise specified, assume:

- 1. output pins
 - have C_L =30pF loads,
 - are slew rate disabled, and
 - are normal drive strength

2.2 Nonswitching electrical specifications

2.2.1 Recommended Operating Conditions

This section includes information about recommended operating conditions.

Table 2. Recommended Operating Conditions (V_{BEFLx}=0V, V_{SSA}=0V, V_{SS}=0V) Symbol Description Notes¹ Min Unit Тур Max V_{DD} Supply Voltage Digital 2, 3 1.71 3.6 V Supply voltage (analog) 2.7 3.6 V V_{DDA} 2.3 3.0 V_{REFHx} ADC (Cyclic) Reference Voltage High 2.7 V_{DDA} V ΔVDD Voltage difference V_{DD} to V_{DDA} -0.1 0 0.1 V ΔVSS Voltage difference V_{SS} to V_{SSA} -0.1 0 0.1 v F_MCGO **Device Clock Frequency** 0.04 168 MHz UT using internal RC oscillator using external clock source 0 168 VIH Input Voltage High (digital inputs) Pin Groups 1, 2 $0.7 \times V_{DD}$ 3.6 v VII Input Voltage Low (digital inputs) Pin Groups 1, 2 0.35 x V_{DD} V ٧ **Oscillator Input Voltage High** Pin Group 4 $V_{DD} + 0.3$ VIHOSC 2.0 XTAL driven by an external clock source VILOSC Oscillator Input Voltage Low Pin Group 4 v -0.3 0.8 DAC Output Current Drive Strength Pin Group 5 Cout 1 mΑ Ambient Operating Temperature -40 105 °C T_A

NOTE

Recommended V_{DD} ramp rate is between 1 ms and 200 ms.

1. Default Mode

- Pin Group 1: GPIO, TDI, TDO, TMS, TCK
- Pin Group 2: RESET
- Pin Group 3: ADC and Comparator Analog Inputs
- Pin Group 4: XTAL, EXTAL
- Pin Group 5: DAC analog output
- Pin Group 6: PTB0, PTB1, PTD4, PTD5, PTD6, PTD7, PTC3, and PTC4. have high output current capability
- Pin Group 7: PTC6 and PTC7 are true open drain pins and have no P-chanl transistor. A external pull-up resistor is required when these pins are outputs.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		_	10.0	19.8	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA					Core frequenc of 100 MHz.
	• @ 1.8V	_	17.0	25.9	mA	
	• @ 3.0V	—	17.2	26.1	mA	
I _{DD_HSRUN}	Run mode current — all peripheral clocks disabled, code executing from flash, excludes IDDA					Core frequence of 168 MHz.
	• @ 1.8V	—	26.3	45.3	mA	
	• @ 3.0V	—	26.5	45.5	mA	
I _{DD_HSRUN}	Run mode current — all peripheral clocks enabled, code executing from flash,excludes IDDA • @ 3.0V					Core frequenc of 168 MHz. Nanoedge module at 84 MHz.
	• @ 25°C	—	34.0	45.5	mA	
	• @ 105°C	—	39.0	53.2	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled		8.9		mA	
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks disabled	—	0.58	_	mA	Core frequence of 4 Mhz.
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled		0.83		mA	Core frequence of 4 Mhz.
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled		0.34		mA	Bus frequency of 2 MHz.
I _{DD_STOP}	Stop mode current at 3.0 V					
	• @ −40 to 25°C	—	0.43	2.03	mA	
	• @ 70°C	—	1.16	4.27	mA	
	• @ 105°C	—	3.05	10.13	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ -40 to 25°C	—	58	218	μA	
	• @ 70°C	_	280	1340	μA	
	• @ 105°C	_	924	2870	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					
	• @ -40 to 25°C	_	2.8	5.3	μA	
	• @ 70°C	_	9.6	35.1	μA	
	• @ 105°C	_	37.4	134.8	μA	
I	Very low-leakage stop mode 2 current at 3.0 V					

Table 6. Power consumption operating behaviors (All IDDs are Target values) (continued)

Symbol	Description		Temperature (°C)					
		-40	25	50	70	85	105	
		510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							μΑ
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	
	OSCERCLK (4 MHz external crystal)	214	234	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA

Table 7. Low power mode peripheral adders — typical value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

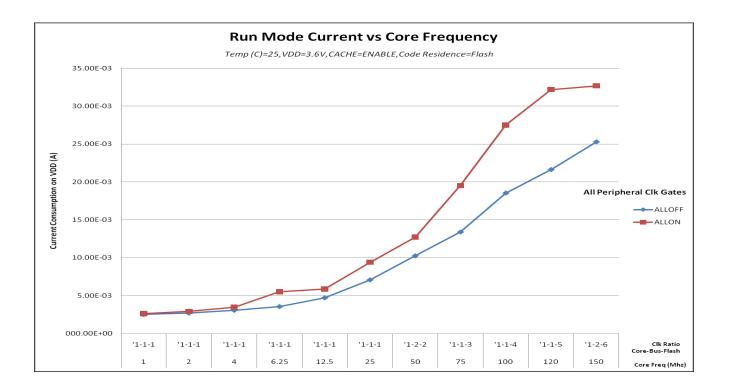


Figure 3. Run mode supply current vs. core frequency

Symbol	Description	Min.	Max.	Unit	Notes
f _{FPCK}	Fast peripheral clock	—	100	MHz	
f _{NANO}	Nano-edge clock	_	200	MHz	
	Low Speed RUN r	node	•		
f _{SYS}	System and core clock	—	50	MHz	
f _{BUS}	Bus and Flash clock	_	25	MHz	
f _{FPCK}	Fast peripheral clock	—	100	MHz	
f _{NANO}	Nano-edge clock	—	200	MHz	

 Table 10.
 Typical device clock specifications (continued)

NOTE

When NaneEdge circuit is enabled, the following clock set must be followed:

- 1. NanoEdge clock source must be from the PLL output
- 2. NanoEdge clock must be 2x the fast peripheral clock
- 3. NanoEdge clock must in the range of 164 Mhz ~232 Mhz

2.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and I²C signals.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1
	External RESET and NMI pin interrupt pulse width — Asynchronous path	100	_	ns	2
	GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
	Port rise and fall time				3
	Fast slew rate				
	1.71≤ VDD ≤ 2.7 V		8	ns	
	2.7 ≤ VDD ≤ 3.6 V	—	7	ns	
	Port rise and fall time				
	Slow slew rate				
	1.71≤ VDD ≤ 2.7 V	—	25	ns	
	2.7 ≤ VDD ≤ 3.6 V	—	15	ns	

 Table 11. General switching specifications

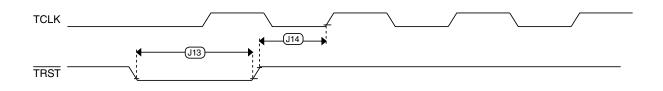


Figure 12. TRST timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Table 18.	MCG s	pecifications
-----------	-------	---------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference frequency (slow clock) — user trimmed	31.25		39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
$\Delta f_{dco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM only	_	± 0.2	± 0.5	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature	_	± 0.5	± 2	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C	_		± 1	%f _{dco}	1
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C	_	4	_	MHz	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C	3	_	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00	(3/5) x f _{ints_t}		—	kHz	

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
$\mathbf{f}_{\text{loc}_\text{high}}$	Loss of external clock minimum frequency — RANGE = 01, 10, or 11		(16/5) x f _{ints_t}	_	—	kHz	
		F			11		I
f _{fll_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00)	20	20.97	25	MHz	2, 3
		640 × f _{fll_ref} Mid range (DRS=01)	40	41.94	50	MHz	-
		$1280 \times f_{fll_ref}$					
		Mid-high range (DRS=10) 1920 × f _{fll_ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll ref}	80	83.89	100	MHz	-
dco_t_DMX3 2	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}	_	23.99	—	MHz	4, 5
		Mid range (DRS=01) 1464 × f _{fll_ref}	-	47.97	_	MHz	-
		Mid-high range (DRS=10)		71.99		MHz	-
		2197 × f _{fll_ref} High range (DRS=11)	-	95.98	-	MHz	-
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter			180		ps	
	 f_{DCO} = 48 M f_{DCO} = 98 M 		_	150	_		
t _{fll_acquire}	FLL target frequer	ncy acquisition time	—		1	ms	6
	-	Р	LL				
f _{pll_ref}	PLL reference free	quency range	8	—	16	MHz	
f _{vcoclk_2x}	VCO output freque	ency	220	—	480	MHz	
f _{vcoclk}	PLL output freque	ncy	110		240	MHz	
f _{vcoclk_90}	PLL quadrature or	utput frequency	110		240	MHz	
I _{pll}	• VCO @ 176	PLL operating current • VCO @ 176 MHz (f _{osc_hi_1} = 32 MHz, f _{pll ref} = 8 MHz, VDIV multiplier = 22)		2.8		mA	7
I _{pll}	PLL operating current • VCO @ 360 MHz (f _{osc_hi_1} = 32 MHz, f _{pll ref} = 8 MHz, VDIV multiplier = 45)		_	4.7	-	mA	7
J _{cyc_pll}	PLL period jitter (F	RMS)					8
	• f _{vco} = 48 MH	lz	_	120	_	ps	
	• f _{vco} = 120 M			75	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					8

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• f _{vco} = 48 MHz	_	1350	—	ps	
	• f _{vco} = 120 MHz	_	600	—	ps	
D _{unl}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_	_	$150 \times 10^{-6} + 1075(1/f_{pll_ref})$	S	9

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 4 MHz	_	400	_	μA	

3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Peripheral operating requirements and behaviors

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 12-bit cyclic Analog-to-Digital Converter (ADC) parameters

NOTE

The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean+ 3σ).

Characteristic	Symbol	Min	Тур	Max	Unit
Recommended Operating Conditions				1	
Supply Voltage ¹	V _{DDA}	2.7	3.3	3.6	V
V _{refh} Supply Voltage ^{, 2}	Vrefhx	2.7		V _{DDA}	V
ADC Conversion Clock ³	f _{ADCCLK}	0.6		25	MHz
Conversion Range	R _{AD}	V _{REFL}		V _{REFH}	V
Input Voltage Range	V _{ADIN}				V
External Reference		V _{REFL}		V _{REFH}	
Internal Reference		V_{SSA}		V _{DDA}	
Timing and Power	-11			1	
Conversion Time	t _{ADC}		6		ADC Clock Cycles
ADC Power-Up Time (from adc_pdn)	t _{ADPU}		13		ADC Clock Cycles
ADC RUN Current (per ADC block)	I _{ADRUN}				mA
 at 600 kHz ADC Clock, LP mode 			1		
• ≤ 8.33 MHz ADC Clock, 00 mode			5.7		
 ≤ 12.5 MHz ADC Clock, 01 mode 			10.5		
 ≤ 16.67 MHz ADC Clock, 10 mode 			17.7		
 ≤ 20 MHz ADC Clock, 11 mode 			22.6		
• \leq 25 MHz ADC Clock			27.5		
ADC Powerdown Current (adc_pdn enabled)	I _{ADPWRDWN}		0.02		μΑ
V _{REFH} Current	I _{VREFH}		0.001		μΑ
Accuracy (DC or Absolute)					
Integral non-Linearity ⁴	INL		+/- 3	+/- 5	LSB ⁵
Differential non-Linearity ⁴	DNL		+/- 0.6	+/- 0.9	LSB ⁵

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode		15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) • High-speed mode • Low speed mode	_	1	5	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	-	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT		—	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error		±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 V$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T _{GE}	Temperature coefficient gain error	—	0.000421	—	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)		—	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	• High power (SP _{HP})	1.2	1.7	_		
	Low power (SP _{LP})	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	• High power (SP _{HP})	550	_	_		
	• Low power (SP _{LP})	40	_	_		

Table 28. 12-bit DAC operating behaviors (continued)

1. Settling within ±1 LSB

2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV

3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV

4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V

5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} – 100 mV

V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

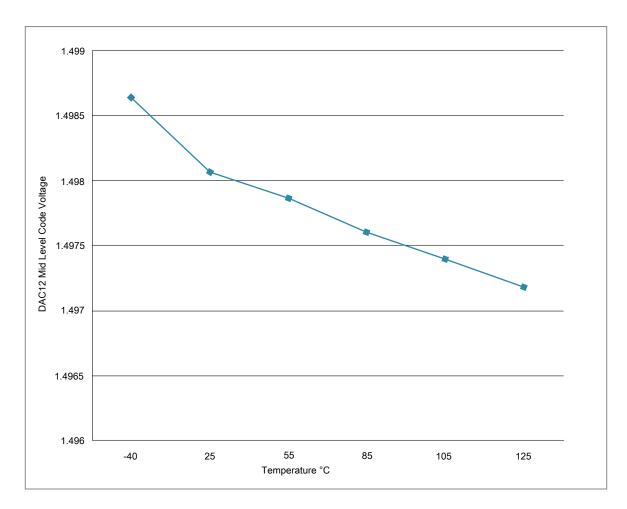


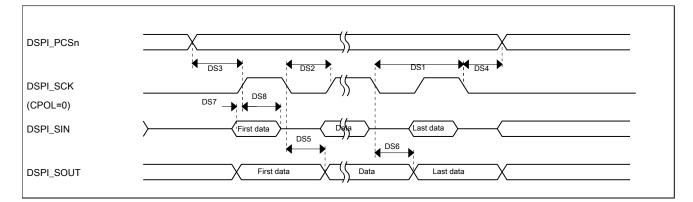
Figure 17. Offset at half scale vs. temperature

3.7 Timers

See General switching specifications.

3.8 Enhanced NanoEdge PWM characteristics

Table 29. NanoLuge P will timing parameters - 100 winz operating nequence	Table 29.	NanoEdge PWM timing parameters -	100 Mhz operating frequency
---	-----------	----------------------------------	-----------------------------


Characteristic	Symbol	Min.	Тур.	Max.	Unit
PWM clock frequency			100		MHz
NanoEdge Placement (NEP) Step Size ¹ , ²	pwmp		312		ps

Num	Description	Min.	Max.	Unit	Notes
	Frequency of operation	—	25	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn to DSPI_SCK output valid	(t _{BUS} x 2) – 2	—	ns	1
DS4	DSPI_SCK to DSPI_PCSn output hold	(t _{BUS} x 2) – 2	—	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	_	15.5	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-3	_	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	17	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

 Table 33. Master mode DSPI timing for open drain pads (limited voltage range) (continued)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 18. DSPI classic SPI timing — master mode

Table 34. Slave mode DSPI timing for normal pads (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	21	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	15	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	15	ns

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		25	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	17	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	11	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	11	ns

Table 35. Slave mode DSPI timing for fast pads (limited voltage range)

Table 36.	Slave mode DSPI timing	g for open drain pade	s (limited voltage range)
-----------	------------------------	-----------------------	---------------------------

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		12.5	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	_	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	28	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0		ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	22	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	22	ns



Figure 19. DSPI classic SPI timing — slave mode

3.9.2 SPI (DSPI) switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

NOTE

Fast pads:

- SIN: PTE19
- SOUT: PTE18
- SCK: PTE17
- PCS: PTE16

Open drain pads:

- SIN: PTC7
- SOUT: PTC6

Table 37. Master mode DSPI timing for normal pads (full voltage range)

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	—	18.75	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-7.8	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	24	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Dimensions

Kinetis Motor Suite is a bundled software solution that enables the rapid configuration of motor drive systems, and accelerates development of the final motor drive application.

Several members of the KV4x family are enabled with Kinetis Motor Suite. The enabled devices can be identified within the orderable part numbers in KMS Orderable part numbers summary . For more information, see Kinetis Motor Suite User's Guide (KMS100UG) and Kinetis Motor Suite API Reference Manual (KMS100RM).

NOTE

To find the associated resource, go to http://www.nxp.com and perform a search using the Document ID.

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.nxp.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
48-pin LQFP	98ASH00962A
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W

5 Pinout

5.1 KV4x Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

100 LQFP	64 LQFP	48 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
55	37	29	PTB2	ADCA_CH6e/ CMP2_IN2	ADCA_CH6e/ CMP2_IN2	PTB2	I2C0_SCL	UART0_ RTS_b	FTM0_FLT1		FTM0_FLT3	
56	38	30	PTB3	ADCB_CH7e/ CMP3_IN5	ADCB_CH7e/ CMP3_IN5	PTB3	I2C0_SDA	UART0_ CTS_b/ UART0_ COL_b			FTM0_FLT0	
57	-	Ι	PTB9	DISABLED		PTB9						
58	_	_	PTB10	ADCB_CH6a	ADCB_CH6a	PTB10					FTM0_FLT1	
59	Ι	Ι	PTB11	ADCB_CH7a	ADCB_CH7a	PTB11					FTM0_FLT2	
60	-	-	VSS	VSS	VSS							
61	-	-	VDD	VDD	VDD							
62	39	31	PTB16	DISABLED		PTB16		UART0_RX	FTM_CLKIN2	CAN0_TX	EWM_IN	XBAR0_IN5
63	40	32	PTB17	DISABLED		PTB17		UART0_TX	FTM_CLKIN1	CAN0_RX	EWM_OUT_b	
64	41	—	PTB18	DISABLED		PTB18	CAN0_TX		FTM3_CH2			
65	42	_	PTB19	DISABLED		PTB19	CAN0_RX		FTM3_CH3			
66	-	_	PTB20	DISABLED		PTB20				FLEXPWMA_ X0	CMP0_OUT	
67	-	-	PTB21	DISABLED		PTB21				FLEXPWMA_ X1	CMP1_OUT	
68	-	-	PTB22	DISABLED		PTB22				FLEXPWMA_ X2	CMP2_OUT	
69	-	-	PTB23	DISABLED		PTB23		SPI0_PCS5		FLEXPWMA_ X3	CMP3_OUT	
70	43	33	PTC0	ADCB_CH6b	ADCB_CH6b	PTC0	SPI0_PCS4	PDB0_ EXTRG			FTM0_FLT1	SPI0_PCS0
71	44	34	PTC1/ LLWU_P6	ADCB_CH7b	ADCB_CH7b	PTC1/ LLWU_P6	SPI0_PCS3	UART1_ RTS_b	FTM0_CH0	FLEXPWMA_ A3	XBAR0_IN11	
72	45	35	PTC2	ADCB_CH6c/ CMP1_IN0	ADCB_CH6c/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_ CTS_b	FTM0_CH1	FLEXPWMA_ B3	XBAR0_IN6	
73	46	36	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT	FTM3_FLT0	
74	47	-	VSS	VSS	VSS							
75	48	-	VDD	VDD	VDD							
76	49	37	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3		CMP1_OUT	
77	50	38	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	XBAR0_IN2		CMP0_OUT	FTM0_CH2
78	51	39	PTC6/ LLWU_P10	CMP2_IN4/ CMP0_IN0	CMP2_IN4/ CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_ EXTRG	XBAR0_IN3	UART0_RX	XBAR0_ OUT6	I2C0_SCL
79	52	40	PTC7	CMP3_IN4/ CMP0_IN1	CMP3_IN4/ CMP0_IN1	PTC7	SPI0_SIN		XBAR0_IN4	UART0_TX	XBAR0_ OUT7	I2C0_SDA
80	53	-	PTC8	ADCB_CH7c/ CMP0_IN2	ADCB_CH7c/ CMP0_IN2	PTC8		FTM3_CH4				
81	54	-	PTC9	ADCB_CH6d/ CMP0_IN3	ADCB_CH6d/ CMP0_IN3	PTC9		FTM3_CH5				

Field	Description	Values
S	Software type	 P = KMS-PMSM and BLDC (Blank) = Not software enabled
N	Packaging type • R = Tape and reel • (Blank) = Trays	

7.4 Example

This is an example part number:

MKV46F256VLL16

8 Terminology and guidelines

8.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

8.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

8.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

8.9 Typical Value Conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD} 3.3 V supply voltage		3.3	V

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
0	7/2014	Initial NDA release.
1	2/2015	 Added information about 48 LQFP package in the following sections: Ordering information Fields

Rev. No.	Date	Substantial Changes
		 Obtaining package dimensions Pinout In table "Power consumption operating behaviors", removed the text "Maximum core fequency of 150 Mhz" from note for I_{DDA}. In table "Typical device clock specifications", removed information about High Speed run mode.
2	8/2015	 Updated instances of operating frequency from 150 MHz to 168 Mhz Changed document number from "KV4XP100M150" to "KV4XP100M168" due to the change in operating frequency Part numbers ending with "15" changed to ending with "16" Removed instances of MKV45, MKV43, and MKV40 part numbers Updated MKV41 part numbers to MKV42 Added part numbers MKV44F256VLL16 and MKV44F256VLH16 Updated table "Orderable part numbers summary" In table Recommended Operating Conditions : Updated minimum digital supply voltage to 1.71 V Added footnote numbers 2 and 3 Removed rows for I_{OH}, I_{OL}, N_F, T_R, and t_{FLRET} Updated table Power mode transition operating behaviors Updated table Power consumption operating behaviors Updated table EMC radiated emissions operating behaviors Updated table Thermal attributes Updated table Thermal attributes Updated the PLL section of table MCG specifications Updated the Section 12-bit cyclic Analog-to-Digital Converter (ADC) parameters Updated I_{DDA_DACL P} and I_{DDA_DACH P} values in table 12-bit DAC operating behaviors Updated the pinouts Added section Enhanced NanoEdge PWM characteristics
3	06/2016	 Changed occurences of Freescale to NXP In the features list, added a section for "Kinetis Motor Suite" Added section Kinetis Motor Suite (KMS) In table 12-bit ADC electrical specifications, changed typical value of ENOB from 9.5 to 9.1

Table 43. Revision history (continued)